Advertisement

High Blood Pressure & Cardiovascular Prevention

, Volume 26, Issue 5, pp 361–373 | Cite as

Subclinical Organ Damage in Children and Adolescents with Hypertension: Current Guidelines and Beyond

  • Denise Marcon
  • Angela Tagetti
  • Cristiano FavaEmail author
Review article
  • 20 Downloads

Abstract

High blood pressure (BP) is becoming a growing health issue even in children and adolescents. Moreover, BP elevation in youth frequently translates into children and adult hypertension contributing to the development of cardiovascular disease. The detection of early markers of vascular damage, potentially leading to overt cardiovascular disease, is important for clinical decisions about if and how to treat hypertension and can be useful in monitoring the effectiveness of the treatment. The purpose of this review is to summarize the actual knowledge about subclinical organ damage (SOD) in hypertensive children and adolescents and its association with cardiovascular disease in children and young adults. Our focus is especially put on left ventricular mass, pulse wave velocity, carotid intima-media thickness and microalbuminuria. We also want to address the scientific evidence about possible regression of SOD and cardiovascular risk with the use of behavioural and specific anti-hypertensive therapy. Indications from current guidelines are critically discussed.

Keywords

Childhood Adolescents Organ damage Hypertension 

Notes

Compliance with Ethical Standards

Conflict of interest

No conflict of interest to declare.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

References

  1. 1.
    Lurbe E, Agabiti-Rosei E, Cruickshank JK, Dominiczak A, Erdine S, Hirth A, et al. 2016 European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J Hypertens. 2016;34(10):1887–920.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Sharma AK, Metzger DL, Rodd CJ. Prevalence and severity of high blood pressure among children based on the 2017 American Academy of Pediatrics Guidelines. JAMA Pediatr. 2018;172:557.  https://doi.org/10.1001/jamapediatrics.2018.0223.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Genovesi S, Antolini L, Giussani M, Pieruzzi F, Galbiati S, Valsecchi MG, et al. Usefulness of waist circumference for the identification of childhood hypertension. J Hypertens. 2008;26:1563–70.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Katona É, Zrínyi M, Lengyel S, Komonyi É, Paragh G, Zatik J, et al. The prevalence of adolescent hypertension in Hungary—The Debrecen Hypertension Study. Blood Press. 2011;20:134–9.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Chen X, Wang Y. Tracking of blood pressure from childhood to adulthood: a systematic review and meta-regression analysis. Circulation. 2008;117:3171–80.  https://doi.org/10.1161/CIRCULATIONAHA.107.730366.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hartiala O, Magnussen CG, Kajander S, Knuuti J, Ukkonen H, Saraste A, et al. Adolescence risk factors are predictive of coronary artery calcification at middle age. J Am Coll Cardiol. 2012;60:1364–70.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Juonala M, Magnussen CG, Venn A, Dwyer T, Burns TL, Davis PH, et al. Influence of age on associations between childhood risk factors and carotid intima-media thickness in adulthood. Circulation. 2010;122:2514–20.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Juhola J, Magnussen CG, Berenson GS, Venn A, Burns TL, Sabin MA, et al. Combined effects of child and adult elevated blood pressure on subclinical atherosclerosis: the International Childhood Cardiovascular Cohort Consortium. Circulation. 2013;128:217–24.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics. 2017;140:e20171904.  https://doi.org/10.1542/peds.2017-1904.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Antolini L, Giussani M, Orlando A, Nava E, Valsecchi MG, Parati G, et al. Nomograms to identify elevated blood pressure values and left ventricular hypertrophy in a paediatric population. J Hypertens. 2019;37:1213–22.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Du T, Fernandez C, Barshop R, Chen W, Urbina EM, Bazzano LA. 2017 Pediatric hypertension guidelines improve prediction of adult cardiovascular outcomes. Hypertension. 2019;73:1217–23.  https://doi.org/10.1161/HYPERTENSIONAHA.118.12469.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Volpe M, Gallo G, Tocci G. Novel blood pressure targets in patients with high-normal levels and grade 1 hypertension: room for monotherapy? Int J Cardiol. 2019;291:105–11.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Yano Y, Reis JP, Colangelo LA, Shimbo D, Viera AJ, Allen NB, et al. Association of Blood Pressure Classification in Young Adults Using the 2017 American College of Cardiology/American Heart Association blood pressure guideline with cardiovascular events later in life. JAMA. 2018;320:1774–82.  https://doi.org/10.1001/jama.2018.13551.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Williams B. High blood pressure in young people and premature death. BMJ. 2011;342:d1104.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39:3021–104.CrossRefGoogle Scholar
  16. 16.
    Seeman T, Gilík J, Vondrák K, Šimková E, Flögelová H, Hladíková M, et al. Regression of left-ventricular hypertrophy in children and adolescents with hypertension during ramipril monotherapy. Am J Hypertens. 2007;20:990–6.  https://doi.org/10.1016/j.amjhyper.2007.03.009.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Matteucci MC, Chinali M, Rinelli G, Wuhl E, Zurowska A, Charbit M, et al. Change in cardiac geometry and function in CKD children during strict BP control: a randomized study. Clin J Am Soc Nephrol. 2013;8:203–10.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Kupferman JC, Paterno K, Mahgerefteh J, Pagala M, Golden M, Lytrivi ID, et al. Improvement of left ventricular mass with antihypertensive therapy in children with hypertension. Pediatr Nephrol. 2010;25:1513–8.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Killian L, Simpson JM, Savis A, Rawlins D, Sinha MD. Electrocardiography is a poor screening test to detect left ventricular hypertrophy in children. Arch Dis Child. 2010;95:832–6.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Bratincsák A, Williams M, Kimata C, Perry JC. The electrocardiogram is a poor diagnostic tool to detect left ventricular hypertrophy in children: a comparison with echocardiographic assessment of left ventricular mass. Congenit Heart Dis. 2015;10:E164–71.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Daniels SR, Kimball TR, Morrison JA, Khoury P, Witt S, Meyer RA. Effect of lean body mass, fat mass, blood pressure, and sexual maturation on left ventricular mass in children and adolescents. Statistical, biological, and clinical significance. Circulation. 1995;92:3249–54.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Urbina EM, Gidding SS, Bao W, Pickoff AS, Berdusis K, Berenson GS. Effect of body size, ponderosity, and blood pressure on left ventricular growth in children and young adults in the Bogalusa Heart Study. Circulation. 1995;91:2400–6.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Juhász M, Katona É, Settakis G, Paragh G, Molnár C, Fülesdi B, et al. Gender-related differences in adolescent hypertension and in target organ effects. J Women’s Health. 2010;19:759–65.  https://doi.org/10.1089/jwh.2009.1407.CrossRefGoogle Scholar
  24. 24.
    de Simone G, Devereux R, Daniels S, Koren M, Meyer R, Laragh J. Effect of growth on variability of left ventricular mass: assessment of allometric signals in adults and children and their capacity to predict cardiovascular risk. J Am Coll Cardiol. 1995;25:1056–62.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Khoury PR, Mitsnefes M, Daniels SR, Kimball TR. Age-specific reference intervals for indexed left ventricular mass in children. J Am Soc Echocardiogr. 2009;22:709–14.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Chinali M, Emma F, Esposito C, Rinelli G, Franceschini A, Doyon A, et al. Left ventricular mass indexing in infants, children, and adolescents: a simplified approach for the identification of left ventricular hypertrophy in clinical practice. J Pediatr. 2016;170:193–8.  https://doi.org/10.1016/j.jpeds.2015.10.085.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Urbina EM, Mendizábal B, Becker RC, Daniels SR, Falkner BE, Hamdani G, et al. Association of blood pressure level with left ventricular mass in adolescents. Hypertension. 2019;74:590–6.  https://doi.org/10.1161/HYPERTENSIONAHA.119.13027.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    De Simone G, Daniels SR, Kimball TR, Roman MJ, Romano C, Chinali M, et al. Evaluation of concentric left ventricular geometry in humans: evidence for age-related systematic underestimation. Hypertension. 2005;45:64–8.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Díaz A, Zócalo Y, Bia D. Reference intervals and percentile curves of echocardiographic left ventricular mass, relative wall thickness and ejection fraction in healthy children and adolescents. Pediatr Cardiol. 2019;40(2):283–301.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Kollias A, Dafni M, Poulidakis E, Ntineri A, Stergiou GS. Out-of-office blood pressure and target organ damage in children and adolescents: a systematic review and meta-analysis. J Hypertens. 2014;32:2315–31.PubMedCrossRefGoogle Scholar
  31. 31.
    Stabouli S, Kotsis V, Toumanidis S, Papamichael C, Constantopoulos A, Zakopoulos N. White-coat and masked hypertension in children: association with target-organ damage. Pediatr Nephrol. 2005;20:1151–5.PubMedCrossRefGoogle Scholar
  32. 32.
    McNiece KL, Gupta-Malhotra M, Samuels J, Bell C, Garcia K, Poffenbarger T, et al. Left ventricular hypertrophy in hypertensive adolescents. Hypertension. 2007;50:392–5.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Páll D, Juhász M, Lengyel S, Molnár C, Paragh G, Fülesdi B, et al. Assessment of target-organ damage in adolescent white-coat and sustained hypertensives. J Hypertens. 2010;28:2139–44.PubMedCrossRefGoogle Scholar
  34. 34.
    Brady TM, Fivush B, Flynn JT, Parekh R. Ability of blood pressure to predict left ventricular hypertrophy in children with primary hypertension. J Pediatr. 2008;152(73–78):e1.Google Scholar
  35. 35.
    Litwin M, Niemirska A, Ruzicka M, Feber J. White coat hypertension in children: not rare and not benign? J Am Soc Hypertens. 2009;3:416–23.PubMedCrossRefGoogle Scholar
  36. 36.
    Lande MB, Meagher CC, Fisher SG, Belani P, Wang H, Rashid M. Left ventricular mass index in children with white coat hypertension. J Pediatr. 2008;153:50–4.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Stergiou GS, Giovas PP, Kollias A, Rarra VC, Papagiannis J, Georgakopoulos D, et al. Relationship of home blood pressure with target-organ damage in children and adolescents. Hypertens Res. 2011;34:640–4.  https://doi.org/10.1038/hr.2011.10.CrossRefPubMedGoogle Scholar
  38. 38.
    Kitzmueller E, Vécsei A, Pichler J, Böhm M, Müller T, Vargha R, et al. Changes of blood pressure and left ventricular mass in pediatric renal transplantation. Pediatr Nephrol. 2004;19:1385–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Meng L, Hou D, Zhao X, Hu Y, Liang Y, Liu J, et al. Cardiovascular target organ damage could have been detected in sustained pediatric hypertension. Blood Press. 2015;24:284–92.PubMedCrossRefGoogle Scholar
  40. 40.
    Hao G, Wang X, Treiber FA, Harshfield G, Kapuku G, Su S. Blood pressure trajectories from childhood to young adulthood associated with cardiovascular risk. Hypertension. 2017;69:435–42.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Gupta-Malhotra M, Hashmi SS, Poffenbarger T, Mcniece-Redwine K. Left ventricular hypertrophy phenotype in childhood-onset essential hypertension. J Clin Hypertens. 2016;18:449–55.CrossRefGoogle Scholar
  42. 42.
    Gidding SS, Palermo RA, Deloach SS, Keith SW, Falkner B. Associations of cardiac structure with obesity, blood pressure, inflammation, and insulin resistance in african–american adolescents. Pediatr Cardiol. 2014;35:307–14.PubMedCrossRefGoogle Scholar
  43. 43.
    Stabouli S, Kotsis V, Rizos Z, Toumanidis S, Karagianni C, Constantopoulos A, et al. Left ventricular mass in normotensive, prehypertensive and hypertensive children and adolescents. Pediatr Nephrol. 2009;24:1545–51.PubMedCrossRefGoogle Scholar
  44. 44.
    Pieruzzi F, Antolini L, Salerno FR, Giussani M, Brambilla P, Galbiati S, et al. The role of blood pressure, body weight and fat distribution on left ventricular mass, diastolic function and cardiac geometry in children. J Hypertens. 2015;33:1182–92.PubMedCrossRefGoogle Scholar
  45. 45.
    Bjelakovic B, Lukic S, Vukomanovic V, Prijic S, Zivkovic N, Vasic K, et al. Blood pressure variability and left ventricular mass index in children. J Clin Hypertens. 2013;15:905–9.CrossRefGoogle Scholar
  46. 46.
    Brady TM, Appel LJ, Holmes KW, Fivush B, Miller ER. Association between adiposity and left ventricular mass in children with hypertension. J Clin Hypertens. 2016;18:625–33.CrossRefGoogle Scholar
  47. 47.
    Dibeklioglu SE, Çevik BŞ, Acar B, Özçakar ZB, Uncu N, Kara N, et al. The association between obesity, hypertension and left ventricular mass in adolescents. J Pediatr Endocrinol Metab. 2017;30:167–74.PubMedCrossRefGoogle Scholar
  48. 48.
    Border WL, Kimball TR, Witt SA, Glascock BJ, Khoury P, Daniels SR. Diastolic filling abnormalities in children with essential hypertension. J Pediatr. 2007;150:503–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Dhuper S, Abdullah RA, Weichbrod L, Mahdi E, Cohen HW. Association of obesity and hypertension with left ventricular geometry and function in children and adolescents. Obesity (Silver Spring). 2011;19:128–33.CrossRefGoogle Scholar
  50. 50.
    Sharpe JA, Naylor LH, Jones TW, Davis EA, O’Driscoll G, Ramsay JM, et al. Impact of obesity on diastolic function in subjects ≤ 16 years of age. Am J Cardiol. 2006;98:691–3.PubMedCrossRefGoogle Scholar
  51. 51.
    Morka A, Szydlowski L, Moric-Janiszewska E, Mazurek B, Markiewicz-Loskot G, Stec S. Left ventricular diastolic dysfunction assessed by conventional echocardiography and spectral tissue doppler imaging in adolescents with arterial hypertension. Medicine (United States). 2016;95:1–7.Google Scholar
  52. 52.
    Navarini S, Bellsham-Revell H, Chubb H, Gu H, Sinha MD, Simpson JM. Myocardial deformation measured by 3-dimensional speckle tracking in children and adolescents with systemic arterial hypertension. Hypertension. 2017;70:1142–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Jing L, Nevius CD, Friday CM, Suever JD, Pulenthiran A, Mejia-Spiegeler A, et al. Ambulatory systolic blood pressure and obesity are independently associated with left ventricular hypertrophic remodeling in children. J Cardiovasc Magn Reson. 2017;19:1–11.CrossRefGoogle Scholar
  54. 54.
    Śladowska-Kozłowska J, Litwin M, Niemirska A, Wierzbicka A, Wawer ZT, Janas R. Change in left ventricular geometry during antihypertensive treatment in children with primary hypertension. Pediatr Nephrol. 2011;26:2201–9.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Schmieder RE. The role of non-haemodynamic factors of the genesis of LVH. Nephrol Dial Transplant. 2005;20:2610–2.PubMedCrossRefGoogle Scholar
  56. 56.
    Litwin M, Niemirska A, Śladowska-Kozlowska J, Wierzbicka A, Janas R, Wawer ZT, et al. Regression of target organ damage in children and adolescents with primary hypertension. Pediatr Nephrol. 2010;25:2489–99.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Borchert-Mörlins B, Thurn D, Schmidt BMW, Büscher AK, Oh J, Kier T, et al. Factors associated with cardiovascular target organ damage in children after renal transplantation. Pediatr Nephrol. 2017;32:2143–54.PubMedCrossRefGoogle Scholar
  58. 58.
    Ramoğlu MG, Uçar T, Yılmaz S, Özçakar ZB, Kurt-Şükür ED, Tutar E, et al. Hypertension and improved left ventricular mass index in children after renal transplantation. Pediatr Transplant. 2017;21:1–8.CrossRefGoogle Scholar
  59. 59.
    Zanoli L, Lentini P, Briet M, Castellino P, House AA, London GM, et al. Arterial stiffness in the heart disease of CKD. J Am Soc Nephrol. 2019;30:918–28.PubMedCrossRefGoogle Scholar
  60. 60.
    Mogensen CE, Christensen CK. Predicting diabetic nephropathy in insulin-dependent patients. N Engl J Med. 1984;311:89–93.PubMedCrossRefGoogle Scholar
  61. 61.
    Viberti GC, Hill RD, Jarrett RJ, Argyropoulos A, Mahmud U, Keen H. Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus. Lancet (London, England). 1982;1:1430–2.CrossRefGoogle Scholar
  62. 62.
    Rossing P, Hougaard P, Borch-Johnsen K, Parving HH. Predictors of mortality in insulin dependent diabetes: 10 year observational follow up study. BMJ. 1996;313:779–84.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Ljungman S, Wikstrand J, Hartford M, Berglund G. Urinary albumin excretion—a predictor of risk of cardiovascular disease. A prospective 10-year follow-up of middle-aged nondiabetic normal and hypertensive men. Am J Hypertens. 1996;9:770–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Hillege HL, Fidler V, Diercks GFH, van Gilst WH, de Zeeuw D, van Veldhuisen DJ, et al. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation. 2002;106:1777–82.PubMedCrossRefGoogle Scholar
  65. 65.
    Roest M, Banga JD, Janssen WM, Grobbee DE, Sixma JJ, de Jong PE, et al. Excessive urinary albumin levels are associated with future cardiovascular mortality in postmenopausal women. Circulation. 2001;103:3057–61.PubMedCrossRefGoogle Scholar
  66. 66.
    KDIGO. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl Off J Int Soc Nephrol. 2012;2013(3):1–150.Google Scholar
  67. 67.
    Assadi F. Relation of left ventricular hypertrophy to microalbuminuria and C-reactive protein in children and adolescents with essential hypertension. Pediatr Cardiol. 2008;29:580–4.PubMedCrossRefGoogle Scholar
  68. 68.
    Belsha CW, Wells TG, McNiece KL, Seib PM, Plummer JK, Berry PL. Influence of diurnal blood pressure variations on target organ abnormalities in adolescents with mild essential hypertension. Am J Hypertens. 1998;11:410–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Csernus K, Lanyi E, Erhardt E, Molnar D. Effect of childhood obesity and obesity-related cardiovascular risk factors on glomerular and tubular protein excretion. Eur J Pediatr. 2005;164:44–9.  https://doi.org/10.1007/s00431-004-1546-2.CrossRefPubMedGoogle Scholar
  70. 70.
    Rademacher E, Mauer M, Jacobs DR, Chavers B, Steinke J, Sinaiko A. Albumin excretion rate in normal adolescents: Relation to insulin resistance and cardiovascular risk factors and comparisons to type 1 diabetes mellitus patients. Clin J Am Soc Nephrol. 2008;3:998–1005.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Radhakishun NNE, Van Vliet M, Von Rosenstiel IA, Beijnen JH, Diamant M. Limited value of routine microalbuminuria assessment in multi-ethnic obese children. Pediatr Nephrol. 2013;28:1145–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Sanad M, Gharib A. Evaluation of microalbuminuria in obese children and its relation to metabolic syndrome. Pediatr Nephrol. 2011;26:2193–9.  https://doi.org/10.1007/s00467-011-1931-9.CrossRefPubMedGoogle Scholar
  73. 73.
    Seeman T, Pohl M, Palyzova D, John U. Microalbuminuria in children with primary and white-coat hypertension. Pediatr Nephrol. 2012;27:461–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Cho H, Kim JH. Prevalence of microalbuminuria and its associated cardiometabolic risk factors in Korean youth: Data from the Korea National Health and Nutrition Examination Survey. PLoS One. 2017;12:e0178716.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Nguyen S, McCulloch C, Brakeman P, Portale A, Hsu C-Y. Being Overweight modifies the association between cardiovascular risk factors and microalbuminuria in adolescents. Pediatrics. 2008;121:37–45.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Lurbe E, Torro MI, Alvarez J, Aguilar F, Fernandez-Formoso JA, Redon J. Prevalence and factors related to urinary albumin excretion in obese youths. J Hypertens. 2013;31:2230–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Hirschler V, Molinari C, Maccallini G, Aranda C. Is albuminuria associated with obesity in school children? Pediatr Diabetes. 2009;11:322–30.  https://doi.org/10.1111/j.1399-5448.2009.00599.x.CrossRefGoogle Scholar
  78. 78.
    Nenov VD, Taal MW, Sakharova OV, Brenner BM. Multi-hit nature of chronic renal disease. Curr Opin Nephrol Hypertens. 2000;9:85–97.PubMedCrossRefGoogle Scholar
  79. 79.
    Mueller PW, Caudill SP. Urinary albumin excretion in children: factors related to elevated excretion in the United States population. Ren Fail. 1999;21:293–302.  https://doi.org/10.3109/08860229909085091.CrossRefPubMedGoogle Scholar
  80. 80.
    Houser MT. Characterization of recumbent, ambulatory, and postexercise proteinuria in the adolescent. Pediatr Res. 1987;21:442–6.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Poortmans JR, Brauman H, Staroukine M, Verniory A, Decaestecker C, Leclercq R. Indirect evidence of glomerular/tubular mixed-type postexercise proteinuria in healthy humans. Am J Physiol Physiol. 1988;254:F277–83.  https://doi.org/10.1152/ajprenal.1988.254.2.F277.CrossRefGoogle Scholar
  82. 82.
    ESCAPE Trial Group, Wühl E, Trivelli A, Picca S, Litwin M, Peco-Antic A, et al. Strict blood-pressure control and progression of renal failure in children. N Engl J Med. 2009;361:1639–50.Google Scholar
  83. 83.
    McGill HC, McMahan CA. Determinants of atherosclerosis in the young. Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Am J Cardiol. 1998;82:30T–6T.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Berenson GS, Srinivasan SR, Bao W, Newman WP, Tracy RE, Wattigney WA. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. N Engl J Med. 1998;338:1650–6.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Davis PH, Dawson JD, Riley WA, Lauer RM. Carotid intimal-medial thickness is related to cardiovascular risk factors measured from childhood through middle age: The Muscatine Study. Circulation. 2001;104:2815–9.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Raitakari OT, Juonala M, Kähönen M, Taittonen L, Laitinen T, Mäki-Torkko N, et al. Cardiovascular risk factors in childhood and carotid artery intima-media thickness in adulthood. JAMA. 2003;290:2277.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Li S, Chen W, Srinivasan SR, Bond MG, Tang R, Urbina EM, et al. Childhood cardiovascular risk factors and carotid vascular changes in adulthood. JAMA. 2003;290:2271.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Magnussen CG, Venn A, Thomson R, Juonala M, Srinivasan SR, Viikari JSA, et al. The association of pediatric low- and high-density lipoprotein cholesterol dyslipidemia classifications and change in dyslipidemia status with carotid intima-media thickness in adulthood evidence from the cardiovascular risk in Young Finns study, the Bogalusa Heart study, and the CDAH (Childhood Determinants of Adult Health) study. J Am Coll Cardiol. 2009;53:860–9.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Juonala M, Magnussen CG, Venn A, Dwyer T, Burns TL, Davis PH, et al. Influence of age on associations between childhood risk factors and carotid intima-media thickness in adulthood: the cardiovascular risk in young finns study, the childhood determinants of adult health study, the bogalusa heart study, and the muscatine st. Circulation. 2010;122:2514–20.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Kollias A, Psilopatis I, Karagiaouri E, Glaraki M, Grammatikos E, Grammatikos EE, et al. Adiposity, blood pressure, and carotid intima-media thickness in greek adolescents. Obesity. 2013;21:1013–7.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Juonala M, Kahonen M, Laitinen T, Hutri-Kahonen N, Jokinen E, Taittonen L, et al. Effect of age and sex on carotid intima-media thickness, elasticity and brachial endothelial function in healthy adults: The Cardiovascular Risk in Young Finns Study. Eur Heart J. 2008;29:1198–206.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Day TG, Park M, Kinra S. The association between blood pressure and carotid intima-media thickness in children: a systematic review. Cardiol Young. 2017;27:1295–305.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. J Hypertens. 2018;36:1953–2041.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Shah AS, Gao Z, Urbina EM, Kimball TR, Dolan LM. Prediabetes: the effects on arterial thickness and stiffness in obese youth. J Clin Endocrinol Metab. 2014;99:1037–43.  https://doi.org/10.1210/jc.2013-3519.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    McVeigh GE, Gibson W, Hamilton PK. Cardiovascular risk in the young type 1 diabetes population with a low 10-year, but high lifetime risk of cardiovascular disease. Diabetes Obes Metab. 2013;15:198–203.  https://doi.org/10.1111/dom.12013.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Shroff R, Dégi A, Kerti A, Kis É, Cseprekál O, Tory K, et al. Cardiovascular risk assessment in children with chronic kidney disease. Pediatr Nephrol. 2013;28:875–84.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Stergiou GS, Kollias A, Giovas PP, Papagiannis J, Roussias LG. Ambulatory arterial stiffness index, pulse pressure and pulse wave velocity in children and adolescents. Hypertens Res. 2010;33:1272–7.  https://doi.org/10.1038/hr.2010.178.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Zhong Q, Hu M-J, Cui Y-J, Liang L, Zhou M-M, Yang Y-W, et al. Carotid–femoral pulse wave velocity in the prediction of cardiovascular events and mortality: an updated systematic review and meta-analysis. Angiology. 2018;69:617–29.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, et al. Aortic pulse wave velocity improves cardiovascular event prediction. J Am Coll Cardiol. 2014;63:636–46.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Thurn D, Doyon A, Sözeri B, Bayazit AK, Canpolat N, Duzova A, et al. Aortic pulse wave velocity in healthy children and adolescents: reference values for the vicorder device and modifying factors. Am J Hypertens. 2015;28:1480–8.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Reusz GS, Cseprekal O, Temmar M, Kis E, Cherif AB, Thaleb A, et al. Reference values of pulse wave velocity in healthy children and teenagers. Hypertension. 2010;56:217–24.  https://doi.org/10.1161/HYPERTENSIONAHA.110.152686.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Hidvégi EV, Illyés M, Benczúr B, Böcskei RM, Rátgéber L, Lenkey Z, et al. Reference values of aortic pulse wave velocity in a large healthy population aged between 3 and 18 years. J Hypertens. 2012;30:2314–21.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Elmenhorst J, Hulpke-Wette M, Barta C, Dalla Pozza R, Springer S, Oberhoffer R. Percentiles for central blood pressure and pulse wave velocity in children and adolescents recorded with an oscillometric device. Atherosclerosis. 2015;238:9–16.  https://doi.org/10.1016/j.atherosclerosis.2014.11.005.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Liang Y, Hou D, Shan X, Zhao X, Hu Y, Jiang B, et al. Cardiovascular remodeling relates to elevated childhood blood pressure: Beijing Blood Pressure Cohort Study. Int J Cardiol. 2014;177:836–9.  https://doi.org/10.1016/j.ijcard.2014.11.013.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Urbina EM, Dolan LM, McCoy CE, Khoury PR, Daniels SR, Kimball TR. Relationship between elevated arterial stiffness and increased left ventricular mass in adolescents and young adults. J Pediatr. 2011;158:715–21.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Aatola H, Koivistoinen T, Tuominen H, Juonala M, Lehtimäki T, Viikari JSA, et al. Influence of child and adult elevated blood pressure on adult arterial stiffness: the cardiovascular risk in young finns study. Hypertension. 2017;70:531–6.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Schmidt BMW, Sugianto RI, Thurn D, Azukaitis K, Bayazit AK, Canpolat N, et al. Early effects of renal replacement therapy on cardiovascular comorbidity in children with end-stage kidney disease: findings from the 4C-T study. Transplantation. 2018;102:484–92.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Lurbe E, Torro I, Garcia-Vicent C, Alvarez J, Fernández-Fornoso JA, Redon J. Blood pressure and obesity exert independent influences on pulse wave velocity in youth. Hypertension (Dallas, Tex 1979). 2012;60:550–5.  https://doi.org/10.1161/HYPERTENSIONAHA.112.194746.CrossRefGoogle Scholar
  109. 109.
    Dangardt F, Charakida M, Georgiopoulos G, Chiesa ST, Rapala A, Wade KH, et al. Association between fat mass through adolescence and arterial stiffness: a population-based study from The Avon Longitudinal Study of Parents and Children. Lancet Child Adolesc Health. 2019;3:474–81.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Rothwell PM, Howard SC, Dolan E, O’Brien E, Dobson JE, Dahlöf B, et al. Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. Lancet. 2010;375:895–905.PubMedCrossRefGoogle Scholar
  111. 111.
    Mancia G, Parati G, Pomidossi G, Casadei R, Di Rienzo M, Zanchetti A. Arterial baroreflexes and blood pressure and heart rate variabilities in humans. Hypertension (Dallas, Tex 1979). 1986;8:147–53.CrossRefGoogle Scholar
  112. 112.
    Schillaci G, Bilo G, Pucci G, Laurent S, Macquin-Mavier I, Boutouyrie P, et al. Relationship between short-term blood pressure variability and large-artery stiffness in human hypertension. Hypertension. 2012;60:369–77.  https://doi.org/10.1161/HYPERTENSIONAHA.112.197491.CrossRefPubMedGoogle Scholar
  113. 113.
    Maseli A, Aeschbacher S, Schoen T, Fischer A, Jung M, Risch M, et al. Healthy lifestyle and blood pressure variability in young adults. Am J Hypertens. 2017;30:690–9.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Palatini P, Saladini F, Mos L, Fania C, Mazzer A, Cozzio S, et al. Short-term blood pressure variability outweighs average 24-h blood pressure in the prediction of cardiovascular events in hypertension of the young. J Hypertens. 2019;37:1419–26.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Stergiou G, Palatini P, Asmar R, de la Sierra A, Myers M, Shennan A, et al. Blood pressure measurement and hypertension diagnosis in the 2017 US guidelines. Hypertension. 2018;71:963–5.PubMedCrossRefGoogle Scholar
  116. 116.
    Palatini P, Saladini F, Mos L, Fania C, Mazzer A, Casiglia E. Clinical characteristics and risk of hypertension needing treatment in young patients with systolic hypertension identified with ambulatory monitoring. J Hypertens. 2018;36:1810–5.PubMedCrossRefGoogle Scholar
  117. 117.
    Katzmarzyk PT, Srinivasan SR, Chen W, Malina RM, Bouchard C, Berenson GS. Body mass index, waist circumference, and clustering of cardiovascular disease risk factors in a biracial sample of children and adolescents. Pediatrics. 2004;114:e198–205.PubMedCrossRefGoogle Scholar
  118. 118.
    Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986;57:450–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American society of echocardiography and the European association of cardiovascular imaging. Eur Heart J Cardiovasc Imaging. 2015;16:233–71.PubMedCrossRefGoogle Scholar
  120. 120.
    Armstrong AC, Gidding S, Gjesdal O, Wu C, Bluemke DA, Lima JAC. LV mass assessed by echocardiography and CMR, cardiovascular outcomes, and medical practice. JACC Cardiovasc Imaging. 2012;5:837–48.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Kuznetsova T, Haddad F, Tikhonoff V, Kloch-Badelek M, Ryabikov A, Knez J, et al. Impact and pitfalls of scaling of left ventricular and atrial structure in population-based studies. J Hypertens. 2016;34:1186–94.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Doyon A, Kracht D, Bayazit AK, Deveci M, Duzova A, Krmar RT, et al. Carotid artery intima-media thickness and distensibility in children and adolescents: reference values and role of body dimensions. Hypertension. 2013;62:550–6.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Lubrano R, Travasso E, Raggi C, Guido G, Masciangelo R, Elli M. Blood pressure load, proteinuria and renal function in pre-hypertensive children. Pediatr Nephrol. 2009;24:823–31.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Italian Society of Hypertension 2019

Authors and Affiliations

  1. 1.Department of Medicine, Section of General Medicine and HypertensionUniversity of VeronaVeronaItaly
  2. 2.General Medicine and Hypertension” Unit, Department of MedicineAOUI-Hospital “Policlinico G.B. Rossi”, University of VeronaVeronaItaly

Personalised recommendations