Advertisement

Echocardiography in Arterial Hypertension

  • Giovanni de SimoneEmail author
  • Costantino Mancusi
  • Roberta Esposito
  • Nicola De Luca
  • Maurizio Galderisi
Review Article

Abstract

Hypertension is a condition characterized by pressure and/or volume overloads and echocardiography is helpful and feasible to understand hemodynamic mechanisms. Echocardiographic information is sometimes critical and susceptible of modifying decision making. In this review, we provide detailed descriptions of the parameters that can be derived from a standard transthoracic echocardiogram, including some more recent techniques. We will also explain how each parameter might have impact in the evaluation of the hypertensive patient and give indications on when to refer patients to echo-labs, which parameters are critical and which ones might be redundant, and how to use the information obtained in the report. Cardiac geometry, LV systolic and diastolic function, LV pump performance, output impedance and left atrial function are parameters that might be altered in arterial hypertension, but not necessarily doctors need the whole information for decision making. The critical measures are provided.

Keywords

Ventricular hypertrophy Concentric geometry Stroke volume Peripheral resistance Systolic function Diastolic function 

Notes

Compliance with Ethical Standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Baicu CF, Zile MR, Aurigemma GP, Gaasch WH. Left ventricular systolic performance, function, and contractility in patients with diastolic heart failure. Circulation. 2005;111:2306–12.CrossRefPubMedGoogle Scholar
  2. 2.
    Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study [see comments]. N Engl J Med. 1990;322:1561–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med. 1991;114:345–52.CrossRefPubMedGoogle Scholar
  4. 4.
    de Simone G, Izzo R, Aurigemma GP, et al. Cardiovascular risk in relation to a new classification of hypertensive left ventricular geometric abnormalities. J Hypertens. 2015;33:745–54 (discussion 754).CrossRefPubMedGoogle Scholar
  5. 5.
    de Simone G, Izzo R, Chinali M, et al. Does information on systolic and diastolic function improve prediction of a cardiovascular event by left ventricular hypertrophy in arterial hypertension? Hypertension. 2010;56:99–104.CrossRefPubMedGoogle Scholar
  6. 6.
    Mancusi C, Losi MA, Izzo R, et al. Higher pulse pressure and risk for cardiovascular events in patients with essential hypertension: the Campania Salute Network. Eur J Prev Cardiol. 2018;25:235–43.CrossRefPubMedGoogle Scholar
  7. 7.
    Devereux RB, Wachtell K, Gerdts E, et al. Prognostic significance of left ventricular mass change during treatment of hypertension. JAMA. 2004;292:2350–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Devereux RB, Alderman MH. Role of preclinical cardiovascular disease in the evolution from risk factor exposure to development of morbid events. Circulation. 1993;88:1444–55.CrossRefPubMedGoogle Scholar
  9. 9.
    Khouri MG, Peshock RM, Ayers CR, de Lemos JA, Drazner MH. A 4-tiered classification of left ventricular hypertrophy based on left ventricular geometry: the Dallas heart study. Circ Cardiovasc Imaging. 2010;3:164–71.CrossRefPubMedGoogle Scholar
  10. 10.
    Tsao CW, Gona PN, Salton CJ, et al. Left ventricular structure and risk of cardiovascular events: a Framingham Heart Study Cardiac Magnetic Resonance Study. J Am Heart Assoc. 2015;4:e002188.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Schillaci G, de Simone G, Reboldi G, Porcellati C, Devereux RB, Verdecchia P. Change in cardiovascular risk profile by echocardiography in low- or medium-risk hypertension. J Hypertens. 2002;20:1519–25.CrossRefPubMedGoogle Scholar
  12. 12.
    Pouleur AC, le Polain de Waroux JB, Pasquet A, et al. Assessment of left ventricular mass and volumes by three-dimensional echocardiography in patients with or without wall motion abnormalities: comparison against cine magnetic resonance imaging. Heart. 2008;94:1050–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Qin JX, Jones M, Travaglini A, et al. The accuracy of left ventricular mass determined by real-time three-dimensional echocardiography in chronic animal and clinical studies: a comparison with postmortem examination and magnetic resonance imaging. J Am Soc Echocardiogr. 2005;18:1037–43.CrossRefPubMedGoogle Scholar
  14. 14.
    Cioffi G, Rossi A, Targher G, et al. Usefulness of subclinical left ventricular midwall dysfunction to predict cardiovascular mortality in patients with type 2 diabetes mellitus. Am J Cardiol. 2014;113:1409–14.CrossRefPubMedGoogle Scholar
  15. 15.
    de Simone G, Devereux RB, Koren MJ, Mensah GA, Casale PN, Laragh JH. Midwall left ventricular mechanics. An independent predictor of cardiovascular risk in arterial hypertension. Circulation. 1996;93:259–65.CrossRefPubMedGoogle Scholar
  16. 16.
    Saito K, Okura H, Watanabe N et al. Comprehensive evaluation of left ventricular strain using speckle tracking echocardiography in normal adults: comparison of three-dimensional and two-dimensional approaches. J Am Soc Echocardiogr 2009.Google Scholar
  17. 17.
    Shah AM, Claggett B, Sweitzer NK, et al. Prognostic importance of impaired systolic function in heart failure with preserved ejection fraction and the impact of spironolactone. Circulation. 2015;132:402–14.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lonnebakken MT, Izzo R, Mancusi C, et al. Left ventricular hypertrophy regression during antihypertensive treatment in an outpatient clinic (the Campania Salute Network). J Am Heart Assoc. 2017;6(3). pii: e004152.  https://doi.org/10.1161/JAHA.116.004152.
  19. 19.
    de Simone G, Devereux RB, Izzo R, et al. Lack of reduction of left ventricular mass in treated hypertension: the strong heart study. J Am Heart Assoc. 2013;2:e000144.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    de Simone G, Devereux RB, Kimball TR, et al. Interaction between body size and cardiac workload: influence on left ventricular mass during body growth and adulthood. Hypertension. 1998;31:1077–82.CrossRefPubMedGoogle Scholar
  21. 21.
    Devereux RB, de Simone G, Ganau A, Roman MJ, Wallerson DC. Left ventricular mass as an indicator of hemodynamic load in hypertension. J Cardiovasc Pharmacol. 1991;17(Suppl 2):S33.CrossRefPubMedGoogle Scholar
  22. 22.
    de Simone G, Verdecchia P, Schillaci G, Devereux RB. Clinical impact of various geometric models for calculation of echocardiographic left ventricular mass [see comments]. J Hypertens. 1998;16:1207–14.CrossRefPubMedGoogle Scholar
  23. 23.
    Marwick TH, Gillebert TC, Aurigemma G, et al. Recommendations on the use of echocardiography in adult hypertension: a report from the European Association of Cardiovascular Imaging (EACVI) and the American Society of Echocardiography (ASE)dagger. Eur Heart J Cardiovasc Imaging. 2015;16:577–605.PubMedGoogle Scholar
  24. 24.
    Dewey FE, Rosenthal D, Murphy DJ Jr, Froelicher VF, Ashley EA. Does size matter? Clinical applications of scaling cardiac size and function for body size. Circulation. 2008;117:2279–87.CrossRefPubMedGoogle Scholar
  25. 25.
    Kuznetsova T, Haddad F, Tikhonoff V, et al. Impact and pitfalls of scaling of left ventricular and atrial structure in population-based studies. J Hypertens. 2016;34:1186–94.CrossRefPubMedGoogle Scholar
  26. 26.
    de Simone G, Pasanisi F, Ferrara AL, et al. Relative fat-free mass deficiency and left ventricular adaptation to obesity: the Strong Heart Study. IntJ Cardiol. 2013;168:729–33.CrossRefGoogle Scholar
  27. 27.
    de Simone G, Daniels SR, Devereux RB, et al. Left ventricular mass and body size in normotensive children and adults: assessment of allometric relations and impact of overweight. J Am Coll Cardiol. 1992;20:1251–60.CrossRefPubMedGoogle Scholar
  28. 28.
    de Simone G, Kizer JR, Chinali M, et al. Normalization for body size and population-attributable risk of left ventricular hypertrophy. The Strong Heart Study. Am J Hypertens. 2005;18:191–6.CrossRefPubMedGoogle Scholar
  29. 29.
    de Simone G, Devereux RB, Maggioni AP, Gorini M, de Divitiis O, Verdecchia P. Different normalizations for body size and population attributable risk of left ventricular hypertrophy: the MAVI study. Am J Hypertens. 2005;18:1288–93.CrossRefPubMedGoogle Scholar
  30. 30.
    de Simone G, Daniels SR, Kimball TR, et al. Evaluation of concentric left ventricular geometry in humans: evidence for age-related systematic underestimation. Hypertension. 2005;45:64–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Chinali M, Aurigemma GP. Refining patterns of left ventricular hypertrophy using cardiac MRI: “brother, can you spare a paradigm?”. Circ Cardiovasc Imaging. 2010;3:129–31.CrossRefPubMedGoogle Scholar
  32. 32.
    Lembo MER, Santoro C, Lo Iudice F. Schiano-Lomoriello V, Fazio V, Grimaldi MG, Trimarco B, de Simone G, Galderisi M. Three dimensional echocardiographic ventricular mass/end-diastolic volume ratio in native hypertensive patients: relation between stroke volume and geometry. J Hypertens. 2018.  https://doi.org/10.1097/HJH.0000000000001717 (Epub ahead of print).
  33. 33.
    Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. JClinInvest. 1975;56:56–64.Google Scholar
  34. 34.
    de Simone G, Verdecchia P, Pede S, Gorini M, Maggioni AP. Prognosis of inappropriate left ventricular mass in hypertension: the MAVI study. Hypertension. 2002;40:470–6.CrossRefPubMedGoogle Scholar
  35. 35.
    Chinali M, De Marco M, D’addeo G, et al. Excessive increase in left ventricular mass identifies hypertensive subjects with clustered geometric and functional abnormalities. J Hypertens. 2007;25:1073–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Douglas PS. The left atrium: a biomarker of chronic diastolic dysfunction and cardiovascular disease risk. J Am Coll Cardiol. 2003;42:1206–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Tsang TS, Barnes ME, Gersh BJ, Bailey KR, Seward JB. Left atrial volume as a morphophysiologic expression of left ventricular diastolic dysfunction and relation to cardiovascular risk burden. Am J Cardiol. 2002;90:1284–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Canciello G, de Simone G, Izzo R, et al. Validation of left atrial volume estimation by left atrial diameter from the parasternal long-axis view. J Am Soc Echocardiogr. 2017;30:262–9.CrossRefPubMedGoogle Scholar
  39. 39.
    de Simone G, Devereux RB, Celentano A, Roman MJ. Left ventricular chamber and wall mechanics in the presence of concentric geometry. J Hypertens. 1999;17:1001–6.CrossRefPubMedGoogle Scholar
  40. 40.
    de Simone G, Devereux RB. Rationale of echocardiographic assessment of left ventricular wall stress and midwall mechanics in hypertensive heart disease. EurJ Echocardiogr. 2002;3:192–8.CrossRefGoogle Scholar
  41. 41.
    Galderisi M, Esposito R, Schiano-Lomoriello V, et al. Correlates of global area strain in native hypertensive patients: a three-dimensional speckle-tracking echocardiography study. Eur Heart J Cardiovasc Imaging. 2012;13:730–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Mor-Avi V, Lang RM, Badano LP, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr. 2011;24:277–313.CrossRefPubMedGoogle Scholar
  43. 43.
    Notomi Y, Lysyansky P, Setser RM, et al. Measurement of ventricular torsion by two-dimensional ultrasound speckle tracking imaging. J Am Coll Cardiol. 2005;45:2034–41.CrossRefPubMedGoogle Scholar
  44. 44.
    Lembo M, Esposito R, Li F, et al. Impact of pulse pressure on left ventricular global longitudinal strain in normotensive and newly diagnosed, untreated hypertensive patients. J Hypertens. 2016;34:1201–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Galderisi M, Trimarco B. Global longitudinal strain: a novel hallmark of cardiac risk in arterial hypertension. J Hypertens. 2016;34:1050–1.CrossRefPubMedGoogle Scholar
  46. 46.
    Contaldi C, Imbriaco M, Alcidi G, et al. Assessment of the relationships between left ventricular filling pressures and longitudinal dysfunction with myocardial fibrosis in uncomplicated hypertensive patients. Int J Cardiol. 2016;202:84–6.CrossRefPubMedGoogle Scholar
  47. 47.
    Modin D, Biering-Sorensen SR, Mogelvang R, Landler N, Jensen JS, Biering-Sorensen T. Prognostic value of echocardiography in hypertensive versus nonhypertensive participants from the general population. Hypertension. 2018;71:742–51.CrossRefPubMedGoogle Scholar
  48. 48.
    De Marco M, Gerdts E, Mancusi C, et al. Influence of left ventricular stroke volume on incident heart failure in a population with preserved ejection fraction (from the Strong Heart Study). Am J Cardiol. 2017;119:1047–52.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    de Simone G, Devereux RB, Daniels SR, et al. Stroke volume and cardiac output in normotensive children and adults. Assessment of relations with body size and impact of overweight. Circulation. 1997;95:1837–43.CrossRefPubMedGoogle Scholar
  50. 50.
    de Simone G, Devereux RB, Ganau A, et al. Estimation of left ventricular chamber and stroke volume by limited M-mode echocardiography and validation by two-dimensional and Doppler echocardiography. Am J Cardiol. 1996;78:801–7.CrossRefPubMedGoogle Scholar
  51. 51.
    Mancusi C, Gerdts E, de Simone G, et al. Higher pulse pressure/stroke volume index is associated with impaired outcome in hypertensive patients with left ventricular hypertrophy the LIFE study. Blood Press. 2017;26:150–5.CrossRefPubMedGoogle Scholar
  52. 52.
    Mancusi C, Gerdts E, dS G, et al. Impact of isolated systolic hypertension on normalization of left ventricular structure during antihypertensive treatment (the LIFE study). Blood Press. 2014;23:206–12.CrossRefPubMedGoogle Scholar
  53. 53.
    Chemla D, Hebert JL, Coirault C, et al. Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans. Am J Physiol. 1998;274:H500–5.CrossRefPubMedGoogle Scholar
  54. 54.
    Berkenstadt H, Friedman Z, Preisman S, Keidan I, Livingstone D, Perel A. Pulse pressure and stroke volume variations during severe haemorrhage in ventilated dogs. Br J Anaesth. 2005;94:721–6.CrossRefPubMedGoogle Scholar
  55. 55.
    Devereux RB, dS G, Arnett DK, et al. Normal limits in relation to age, body size and gender of two-dimensional echocardiographic aortic root dimensions in persons >/=15 years of age. Am J Cardiol. 2012;110:1189–94.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Milan A, Avenatti E, Tosello F, et al. Aortic root dilatation in essential hypertension: prevalence according to new reference values. J Hypertens. 2013;31:1189–95.CrossRefPubMedGoogle Scholar
  57. 57.
    de Simone G, Roman MJ, De Marco M, et al. Hemodynamic correlates of abnormal aortic root dimension in an adult population: The Strong Heart Study. J Am Heart Assoc. 2015;4:e002309.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Aljaroudi W, Alraies MC, Halley C, et al. Impact of progression of diastolic dysfunction on mortality in patients with normal ejection fraction. Circulation. 2012;125:782–8.CrossRefPubMedGoogle Scholar
  59. 59.
    de Simone G, Greco R, Mureddu G, et al. Relation of left ventricular diastolic properties to systolic function in arterial hypertension. Circulation. 2000;101:152–7.CrossRefPubMedGoogle Scholar
  60. 60.
    de Simone G, Kitzman DW, Chinali M, et al. Left ventricular concentric geometry is associated with impaired relaxation in hypertension: the HyperGEN study. Eur Heart J. 2005;26:1039–45.CrossRefPubMedGoogle Scholar
  61. 61.
    Nagueh SF, Smiseth OA, Appleton CP, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2016;17:1321–60.CrossRefPubMedGoogle Scholar
  62. 62.
    Lancellotti P, Galderisi M, Edvardsen T, et al. Echo-Doppler estimation of left ventricular filling pressure: results of the multicentre EACVI Euro-Filling study. Eur Heart J Cardiovasc Imaging. 2017;18:961–8.CrossRefPubMedGoogle Scholar
  63. 63.
    Schillaci G, Pasqualini L, Verdecchia P, et al. Prognostic significance of left ventricular diastolic dysfunction in essential hypertension. J Am Coll Cardiol. 2002;39:2005–11.CrossRefPubMedGoogle Scholar
  64. 64.
    Chinali M, Aurigemma G, de Simone G, et al. Mitral E wave deceleration time to peak E velocity ratio and cardiovascular outcome in hypertensive patients during anti-hypertensive treatment (from the LIFE Echo-Substudy). Am J Cardiol. 2009;104:1098–104.CrossRefPubMedGoogle Scholar
  65. 65.
    Galderisi M, Rapacciuolo A, Esposito R, et al. Site-dependency of the E/e’ ratio in predicting invasive left ventricular filling pressure in patients with suspected or ascertained coronary artery disease. Eur Heart J Cardiovasc Imaging. 2013;14:555–61.CrossRefPubMedGoogle Scholar
  66. 66.
    Gottdiener JS, Kitzman DW, Aurigemma GP, Arnold AM, Manolio TA. Left atrial volume, geometry, and function in systolic and diastolic heart failure of persons > or = 65 years of age (the cardiovascular health study). Am J Cardiol. 2006;97:83–9.CrossRefPubMedGoogle Scholar
  67. 67.
    Eshoo S, Semsarian C, Ross DL, Thomas L. Left atrial phasic volumes are modulated by the type rather than the extent of left ventricular hypertrophy. J Am Soc Echocardiogr. 2010;23:538–44.CrossRefPubMedGoogle Scholar
  68. 68.
    Eshoo S, Ross DL, Thomas L. Impact of mild hypertension on left atrial size and function. Circ Cardiovasc Imaging. 2009;2:93–9.CrossRefPubMedGoogle Scholar
  69. 69.
    Chinali M, de Simone G, Liu JE, et al. Left atrial systolic force and cardiac markers of preclinical disease in hypertensive patients: the Hypertension Genetic Epidemiology Network (HyperGEN) Study. Am J Hypertens. 2005;18:899–905.CrossRefPubMedGoogle Scholar
  70. 70.
    Khan UA, de Simone G, Hill J, Tighe DA, Aurigemma GP. Depressed atrial function in diastolic dysfunction: a speckle tracking imaging study. Echocardiography. 2013;30:309–16.CrossRefPubMedGoogle Scholar
  71. 71.
    Mancia G, Fagard R, Narkiewicz K, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34:2159–219.CrossRefPubMedGoogle Scholar
  72. 72.
    Whelton PK, Carey RM, Aronow WS, et al. ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2017. pii: HYP.0000000000000065.  https://doi.org/10.1161/HYP.0000000000000065 (Epub ahead of print).
  73. 73.
    Chow CK, Teo KK, Rangarajan S, et al. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA. 2013;310:959–68.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hypertension Research CenterFederico II University HospitalNaplesItaly

Personalised recommendations