Can the Treatment of Hypertension in the Middle-Aged Prevent Dementia in the Elderly?

  • Antonio Coca
  • Eila Monteagudo
  • Mónica Doménech
  • Miguel Camafort
  • Cristina Sierra
Review Article

Abstract

Hypertension, one of the main risk factors for cardiovascular disease, is thought to play a crucial role in the pathophysiology of cognitive impairment. Studies have associated hypertension with subjective cognitive failures and objective cognitive decline. Subjective cognitive failures may reflect the early phase of a long pathological process leading to cognitive decline and dementia that has been associated with hypertension and other cardiovascular risk factors. The underlying cerebral structural change associated with cognitive decline may be a consequence of the cerebral small-vessel disease induced by high blood pressure and may be detected on magnetic resonance imaging as white matter hyperintensities, cerebral microbleeds, lacunar infarcts or enlarged perivascular spaces. The increasing interest in the relationship between hypertension and cognitive decline is based on the fact that blood pressure control in middle-aged subjects may delay or stop the progression of cognitive decline and reduce the risk of dementia in the elderly. Although more evidence is required, several studies on hypertension have shown a beneficial effect on the incidence of dementia.

Keywords

Hypertension Cognitive impairment Dementia Silent brain damage 

References

  1. 1.
    Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095–128.CrossRefPubMedGoogle Scholar
  2. 2.
    Nichols M, Townsend N, Scarborough P, Rayner M. Cardiovascular disease in Europe 2014: epidemiological update. Eur Heart J. 2014;35:2950–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Hajjar I, Kotchen JM, Kotchen TA. Hypertension: trends in prevalence, incidence, and control. Annu Rev Public Health. 2006;27:465–90.CrossRefPubMedGoogle Scholar
  4. 4.
    Banegas JR, Graciani A, de la Cruz-Troca JJ, León-Muñoz LM, Guallar-Castillón P, Coca A, et al. Achievement of cardiometabolic goals in aware hypertensive patients in Spain: a nationwide population-based study. Hypertension. 2012;60:898–905.CrossRefPubMedGoogle Scholar
  5. 5.
    Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:270–9.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Begum A, Dewey M, Hassiotis A, Prince M, Wessely S, Stewart R, et al. Subjective cognitive complaints across the adult life span: a 14-year analysis of trends and associations using the 1993, 2000 and 2007 English Psychiatric Morbidity Surveys. Psychol Med. 2014;44:1977–87.CrossRefPubMedGoogle Scholar
  7. 7.
    Stewart R, Godin O, Crivello F, Maillard P, Mazoyer B, Tzourio C, et al. Longitudinal neuroimaging correlates of subjective memory impairment: 4-year prospective community study. Br J Psychiatry. 2011;198:199–205.CrossRefPubMedGoogle Scholar
  8. 8.
    Qiu C, Winblad B, Fratiglioni L. The age dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol. 2005;4:487–99.CrossRefPubMedGoogle Scholar
  9. 9.
    Gorelick PB, Scuteri A, Black SE, DeCarli Ch, Greenberg SM, Iadecola C, et al. Vascular contributions to cognitive impairment and dementia. A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011;42:2672–713.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Launer LJ. Demonstrating the case that AD is a vascular disease: epidemiologic evidence. Aging Res Rev. 2002;1:61–77.CrossRefGoogle Scholar
  11. 11.
    Attems J, Jellinger KA. The overlap between vascular disease and Alzheimer’s disease-lessons from pathology. BMC Med. 2014;12:206.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Snyder HM, Corriveau RA, Craft S, Faber JE, Greenberg SM, Knopman D, et al. Vascular contributions to cognitive impairment and dementia including Alzheimer’s disease. Alzheimers Dement. 2015;11:710–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Viswanathan A, Rocca WA, Tzourio C. Vascular risk factors and dementia. How to move forward? Neurology. 2009;72:368–74.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Eckerström M, Skoogh J, Rolstad S, Göthlin M, Steineck G, Johansson B, et al. Sahlgrenska Academy Self-reported Cognitive Impairment Questionnaire (SASCI-Q)-a research tool discriminating between subjectively cognitively impaired patients and healthy controls. Int Psychogeriatr. 2013;25:420–30.CrossRefPubMedGoogle Scholar
  15. 15.
    Montejo P, Montenegro M, Fernandez MA, Maestu F. Subjective memory complaints in the elderly: prevalence and influence of temporal orientation, depression and quality of life in a population-based study in the city of Madrid. Aging Ment Health. 2011;15:85–96.CrossRefPubMedGoogle Scholar
  16. 16.
    Zlatar ZZ, Moore RC, Palmer BW, Thompson WK, Jeste DV. Cognitive complaints correlate with depression rather than concurrent objective cognitive impairment in the successful aging evaluation baseline sample. J Geriatr Psychiatry Neurol. 2014;27:181–7.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Buckley R, Saling MM, Ames D, Rowe CC, Lautenschlager NT, Macaulay SL, et al. Factors affecting subjective memory complaints in the AIBL aging study: biomarkers, memory, affect, and age. Int Psychogeriatr. 2013;25:1307–15.CrossRefPubMedGoogle Scholar
  18. 18.
    Scuteri A, Tesauro M, Guglini L, Lauro D, Fini M, Di Daniele N, et al. Aortic stiffness and hypotension episodes are associated with impaired cognitive function in older subjects with subjective complaints of memory loss. Int J Cardiol. 2013;169:371–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Triantafyllidi H, Arvaniti C, Lekakis J, Ikonomidis I, Siafakas N, Tzortzis S, et al. Cognitive impairment is related to increased arterial stiffness and microvascular damage in patients with never-treated essential hypertension. Am J Hypertens. 2009;22:525–30.CrossRefPubMedGoogle Scholar
  20. 20.
    Singer J, Trollor JN, Baune BT, Sachdev PS, Smith E. Arterial stiffness, the brain and cognition: a systematic review. Ageing Res Rev. 2014;15:16–27.CrossRefPubMedGoogle Scholar
  21. 21.
    Sierra C, Doménech M, Camafort M, Coca A. Hypertension and mild cognitive impairment. Curr Hypertens Rep. 2012;14:548–55.CrossRefPubMedGoogle Scholar
  22. 22.
    Kearney-Schwartz A, Rossignol P, Bracard S, Felblinger J, Fay R, Boivin JM, et al. Vascular structure and function is correlated to cognitive performance and white matter hyperintensities in older hypertensive patients with subjective memory complaints. Stroke. 2009;40:1229–36.CrossRefPubMedGoogle Scholar
  23. 23.
    Jia Z, Mohammed W, Qiu Y, Hong X, Shi H. Hypertension increases the risk of cerebral microbleed in the territory of posterior cerebral artery: a study of the association of microbleeds categorized on a basis of vascular territories and cardiovascular risk factors. J Stroke Cerebrovasc Dis. 2014;23:e5–11.CrossRefPubMedGoogle Scholar
  24. 24.
    Van Norden AGW, van Uden IWM, de Laat KF, Gons RAR, Kessels RPC, van Dijk EJ, et al. Cerebral microbleeds are related to subjective cognitive failures: the RUN DMC study. Neurobiol Aging. 2013;34:2225–30.CrossRefPubMedGoogle Scholar
  25. 25.
    Uiterwijk R, Huijts M, Staals J, Duits A, Gronenschild E, Kroon AA, et al. Subjective cognitive failures in patients with hypertension are related to cognitive performance and cerebral microbleeds. Hypertension. 2014;64:653–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Sierra C, de la Sierra A, Salamero M, Sobrino J, Gómez-Angelats E, Coca A. Silent cerebral white matter lesions and cognitive function in middle-aged essential hypertensive patients. Am J Hypertens. 2004;17:529–34.CrossRefPubMedGoogle Scholar
  27. 27.
    Sierra C, Coca A. Brain damage. In: G. Mancia, G. Grassi, J. Redon, editors. Manual of hypertension of the European society of hypertension, 2nd ed. 2014. p. 177–189.Google Scholar
  28. 28.
    Carey CL, Kramer JH, Josephson SA, Mungas D, Reed BR, Schuff N, et al. Subcortical lacunes are associated with executive dysfunction in cognitively normal elderly. Stroke. 2008;39:397–402.CrossRefPubMedGoogle Scholar
  29. 29.
    Jokinen H, Gouw AA, Madureira S, Ylikoski R, van Straaten ECW, van der Flier WM, et al. Incident lacunes influence cognitive decline: the LADIS study. Neurology. 2011;76:1872–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Baune BT, Roesler A, Knecht S, Berger K. Single and combined effects of cerebral white matter lesions and lacunar infarctions on cognitive function in an elderly population. J Gerontol Biol Sci Med Sci. 2009;64:118–24.CrossRefGoogle Scholar
  31. 31.
    Potter GM, Doubal FN, Jackson CA, Chappell FM, Sudlow CL, Dennis MS, et al. Enlarged perivascular spaces and cerebral small vessel disease. Int J Stroke. 2015;10(3):376–81.CrossRefPubMedGoogle Scholar
  32. 32.
    Maclullich AMJ, Wardlaw JM, Ferguson KJ, Starr JM, Seckl JR, Deary IJ, et al. Enlarged perivascular spaces are associated with cognitive function in healthy elderly men. J Neurol Neurosurg Psychiatry. 2004;75:1519–23.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Huijts M, Duits A, van Oostenbrugge RJ, Kroon AA, de Leeuw PW, Staals J, et al. Accumulation of MRI markers of cerebral small vessel disease is associated with decreased cognitive function. A study in first-ever lacunar stroke and hypertensive patients. Front Aging Neurosci. 2013;5:72.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Levi Marpillat N, Macquin-Mavier I, Tropeano AI, Bachoud-Levi AC, Maison P. Antihypertensive classes, cognitive decline and incidence of dementia: a network meta-analysis. J Hypertens. 2013;31:1073–82.CrossRefPubMedGoogle Scholar
  35. 35.
    Yasar S, Xia J, Yao W, Furberg C, Xue OL, Mercado CI, et al. For the Ginkgo Evaluation of Memory Study. Antihypertensive drugs decrease risk of Alzheimer disease. Neurology. 2013;81:896–903.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Godin O, Tzourio C, Maillard P, Mazoyer B, Dufouil C. Antihypertensive treatment and change in blood pressure are associated with the progression of white matter lesion volumes: the Three-City (3C)-Dijon Magnetic Resonance Imaging Study. Circulation. 2011;123:266–73.CrossRefPubMedGoogle Scholar
  37. 37.
    Coca A. Hypertension and vascular dementia in the elderly: the potential role of anti-hypertensive agents. Curr Med Res Opin. 2013;29:1045–54.CrossRefPubMedGoogle Scholar
  38. 38.
    Chiu WC, Ho WC, Lin MH, Lee HH, Ye YC, Wang JD, For the Data Analysis in Taiwan (hDATa) Research Group, et al. Angiotension receptor blockers reduce the risk of dementia. J Hypertens. 2014;32:938–47.CrossRefPubMedGoogle Scholar
  39. 39.
    Forette F, Seux M, Staessen J, Thijs L, Birkenhäger W, Babarskiene MR, et al. Prevention of dementia in a randomised double-blind placebo controlled systolic hypertension in Europe (SYST-EUR) trial. Lancet. 1998;352:1347–51.CrossRefPubMedGoogle Scholar
  40. 40.
    Forette F, Seux M, Staessen J, Thijs L, Babarskiene M, Babeanu S, Systolic hypertension in Europe investigators, et al. The prevention of dementia with antihypertensive treatment. Arch Int Med. 2002;162:2046–52.CrossRefGoogle Scholar
  41. 41.
    Tomassioni D, Lanari A, Silvestrelli G, Traini E, Amenta F. Nimodipine and its use in cerebrovascular disease: evidence from recent preclinical and controlled clinical trials. Clin Exp Hypertens. 2008;30:744–66.CrossRefGoogle Scholar
  42. 42.
    Trompet S, Westendorp R, Kamper A, Craen A. Use of calcium antagonists and cognitive decline in old age. The Leiden 85-plus study. Neurobiol Aging. 2008;29:306–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Paran E, Anson O, Lowenthal D. Cognitive functioning and antihypertensive treatment in the elderly: a 6-year follow-up study. Am J Ther. 2010;17:358–64.PubMedGoogle Scholar
  44. 44.
    Maxwell C, Hogan D, Ebly E. Calcium-channel blockers and cognitive function in elderly people: results from the Canadian study of health and aging. CMAJ. 1999;161:501–6.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Peters R, Booth A, Peters J. A systematic review of calcium channel blocker use and cognitive decline/dementia in the elderly. J Hypertens. 2014;32:1945–58.CrossRefPubMedGoogle Scholar
  46. 46.
    Peters R, Collerton J, Granic A, Davies K, Kirkwood T, Jagger C. Antihypertensive drug use and risk of cognitive decline in the very old: an observational study—the Newcastle 85+ Study. J Hypertens. 2015;33:2156–64.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Antonio Coca
    • 1
  • Eila Monteagudo
    • 1
  • Mónica Doménech
    • 1
  • Miguel Camafort
    • 1
  • Cristina Sierra
    • 1
  1. 1.Hypertension and Vascular Risk Unit, Department of Internal MedicineHospital Clínic, IDIBAPS, University of BarcelonaBarcelonaSpain

Personalised recommendations