High Blood Pressure & Cardiovascular Prevention

, Volume 25, Issue 4, pp 369–378 | Cite as

Microvascular Density and Circulating Endothelial Progenitor Cells Before and After Treatment with Incretin Mimetics in Diabetic Patients

  • Carolina De Ciuceis
  • Claudia Agabiti-Rosei
  • Claudia Rossini
  • Stefano Caletti
  • Maria Antonietta Coschignano
  • Giulia Ferrari-Toninelli
  • Giorgio Ragni
  • Carlo Cappelli
  • Bruno Cerudelli
  • Paolo Airò
  • Mirko Scarsi
  • Angela Tincani
  • Enzo Porteri
  • Damiano RizzoniEmail author
Original Article



Glucagon-like peptide 1-receptor agonists (incretin mimetics) and dipeptidyl peptidase-4 inhibitors (incretin enhancers) have been recently introduced in the treatment of diabetes mellitus. In particular, incretin mimetics seems to have ancillary antioxidant/antinflammatory properties that might be involved in endothelial protection.


To investigate the effect of incretin mimetic therapy (liraglutide, exenatide) given to 11 patients with type 2 diabetes mellitus, on circulating endothelial progenitor cells (EPCs) (bone marrow-derived cells possibly participating in neovascularization and endothelial protection and repair) and capillary density.


Four diabetic patients were treated with exenatide (5 μg twice daily for 4 weeks and then 10 μg twice daily for 3 weeks) and 7 with liraglutide (0.6 mg per day for 1 week and then 1.2 mg per day for 3 weeks). Peripheral venous blood samples were obtained before treatment (basal) and after 4 week in patients treated with liraglutide, and after 4 and 7 weeks in patients treated with exenatide, since drug titration is usually longer. EPCs were evaluated by flow cytometry as CD34+/KDR+ cells. Capillary density was evaluated by videomicroscopy, before and after venous congestion, in the dorsum of the 4th finger.


Patients treated with liraglutide (6 males 1 female, age 54 ± 12 years) showed a decrease in body mass index and blood pressure during treatment, while patients treated with exenatide (3 males 1 female, age 57 ± 6 years) did not show any relevant change. EPCs were significantly increased after treatment with exenatide, but not after treatment with liraglutide. Capillary density was slightly increased only after 4 weeks of treatment with exenatide, however the increase was no longer present at the final evaluation.


Treatment with exenatide, but not with liraglutide, was able to increase the number of circulating EPCs, possibly through an antioxidative/antiinflammatory effect.


Liraglutide Exenatide Incretin mimetics Endothelial progenitor cells Diabetes mellitus Microvascular density Capillaries Capillary density 


Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

The procedures followed were in accordance with the institutional guidelines.

Informed consent

Informed consent was obtained from all individual participants.


  1. 1.
    Fonseca V, Desouza C, Asnani S, Jialal I. Nontraditional risk factors for cardiovascular disease in diabetes. Endocr Rev. 2004;25(1):153–75.CrossRefPubMedGoogle Scholar
  2. 2.
    Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999;85(3):221–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Fadini GP, Sartore S, Schiavon M, Albiero M, Baesso I, Cabrelle A, Agostini C, Avogaro A. Diabetes impairs progenitor cell mobilisation after hindlimb ischaemia-reperfusion injury in rats. Diabetologia. 2006;49(12):3075–84.CrossRefPubMedGoogle Scholar
  5. 5.
    Moon JH, Chae MK, Kim KJ, Kim HM, Cha BS, Lee HC, Kim YJ, Lee BW. Decreased endothelial progenitor cells and increased serum glycated albumin are independently correlated with plaqueforming carotid artery atherosclerosis in type 2 diabetes patients without documented ischemic disease. Circ J. 2012;76(9):2273–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Sibal L, Aldibbiat A, Agarwal SC, Mitchell G, Oates C, Razvi S, Weaver JU, Shaw JA, Home PD. Circulating endothelial progenitor cells, endothelial function, carotid intima-media thickness and circulating markers of endothelial dysfunction in people with type 1 diabetes without macrovascular disease or microalbuminuria. Diabetologia. 2009;52(8):1464–73.CrossRefPubMedGoogle Scholar
  7. 7.
    Desouza CV. Does drug therapy reverse endothelial progenitor cell dysfunction in diabetes? J Diabetes Complicat. 2013;27(5):519–25.CrossRefPubMedGoogle Scholar
  8. 8.
    Xiao-Yun X, Zhao-Hui M, Ke C, Hong-Hui H, Yan-Hong X. Glucagon-like peptide-1 improves proliferation and differentiation of endothelial progenitor cells via upregulating VEGF generation. Med Sci Monit. 2011;17(2):35–41.CrossRefGoogle Scholar
  9. 9.
    Gonçalves A, Leal E, Paiva A, Teixeira Lemos E, Teixeira F, Ribeiro CF, Reis F, Ambrósio AF, Fernandes R. Protective effects of the dipeptidyl peptidase IV inhibitor sitagliptin in the blood-retinal barrier in a type 2 diabetes animal model. Diabetes Obes Metab. 2012;14(5):454–63.CrossRefPubMedGoogle Scholar
  10. 10.
    Huang CY, Shih CM, Tsao NW, Lin YW, Huang PH, Wu SC, Lee AW, Kao YT, Chang NC, Nakagami H, et al. Dipeptidyl peptidase-4 inhibitor improves neovascularization by increasing circulating endothelial progenitor cells. Br J Pharmacol. 2012;167(7):1506–19.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fadini GP, Bonora BM, Cappellari R, Menegazzo L, Vedovato M, Iori E, Marescotti MC, Albiero M, Avogaro A. Acute effects of linagliptin on progenitor cells, monocyte phenotypes, and soluble mediators in type 2 diabetes. J Clin Endocrinol Metab. 2016;101(2):748–56.CrossRefPubMedGoogle Scholar
  12. 12.
    Hu Y, Liu J, Wang G, Xu Y. The effects of exenatide and metformin on endothelial function in newly diagnosed type 2 diabetes mellitus patients: a case–control study. Diabetes Ther. 2018;9:1295–305.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Derosa G, Maffioli P, Salvadeo SA, Ferrari I, Ragonesi PD, QuerciF Franzett IG, Gadaleta G, Ciccarelli L, Piccinni MN, et al. Exenatide versus glibenclamide in patients with diabetes. Diabetes Technol Ther. 2010;12(3):233–40.CrossRefPubMedGoogle Scholar
  14. 14.
    Ceriello A, Esposito K, Testa R, Bonfigli AR, Marra M, Giugliano D. The possible protective role of glucagon-like peptide 1 on endothelium during the meal and evidence for an “endothelial resistance” to glucagon-like peptide 1 in diabetes. Diabetes Care. 2011;34(3):697–702.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Oeseburg H, de Boer RA, Buikema H, van der Harst P, van Gilst WH, Silljé HH. Glucagon-like peptide 1 prevents reactive oxygen species-induced endothelial cell senescence through the activation of protein kinase A. Arterioscler Thromb Vasc Biol. 2010;30(7):1407–14.CrossRefPubMedGoogle Scholar
  16. 16.
    Agabiti-Rosei E, Rizzoni D. Microvascular structure as a prognostically relevant endpoint. J Hypertens. 2017;35(5):914–21.CrossRefPubMedGoogle Scholar
  17. 17.
    Levy BI, Schiffrin EL, Mourad JJ, Agostini D, Vicaut E, Safar ME, Struijker-Boudier HA. Impaired tissue perfusion: a pathology common to hypertension, obesity, and diabetes mellitus. Circulation. 2008;118(9):968–76.CrossRefPubMedGoogle Scholar
  18. 18.
    Rizzoni D, De Ciuceis C, Porteri E, Agabiti-Rosei C, Agabiti-Rosei E. Use of antihypertensive drugs in neoplastic patients. High Blood Press Cardiovasc Prev. 2017;24(2):127–32.CrossRefPubMedGoogle Scholar
  19. 19.
    Dimmeler S, Aicher A, Vasa M, Mildner-Rihm C, Adler K, Tiemann M, Rütten H, Fichtlscherer S, Martin H, Zeiher AM. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Investig. 2001;108(3):391–7.CrossRefPubMedGoogle Scholar
  20. 20.
    De Ciuceis C, Pilu A, Cappelli C, Porteri E, Zani F, Santoro A, Gandossi E, Boari GF, Rizzardi N, Castellano M, et al. Decreased number of circulating endothelial progenitor cells in patients with Graves’ hyperthyroidism. J Endocrinol Investig. 2011;34(5):335–9.CrossRefGoogle Scholar
  21. 21.
    Antonios TF, Singer DR, Markandu ND, Mortimer PS, MacGregor GA. Rarefaction of skin capillaries in borderline essential hypertension suggests an early structural abnormality. Hypertension. 1999;34(4 Pt 1):655–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Antonios TF, Singer DR, Markandu ND, Mortimer PS, MacGregor GA. Structural skin capillary rarefaction in essential hypertension. Hypertension. 1999;33(4):998–1001.CrossRefPubMedGoogle Scholar
  23. 23.
    De Ciuceis C, Rossini C, Porteri E, La Boria E, Corbellini C, Mittempergher F, Di Betta E, Sarcar A, Agabiti-Rosei C, Casella C, et al. Circulating endothelial progenitor cells, microvascular density and fibrosis in obesity before and after bariatric surgery. Blood Press. 2013;22(3):165–72.CrossRefPubMedGoogle Scholar
  24. 24.
    Grover-Paèz F, Zavalza-Gomez AB. Endothelial dysfunction and cardiovascular risk factor. Diabetes Res Clin Pract. 2009;84(1):1–10.CrossRefPubMedGoogle Scholar
  25. 25.
    Su Y, Liu XM, Sun YM, Wang YY, Luan Y, Wu Y. Endothelial dysfunction in impaired fasting glycemia, impaired glucose tolerance, and type 2 diabetes mellitus. Am J Cardiol. 2008;102:497–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Egan CG, Lavery R, Caporali F, Fondelli C, Laghi-Pasini F, Dotta F, Sorrentino V. Generalised reduction of putative endothelial progenitors and CXCR4-positive peripheral blood cells in type 2 diabetes. Diabetologia. 2008;51(7):1296–305.CrossRefPubMedGoogle Scholar
  27. 27.
    Fadini GP, Miorin M, Facco M, Bonamico S, Baesso I, Grego F, Menegolo M, de Kreutzenberg SV, Tiengo A, Agostini C, Avogaro A. Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am Coll Cardiol. 2005;45(9):1449–57.CrossRefPubMedGoogle Scholar
  28. 28.
    Fadini GP, Sartore S, Albiero M, Baesso I, Murphy E, Menegolo M, Grego F, Vigili de Kteutzenberg S, Tiengo A, Agostini C, Avogaro A. Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arterioscler Thromb Vasc Biol. 2006;26(9):2140–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Werner N, Wassmann S, Ahlers P, Schiegl T, Kosiol S, Link A, Walenta K, Nickenig G. Endothelial progenitor cells correlate with endothelial function in patients with coronary artery disease. Basic Res Cardiol. 2007;102(6):565–71.CrossRefPubMedGoogle Scholar
  30. 30.
    Chen Q, Dong L, Wang L, Kang L, Xu B. Advanced glycation end products impair function of late endothelial progenitor cells through effects on protein kinase Akt and cyclooxygenase-2. Biochem Biophys Res Commun. 2009;381(2):192–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Rosso A, Balsamo A, Gambino R, Dentelli P, Falcioni R, Cassader M, Pegoraro L, Pagano G, Brizzi MF. p53 Mediates the accelerated onset of senescence of endothelial progenitor cells in diabetes. J Biol Chem. 2006;281(7):4339–47.CrossRefPubMedGoogle Scholar
  32. 32.
    Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S. Reduced number of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001;89(1):E1–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Fadini GP, Avogaro A. Cardiovascular effects of DPP-4 inhibition: beyond GLP-1. Vasc Pharmacol. 2011;55(1–3):10–6.CrossRefGoogle Scholar
  34. 34.
    Erdogdu O, Nathanson D, Sjöholm A, Nyström T, Zhang Q. Exendin-4 stimulates proliferation of human coronary artery endothelial cells through eNOS-, PKA- and PI3K/Akt-dependent pathways and requires GLP-1 receptor. Mol Cell Endocrinol. 2010;325(1–2):26–35.CrossRefPubMedGoogle Scholar
  35. 35.
    De La Luz Sierra M, Yang F, Narazaki M, Salvucci O, Davis D, Yarchoan R, Zhang HH, Fales H, Tosato G. Differential processing of stromal-derived factor-1alpha and stromal-derived factor-1beta explains functional diversity. Blood. 2004;103(7):2452–9.CrossRefGoogle Scholar
  36. 36.
    Balestrieri ML, Rizzo MR, Barbieri M, Paolisso P, D’Onofrio N, Giovane A, Siniscalchi M, Minicucci F, Sardu C, D’Andrea D, et al. Sirtuin 6 expression and inflammatory activity in diabetic atherosclerotic plaques: effects of incretin treatment. Diabetes. 2015;64(4):1395–406.CrossRefPubMedGoogle Scholar
  37. 37.
    Bonora BM, Cappellari R, Albiero M, Avogaro A, Fadini GP. Effects of SGLT-2 inhibitors on circulating stem and progenitor cells in patients with type 2 diabetes J Clin Endocrinol Metab. 2018 (Epub ahead of print).Google Scholar
  38. 38.
    Loomans CJ, van Haperen R, Duijs JM, Verseyden C, de Crom R, Leenen PJ, Drexhage HA, de Boer HC, de Koning EJ, Rabelink TJ, et al. Differentiation of bone marrow-derived endothelial progenitor cells is shifted into a proinflammatory phenotype by hyperglycemia. Mol Med. 2009;15(5–6):152–9.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Murthy SN, Hilaire RC, Casey DB, Badejo AM, McGee J, McNamara DB, Kadowitz PJ, Fonseca VA. The synthetic GLP-I receptor agonist, exenatide, reduces intimal hyperplasia in insulin resistant rats. Diabetes Vasc Dis Res. 2010;7(2):138–44.CrossRefGoogle Scholar
  40. 40.
    Koska J, Sands M, Burciu C, D’Souza KM, Raravikar K, Liu J, Truran S, Franco DA, Schwartz EA, Schwenke DC, et al. Exenatide protects against glucose- and lipid-induced endothelial dysfunction: evidence for direct vasodilation effect of GLP-1 receptor agonists in humans. Diabetes. 2015;64(7):2624–35.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kim Chung le T, Hosaka T, Yoshida M, Harada N, Sakaue H, Sakai T, Nakaya Y. Exendin-4, a GLP-1 receptor agonist, directly induces adiponectin expression through protein kinase A pathway and prevents inflammatory adipokine expression. Biochem Biophys Res Commun. 2009;390(3):613–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Wei R, Ma S, Wang C, Ke J, Yang J, Li W, Liu Y, Hou W, Feng X, Wang G, Hong T. Exenatide exerts direct protective effects on endothelial cells through the AMPK/Akt/eNOS pathway in a GLP-1 receptor-dependent manner. Am J Physiol Endocrinol Metab. 2016;310(11):E947–57.CrossRefPubMedGoogle Scholar
  43. 43.
    Chang CH, Tsai RK, Wu WC, Kuo SL, Yu HS. Use of dynamic capillaroscopy for studying cutaneous microcirculation in patients with diabetes mellitus. Microvasc Res. 1997;53(2):121–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Tibirica E, Rodrigues E, Cobas RA, Gomes MB. Endothelial function in patients with type I diabetes evaluated by skin capillary recruitment. Microvasc Res. 2007;73:107–12.CrossRefPubMedGoogle Scholar
  45. 45.
    Shore AC. Capillaroscopy and measurement of capillary pressure. Br J Clin Pharmacol. 2000;50(6):501–13.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Debbabi H, Uzan L, Mourad JJ, Safar M, Levy BI, Tibiriçà E. Increased skin capillary density in treated essential hypertensive patients. Am J Hypertens. 2006;19(5):477–83.CrossRefPubMedGoogle Scholar
  47. 47.
    Debbabi H, Bonnin P, Levy BI. Effects of blood pressure control with perindopril/indapamide on the microcirculation in hypertensive patients. Am J Hypertens. 2010;23(10):1136–43.CrossRefPubMedGoogle Scholar
  48. 48.
    De Ciuceis C, Salvetti M, Paini A, Rossini C, Muiesan ML, Duse S, Caletti S, Coschignano MA, Semeraro F, Trapletti V, et al. Comparison of lercanidipine plus hydrochlorothiazide vs. lercanidipine plus enalapril on micro and macrocirculation in patients with mild essential hypertension. Intern Emerg Med. 2017;12(7):963–74.CrossRefPubMedGoogle Scholar
  49. 49.
    Smits MM, Muskiet MHA, Tonneijck L, Kramer MH, Diamante M, van Raalte DH, Sernè EH. GLP-1 receptor agonist exenatide increases capillary perfusion independent of nitric oxide in healthy overweight men. Artheriscelr Thromb Vasc Biol. 2015;35(6):1538–43.CrossRefGoogle Scholar
  50. 50.
    Lithell H. Hypertension and hyperlipidemia. Am J Hypertens. 1993;6:303S–8S.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Carolina De Ciuceis
    • 1
  • Claudia Agabiti-Rosei
    • 1
  • Claudia Rossini
    • 1
  • Stefano Caletti
    • 1
  • Maria Antonietta Coschignano
    • 1
  • Giulia Ferrari-Toninelli
    • 2
  • Giorgio Ragni
    • 3
  • Carlo Cappelli
    • 1
  • Bruno Cerudelli
    • 3
  • Paolo Airò
    • 4
  • Mirko Scarsi
    • 4
  • Angela Tincani
    • 4
  • Enzo Porteri
    • 1
  • Damiano Rizzoni
    • 1
    • 2
    Email author
  1. 1.Clinica Medica, Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
  2. 2.Division of MedicineIstituto Clinico Città di BresciaBresciaItaly
  3. 3.Division of MedicineSpedali Civili di BresciaGardone Val TrompiaItaly
  4. 4.Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly

Personalised recommendations