On Roto-Translatory Motion: Reductions and Radial Intermediaries

  • Sebastián Ferrer
  • Martin Lara


The roto-translational dynamics of an axial-symmetric rigid body is discussed in a central gravitational field. The six-degree-of-freedom Hamiltonian problem is formulated as a perturbation of the Kepler motion and torque-free rotation. A chain of canonical transformations is used to reduce the problem. First, the elimination of the nodes reduces the problem to a system of four degrees of freedom. Then, the elimination of the parallax simplifies the resulting Hamiltonian, which is shaped as a radial intermediary plus a remainder. Some features of this integrable intermediary are pointed out. The normalized first order system in closed form is also given, thus completing the solution. Finally the full reduction of the radial intermediary is constructed using the Hamilton-Jacobi equation.


Orbital Period Rigid Body Canonical Transformation Celestial Mechanics Artificial Satellite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    TOUMA, J. and WISDOM, J. “Evolution of the Earth-Moon System,” The Astronomical Journal, Vol. 108, 1994, pp. 1943–1961.CrossRefGoogle Scholar
  2. 2.
    GARRICK-BETHELL, I., WISDOM, J., and ZUBER, M. T. “Evidence for a Past High-Eccentricity Lunar Orbit,” Science, Vol 313, 2006, pp. 652–655.CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    BENETTIN, G., GUZZO, M. and MARINI, V. “Adiabatic Chaos in the Spin-Orbit Problem,” Celestial Mechanics and Dynamical Astronomy, Vol. 101, No. 1, 2008, pp. 203-224.CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    KOPEIKIN, S. M. et al., “Prospects in the Orbital and Rotational Dynamics of the Moon with the Advent of Sub-Centimeter Lunar Laser Ranging,” Advances in Space Research, Vol. 42, No. 8, 2008, pp. 1378–1390.CrossRefGoogle Scholar
  5. 5.
    SCHEERES, D. J. “Stability of the Planar Full 2-body Problem,” Celestial Mechanics and Dynamical Astronomy, Vol. 104, No. 1–2, 2009, pp. 103–128.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    GETINO, J., ESCAPA, A., and MIGUEL, D. “General Theory of the Rotation of the Non-Rigid Earth at the Second Order. I. The Rigid Model in Andoyer Variables,” The Astronomical Journal, Vol. 139, 2010, pp. 1916–1934.CrossRefGoogle Scholar
  7. 7.
    DANBY, J. M. A. Fundamentals of Celestial Mechanics, 2nd ed., Willmann - Bell, Inc., Richmond, 1992, p. 100 ff.Google Scholar
  8. 8.
    DEPRIT, A. “Elimination of the Nodes in Problems of N Bodies,” Celestial Mechanics, Vol. 30, No. 2, 1983, pp. 181–195.CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    FERRÁNDIZ, J. M., SANSATURIO, M. E. “Elimination of the Nodes when the Satellite is a Non Spherical Rigid Body,” Celestial Mechanics and Dynamical Astronomy, Vol. 46, No. 4, 1989, pp. 307–320.CrossRefzbMATHGoogle Scholar
  10. 10.
    FERRÁNDIZ, J. M., SANSATURIO, M. E., CABALLERO, R. “On the Roto-Translatory Motion of a Satellite of an Oblate Primary,” Celestial Mechanics and Dynamical Astronomy, Vol. 57, No. 1–2, 1993, pp. 189–202.CrossRefzbMATHGoogle Scholar
  11. 11.
    KINOSHITA, H. “First-Order Perturbations of the Two Finite Body Problem,” Publications of the Astronomical Society of Japan, Vol. 24, 1972, pp. 423–457.MathSciNetGoogle Scholar
  12. 12.
    HORI, G. I. “Theory of General Perturbation with Unspecied Canonical Variable,” Publications of the Astronomical Society of Japan, Vol. 18, No. 4, 1966, pp. 287–296.Google Scholar
  13. 13.
    DEPRIT, A. “Canonical Transformations Depending on a Small Parameter,” Celestial Mechanics, Vol. 1, No. 1, 1969, pp. 12–30.CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    DEPRIT, A. “The Elimination of the Parallax in Satellite Theory,” Celestial Mechanics, Vol. 24, No. 2, 1981, pp. 111–153.CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    ALFRIEND, K. T. and COFFEY, S. L. “Elimination of the Perigee in the Satellite Problem,” Celestial Mechanics, Vol. 32, 1984, pp. 163–172.CrossRefzbMATHGoogle Scholar
  16. 16.
    DEPRIT, A. “Delaunay Normalisations,” Celestial Mechanics, Vol. 26, No. 1, 1982, pp. 9–21.CrossRefMathSciNetGoogle Scholar
  17. 17.
    ANDOYER, M. H. Cours de Mécanique Céleste, t. 1, Gauthier-Villars et cie, Paris, 1923, p. 57.Google Scholar
  18. 18.
    DEPRIT, A., and FERRER, S. “Simplifications in the Theory of Artificial Satellites,” The Journal of the Astronautical Sciences, Vol. 37, No. 2, 1989, pp. 451–463.MathSciNetGoogle Scholar
  19. 19.
    COPPOLA, V. T., and PALACIAN, J. F. “Elimination of the Latitude in Artificial Satellite Theory,” The Journal of the Astronautical Sciences, Vol. 42, No. 1, 1994, pp. 27–34.Google Scholar
  20. 20.
    COFFEY, S. L., and DEPRIT, A. “Third Order Solution for Artificial Satellites,” Journal of Guidance, Control, and Dynamics, Vol. 5, 1982, pp. 366–371.CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    COFFEY, S. L., DEPRIT, A., and MILLER, B. R. “The Critical Inclination in Artificial Satellite Theory,” Celestial Mechanics, Vol. 39, No. 4, 1986, pp. 365–406.CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    HEALY, L. M. “The Main Problem in Satellite Theory Revisited,” Celestial Mechanics and Dynamical Astronomy, Vol. 76, No. 2, 2000, pp. 79–120.CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    COFFEY, S. L., DEPRIT, A., and DEPRIT, E. “Frozen Orbits for Satellites Close to an Earth-Like Planet,” Celestial Mechanics and Dynamical Astronomy, Vol. 59, No. 1, 1994, pp. 37–72.CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    ABAD, A., SAN-JUAN, J. F., and GAVÍN, A. “Short Term Evolution of Artificial Satellites,” Celestial Mechanics and Dynamical Astronomy, Vol. 79, No. 4, 2001, pp. 277–296.CrossRefzbMATHGoogle Scholar
  25. 25.
    PALACIAN, J. F. “Dynamics of a Satellite Orbiting a Planet with an Inhomogeneous Gravitational Field,” Celestial Mechanics and Dynamical Astronomy, Vol. 98, No. 4, 2007, pp. 219–249.CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    WILSON, C. The Hill-Brown Theory of the Moons Motion, Springer, 2010, 322 p.Google Scholar
  27. 27.
    VINTI, J. “Theory of an Accurate Intermediary Orbit of an Artificial Satellite,” Journal of Research National Bureau of Standards, Vol. 65B, 1959, pp. 169–201.CrossRefMathSciNetGoogle Scholar
  28. 28.
    AKSNES, K. “On the Dynamical Theory of a Near-Earth Satellite,” Astrophysica Norvegica, Vol. X, No. 4, 1965, pp. 69–77.Google Scholar
  29. 29.
    CID, R, and LAHULLA, J. F. “Perturbaciones de Corto Periodo en el Movimiento de un Satélite Artificial en Función de las Variables de Hill,” Monografías de la Real Academia de Ciencias de Zaragoza, Vol. 24, 1969, pp. 159–165.Google Scholar
  30. 30.
    GARFINKEL, B. and ASKNES, K. “Spherical Coordinate Intermediaries for an Artificial Satellite,” The Astronomical Journal, Vol. 75, 1970, pp. 85–91.CrossRefMathSciNetGoogle Scholar
  31. 31.
    ARRIBAS, M. Sobre la dinámica de actitud de satélites artificiales, Ph.D. Dissertation, Universidad de Zaragoza, 1989, pp. 149.Google Scholar
  32. 32.
    CHERNOUS’KO, F. L. “On the Motion of a Satellite about its Center of Mass Under the Action of Gravitational Moments,” Prikladnaya Mathematic Mechanica, Vol. 27, 1963, pp. 474 - 483.MathSciNetGoogle Scholar
  33. 33.
    LARA, M., FUKUSHIMA, T., and FERRER, S. “First-Order Rotation Solution of an Oblate Rigid Body under the Torque of a Perturber in Circular Orbit,” Astronomy and Astrophysics, Vol. 519, A1, 2010, doi:  10.1051/0004-6361/200913880.CrossRefGoogle Scholar
  34. 34.
    FERRER, S., and LARA, M. “Families of Canonical Transformations from a General Form of the Hamilton-Jacobi Equation,” Journal of Geometric Mechanics, Vol. 2, 2010, pp. 223-241.CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    FERRER, S., and LARA, M. “Integration of the Rotation of an Earth-Like Body as a Perturbed Spherical Rotor,” The Astronomical Journal, Vol. 139, 2010, pp. 1899–1908.CrossRefGoogle Scholar
  36. 36.
    LARA M., FUKUSHIMA, T., and FERRER, S. “Ceres Rotation Solution Under the Gravitational Torque of the Sun,” Monthly Notices of the Royal Astronomical Society, Vol. 415, 2011, pp. 461–469.CrossRefGoogle Scholar
  37. 37.
    ARNOLD, V. I., KOZLOV, V. V. and NEISHTADT, A. I. (Eds), Mathematical aspects of classical and celestial mechanics, in Encyclopaedia of Mahematical Sciences, Dynamical Systems III, Springer-Verlag Berlin 1993.Google Scholar
  38. 38.
    DEPRIT, A. and FERRER, S. “Note on Cid’s Radial Intermediary and the Method of Averaging,” Celestial Mechanics, Vol. 40, 1987, pp. 335–343.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© American Astronautical Society 2014

Authors and Affiliations

  1. 1.Universidad de MurciaEspinardoSpain
  2. 2.Real Observatorio de la ArmadaSan FernandoSpain

Personalised recommendations