High Blood Pressure & Cardiovascular Prevention

, Volume 25, Issue 4, pp 379–383 | Cite as

Lack of Correlation of Carotid Intima-Media Index and Peripheral Artery Disease

  • Paloma Laguna
  • Nicolás Roberto RoblesEmail author
  • Juan Lopez Gomez
  • Sergio Barroso
  • Gabriel Collado
Original Article



Increased carotid intima-media thickness (IMT) measurement is usually seen as a surrogate marker of peripheral artery disease (PAD) but there is scarce cumulated evidence to support this view.


To evaluate prevalence of increased IMT among patients with symptomatic PAD as well as the frequency of some cardiovascular risk factors in these patients.


They were recruited 230 patients with diagnosis of medium peripheral artery disease in the Vascular Surgery Service outpatient’s office. Serum cystatin C, homocysteine, and lipoprotein (a) were measured. GFR was estimated using the CKD-EPI equation and the Larsson one from cystatin C.


The global prevalence of increased IMT was 16.5% (n = 38, 95% CI 12.3–21.9). In all the frequency of hyperlipoproteinemia (a) was 34.2% (95% CI 28.4–40.5%). The global prevalence of hyperhomocysteinemia was 61.5% (95% CI 54.6–68.1%) and the proportion of patients with high cystatin C levels was 38.5% (95% CI 32.1–42.5). The prevalence of stage III chronic kidney disease or higher by CKD-EPI formula was much lesser (13.6%, 95% CI 9.7–18.7) as was the frequency obtained by the Larsson equation (28.7%, 95% CI 23.2–34.9). No differences were found between groups.


Increased IMT is not common among PAD patients. Hyperlipoproteinemia (a) and hyperhomocysteinemia are very frequent in these patients. High serum cystatin levels are also very prevalent but reduced GFR is not so frequent. There were no differences in the prevalence of the studied cardiovascular risk factors between those patients with increased IMT and those ones with normal IMT.


Peripheral artery disease Carotid disease Intima media thicknes Lipoprotein (a) Homocysteine Cystatin C 


Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Research was performed according to current ethical standards for medical studies and, specifically, the Helsinki Declaration.

Informed consent

Informed consent was obtained before each subject’s participation in the trial.


  1. 1.
    Teraa M, Conte MS, Moll FL, Verhaar MC. Critical limb ischemia: current trends and future directions. J Am Heart Assoc. 2016;5(2):e002938. Scholar
  2. 2.
    Sehestedt T, Jeppesen J, Hansen TW, Wachtell K, Ibsen H, Torp-Pedersen C, Hildebrandt P, Olsen MH. Risk prediction is improved by adding markers of subclinical organ damage to SCORE. Eur Heart J. 2010;31:883–91.CrossRefPubMedGoogle Scholar
  3. 3.
    O’Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK Jr. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N Engl J Med. 1999;340:14–22.CrossRefPubMedGoogle Scholar
  4. 4.
    Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M, Christiaens T, Cifkova R, De Backer G, Dominiczak A, Galderisi M, Grobbee DE, Jaarsma T, Kirchhof P, Kjeldsen SE, Laurent S, Manolis AJ, Nilsson PM, Ruilope LM, Schmieder RE, Sirnes PA, Sleight P, Viigimaa M, Waeber B, Zannad F, Redon J, Dominiczak A, Narkiewicz K, Nilsson PM, Burnier M, Viigimaa M, Ambrosioni E, Caufield M, Coca A, Olsen MH, Schmieder RE, Tsioufis C, van de Borne P, Zamorano JL, Achenbach S, Baumgartner H, Bax JJ, Bueno H, Dean V, Deaton C, Erol C, Fagard R, Ferrari R, Hasdai D, Hoes AW, Kirchhof P, Knuuti J, Kolh P, Lancellotti P, Linhart A, Nihoyannopoulos P, Piepoli MF, Ponikowski P, Sirnes PA, Tamargo JL, Tendera M, Torbicki A, Wijns W, Windecker S, Clement DL, Coca A, Gillebert TC, Tendera M, Rosei EA, Ambrosioni E, Anker SD, Bauersachs J, Hitij JB, Caulfield M, De Buyzere M, De Geest S, Derumeaux GA, Erdine S, Farsang C, Funck-Brentano C, Gerc V, Germano G, Gielen S, Haller H, Hoes AW, Jordan J, Kahan T, Komajda M, Lovic D, Mahrholdt H, Olsen MH, Ostergren J, Parati G, Perk J, Polonia J, Popescu BA, Reiner Z, Rydén L, Sirenko Y, Stanton A, Struijker-Boudier H, Tsioufis C, van de Borne P, Vlachopoulos C, Volpe M, Wood DA. 2013 ESH/ESC guidelines for the management of arterial hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34:2159–219.CrossRefPubMedGoogle Scholar
  5. 5.
    Larsson A, Malm J, Grubb A, Hansson LO. Calculation of glomerular filtration rate expressed in mL/min from plasma cystatin C values in mg/L. Scand J Clin Lab Investig. 2004;64:25–30.CrossRefGoogle Scholar
  6. 6.
    Grau M, Subirana I, Agis D, Ramos R, Basagaña X, Martí R, de Groot E, Arnold RJ, Marrugat J, Künzli N, Elosua R. Carotid intima-media thickness in the Spanish population: reference ranges and association with cardiovascular risk factors. Rev Esp Cardiol (Engl Ed). 2012;65:1086–93.CrossRefPubMedGoogle Scholar
  7. 7.
    Burke GL, Evans GW, Riley WA, Sharrett AR, Howard G, Barnes RW, Rosamond W, Crow RS, Rautaharju PM, Heiss G. Arterial wall thickness is associated with prevalent cardiovascular disease in middle-aged adults. The Atherosclerosis Risk in Communities (ARIC) Study. Stroke. 1995;26:386–91.CrossRefPubMedGoogle Scholar
  8. 8.
    Bots ML, Hofman A, Grobbee DE. Common carotid intima-media thickness and lower extremity arterial atherosclerosis. The Rotterdam Study. Arterioscler Thromb. 1994;14(12):1885–91.CrossRefPubMedGoogle Scholar
  9. 9.
    Pradeepa R, Chella S, Surendar J, Indulekha K, Anjana RM, Mohan V. Prevalence of peripheral vascular disease and its association with carotid intima-media thickness and arterial stiffness in type 2 diabetes: the Chennai urban rural epidemiology study (CURES 111). Diab Vasc Dis Res. 2014;11:190–200.CrossRefPubMedGoogle Scholar
  10. 10.
    Bosevski M, Stojanovska L. Progression of carotid-artery disease in type 2 diabetic patients: a cohort prospective study. Vasc Health Risk Manag. 2015;11:549–53.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Berg K. A new serum type system in man—the LP system. Acta Pathol Microbiol Scand. 1963;59:369–82.CrossRefPubMedGoogle Scholar
  12. 12.
    Enkhmaa B, Anuurad E, Zhang W, Tran T, Berglund L. Lipoprotein(a): genotype-phenotype relationship and impact on atherogenic risk. Metab Syndr Relat Disord. 2011;9:411–8.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kronenberg F, Utermann G. Lipoprotein(a): resurrected by genetics. J Intern Med. 2013;273:6–30.CrossRefPubMedGoogle Scholar
  14. 14.
    van Buuren F, Sommer JA, Kottmann T, Horstkotte D, Mellwig KP. Extrakardiale Manifestation der Lipoprotein(a)-Erhöhung—Gehäuftes Auftreten von peripherer arterieller Verschlusskrankheit und Stenosen der Arteria carotis. Clin Res Cardiol Suppl. 2015;10:39–45.CrossRefPubMedGoogle Scholar
  15. 15.
    Boras J, Ljubic S, Car N, Metelko Z, Petrovecki M, Lovrencic MV, Reiner Z. Lipoprotein(a) predicts progression of carotid artery intima-media thickening in patients with type 2 diabetes: a four-year follow-up. Wien Klin Wochenschr. 2010;122(5–6):159–64.CrossRefPubMedGoogle Scholar
  16. 16.
    Calmarza P, Trejo JM, Lapresta C, Lopez P. Relationship between lipoprotein(a) concentrations and intima-media thickness: a healthy population study. Eur J Prev Cardiol. 2012;19(6):1290–5.CrossRefPubMedGoogle Scholar
  17. 17.
    Laschkolnig A, Kollerits B, Lamina C, Meisinger C, Rantner B, Stadler M, Peters A, Koenig W, Stöckl A, Dähnhardt D, Böger CA, Krämer BK, Fraedrich G, Strauch K, Kronenberg F. Lipoprotein (a) concentrations, apolipoprotein (a) phenotypes, and peripheral arterial disease in three independent cohorts. Cardiovasc Res. 2014;103:28–36.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Schaffer A, Verdoia M, Cassetti E, Marino P, Suryapranata H, Luca GD. Relationship between homocysteine and coronary artery disease. Results from a large prospective cohort study. Thromb Res. 2014;134:288–93.CrossRefPubMedGoogle Scholar
  19. 19.
    Basu A, Jenkins AJ, Stoner JA, Thorpe SR, Klein RL, Lopes-Virella MF, Garvey WT, Lyons TJ, DCCT/EDIC Research Group. Plasma total homocysteine and carotid intima-media thickness in type 1 diabetes: a prospective study. Atherosclerosis. 2014;236:188–95.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Alvarez B, Yugueros X, Fernández E, Luccini F, Gené A, Matas M. Relationship between plasma homocysteine and the morphological and immunohistochemical study of carotid plaques in patients with carotid stenosis over 70%. Ann Vasc Surg. 2012;26:500–5.CrossRefPubMedGoogle Scholar
  21. 21.
    Robles NR, Romero J, Gomez Casero L, Escola JM, Ramos Salado JL, Sánchez Casado E. Hyperhomocysteinemia in chronic kidney patients with mild renal failure. Eur J Intern Med. 2005;16:334–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Hojs R, Bevc S, Ekart R, Gorenjak M, Puklavec L. Serum cystatin C as an endogenous marker of renal function in patients with mild to moderate impairment of kidney function. Nephrol Dial Transplant. 2006;21:1855–62.CrossRefPubMedGoogle Scholar
  23. 23.
    Koenig W, Twardella D, Brenner H, Rothenbacher D. Plasma concentrations of cystatin C in patients with coronary heart disease and risk for secondary cardiovascular events: more than simply a marker of glomerular filtration rate. Clin Chem. 2005;51:321–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Servicio de Cirugía Vascular, Unidad de Hipertensión ArterialHospital Infanta CristinaBadajozSpain
  2. 2.Unidad de Hipertensión ArterialHospital Infanta CristinaBadajozSpain
  3. 3.Servicio de Bioquímica ClínicaHospital Infanta CristinaBadajozSpain
  4. 4.Cátedra de Riesgo Cardiovascular, Facultad de MedicinaUniversidad de SalamancaSalamancaSpain

Personalised recommendations