Liquid Biopsy Applications in the Clinic

  • Dake Chen
  • Tao Xu
  • Shubin Wang
  • Howard Chan
  • Tao YuEmail author
  • Yu ZhuEmail author
  • Jian ChenEmail author
Current Opinion


The global liquid biopsy industry is expected to exceed $US5 billion by 2023. One application of liquid biopsy technology is the diagnosis of disease using biomarkers found in blood, urine, stool, saliva, and other biological samples from patients. These biomarkers could be DNA, RNA, protein, or even a cell. More recently, the use of cell-free DNA from plasma is emerging as an important minimally invasive tool for clinical diagnosis. The development of technology has increased the diversity of its application. Here, we discuss how liquid biopsies have been used in the clinic, and how personalized medicine are likely to use liquid biopsies in the near future.



Paper is supported by the Shenzhen Science and Technology programs (Grant no. JCYJ20150529151839281), the Guangdong Natural Science Foundation (Grant no. 2016A030313381), and the Shenzhen Health and Family Planning Commission (Grant no. SZSM201612041) to S.W. and Y.Z.

Compliance with Ethical Standards

Conflict of interest

Dake Chen, Tao Xu, Shubin Wang, Howard Chan, Tao Yu, Yu Zhu, and Jian Chen have no conflicts of interest that are directly relevant to the content of this review/study.


  1. 1.
  2. 2.
    Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017;14:531.PubMedCrossRefGoogle Scholar
  3. 3.
    Ashworth T. A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust Med J. 1869;14:146.Google Scholar
  4. 4.
    Krebs MG, Hou JM, Ward TH, Blackhall FH, Dive C. Circulating tumour cells: their utility in cancer management and predicting outcomes. Ther Adv Med Oncol. 2010;2:351–65. Scholar
  5. 5.
    Haber DA, Velculescu VE. Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA. Cancer Discov. 2014;4:650–61.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Neumann MHD, Bender S, Krahn T, Schlange T. ctDNA and CTCs in liquid biopsy—current status and where we need to progress. Comput Struct Biotechnol J. 2018;16:190–5.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Bidard F-C, Michiels S, Riethdorf S, Mueller V, Esserman LJ, Lucci A, Naume B, Horiguchi J, Gisbert-Criado R, Sleijfer S, et al. Circulating Tumor Cells in Breast Cancer Patients Treated by Neoadjuvant Chemotherapy: A Meta-analysis. J. Natl. Cancer Inst. 2018;110:560–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Potdar PD, Sen K. Profiling of circulating tumor cells in liquid biopsies from metastatic cancer patients. J Cancer Metastasis Treat. 2017;3:6–15.CrossRefGoogle Scholar
  9. 9.
    Pan B-T, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell. 1983;33:967–78.PubMedCrossRefGoogle Scholar
  10. 10.
    Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and α-granules. Blood. 1999;94:3791–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteomics. 2010;73:1907–20.PubMedCrossRefGoogle Scholar
  12. 12.
    Stevens GL, Scheer WD, Levine EA. Detection of tyrosinase mRNA from the blood of melanoma patients. Cancer Epidemiol Biomark Prev. 1996;5:293–6.Google Scholar
  13. 13.
    Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008;110:13–21. Scholar
  14. 14.
    Otandault A, Anker P, Al Amir Dache Z, Guillaumon V, Meddeb R, Pastor B, Pisareva E, Sanchez C, Tanos R, Tousch G, et al. Recent advances in circulating nucleic acids in oncology. Ann. Oncol. 2019;30:374–84.PubMedCrossRefGoogle Scholar
  15. 15.
    Zhang X, Hong R, Chen W, Xu M, Wang L. The role of long noncoding RNA in major human disease. Bioorg Chem. 2019;92:103214.PubMedCrossRefGoogle Scholar
  16. 16.
    Bach DH, Lee SK, Sood AK. Circular RNAs in cancer. Mol Ther Nucleic Acids. 2019;16:118–29.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Pastorino U, Boeri M, Sestini S, Sabia F, Silva M, Suatoni P, Verri C, Cantarutti A, Sverzellati N, Corrao G, Marchianò A, Sozzi G. Blood microRNA and LDCT reduce unnecessary LDCT repeats in lung cancer screening: results of prospective BioMILD trial. International Association for the Study of Lung Cancer, World Conference on Lung Cancer (2019).Google Scholar
  18. 18.
    Mandel P, Metais P. Title in other language. C R Seances Soc Biol Fil. 1948;142:241–3.PubMedGoogle Scholar
  19. 19.
    Wan JC, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17:223.PubMedCrossRefGoogle Scholar
  20. 20.
    Sidransky D. Emerging molecular markers of cancer. Nat Rev Cancer. 2002;2:210.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Underhill HR, et al. Fragment length of circulating tumor DNA. PLoS Genet. 2016;12:e1006162.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Diaz LA Jr, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32:579.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Köhn L, Johansson M, Grankvist K, Nilsson J. Liquid biopsies in lung cancer—time to implement research technologies in routine care? Ann Transl Med. 2017;5:278.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Lo YM, et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350:485–7. Scholar
  25. 25.
    Canick JA, Palomaki GE, Kloza EM, Lambert-Messerlian GM, Haddow JE. The impact of maternal plasma DNA fetal fraction on next generation sequencing tests for common fetal aneuploidies. Prenat Diagn. 2013;33:667–74. Scholar
  26. 26.
    Hui L, Bianchi DW. Noninvasive prenatal DNA testing: the vanguard of genomic medicine. Annu Rev Med. 2017;68:459–72. Scholar
  27. 27.
    Suciu ID, Toader OD, Galeva S, Pop L. Non-invasive prenatal testing beyond trisomies. J Med Life. 2019;12:221–4.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Taylor-Phillips S, et al. Accuracy of non-invasive prenatal testing using cell-free DNA for detection of Down, Edwards and Patau syndromes: a systematic review and meta-analysis. BMJ Open. 2016;6(1):e010002.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    FDA. List of cleared or approved companion diagnostic devices (in vitro and imaging tools) (2018).Google Scholar
  30. 30.
    Oxnard GR, Paweletz CP, Kuang Y, Mach SL, O’Connell A, Messineo MM, et al. Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin Cancer Res. 2014;20(6):1698–705.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Denis JA, Guillerm E, Coulet F, Larsen AK, Lacorte JM. The role of BEAMing and digital PCR for multiplexed analysis in molecular oncology in the era of next-generation sequencing. Mol Diagn Ther. 2017;21(6):587–600.PubMedCrossRefGoogle Scholar
  32. 32.
    Olmedillas-López S, García-Arranz M, García-Olmo D. Current and emerging applications of droplet digital PCR in oncology. Mol Diagn Ther. 2017;21(5):493–510.PubMedCrossRefGoogle Scholar
  33. 33.
    TaqMan™ Liquid Biopsy dPCR Assay. Accessed 30 Dec 2019.
  34. 34.
    Baer C, Kern W, Koch S, Nadarajah N, Schindela S, Meggendorfer M, Haferlach C, Haferlach T. Ultra-deep sequencing leads to earlier and more sensitive detection of the tyrosine kinase inhibitor resistance mutation t315i in chronic myeloid leukemia. Haematologica. 2016;101(7):830–8.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Chen M, Zhao H. Next-generation sequencing in liquid biopsy: cancer screening and early detection. Hum Genomics. 2019;13(1):34.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Phallen J, Sausen M, Adleff V, Leal A, Hruban C, White J, Anagnostou V, Fiksel J, Cristiano S, Papp E, et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci Transl Med. 2017;9(403):eaan2415.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Razavi P, et al. High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants. Nat Med. 2019;25(12):1928–37.PubMedCrossRefGoogle Scholar
  38. 38.
  39. 39.
  40. 40.
  41. 41.
    Cohen JD et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science eaar3247 (2018).Google Scholar
  42. 42.
    Chan KA, et al. Analysis of plasma Epstein-Barr virus DNA to screen for nasopharyngeal cancer. N Engl J Med. 2017;377:513–22.PubMedCrossRefGoogle Scholar
  43. 43.
    Tie J, et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med. 2016;8:346ra392-346ra392.CrossRefGoogle Scholar
  44. 44.
    Garcia-Murillas I, et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Science translational medicine. 2015;7:302ra133-302ra133.CrossRefGoogle Scholar
  45. 45.
    Loeb LA, Loeb KR, Anderson JP. Multiple mutations and cancer. Proc Natl Acad Sci. 2003;100:776–81.PubMedCrossRefGoogle Scholar
  46. 46.
    Brahmer JR, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Chalmers ZR, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9:34.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Gandara DR, et al. Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nat Med. 2018;24:1441.PubMedCrossRefGoogle Scholar
  49. 49.
    Liu XS, Mardis ER. Applications of immunogenomics to cancer. Cell. 2017;168:600–12.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Garcia-Garijo A, Fajardo CA, Gros A. Determinants for neoantigen identification. Front Immunol. 2019. Scholar
  51. 51.
    Nielsen M, et al. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 2003;12:1007–17.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Lundegaard C, et al. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8–11. Nucleic Acids Res. 2008;36:W509–12.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Lundegaard C, Lund O, Nielsen M. Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers. Bioinformatics. 2008;24:1397–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Merker JD, Oxnard GR, Compton C, et al. Circulating tumor DNA analysis in patients with cancer: American Society of Clinical Oncology and College of American Pathologists joint review. Arch Pathol Lab Med. 2018;142:1242–53.PubMedCrossRefGoogle Scholar
  55. 55.
    Benincasa G, Mansueto G, Napoli C. Fluid-based assays and precision medicine of cardiovascular diseases: the ‘hope’ for Pandora’s box? J Clin Pathol. 2019;72(12):785–99.PubMedCrossRefGoogle Scholar
  56. 56.
    Zhang X, Karunathilaka N, Senanayake S, Subramaniam VN, Chan W, Kostner K, Fraser J, Atherton JJ, Punyadeera C. The potential prognostic utility of salivary galectin-3 concentrations in heart failure. Clin Res Cardiol. (2019). ahead of print).
  57. 57.
    Lehmann-Werman R, Neiman D, Zemmour H, et al. Identification of tissue-specific cell death using methylation patterns of circulation DNA. Proc Natl Acad Sci USA. 2016;113(13):E1826–34.PubMedCrossRefGoogle Scholar
  58. 58.
    Roels S, Costa OR, Tersey SA, Stangé G, De Smet D, Balti EV, Gillard P, Keymeulen B, Ling Z, Pipeleers DG, Gorus FK, Mirmira RG, Martens GA. Combined analysis of GAD65, miR-375, and unmethylated insulin DNA following islet transplantation in patients with T1D. J Clin Endocrinol Metab. 2019;104(2):451–60.PubMedCrossRefGoogle Scholar
  59. 59.
    Lim B, Tsolaki M, Soosaipillai A, Brown M, Zilakaki M, Tagaraki F, Fotiou D, Koutsouraki E, Grosi E, Prassas I, Diamandis EP. Liquid biopsy of cerebrospinal fluid identifies neuronal pentraxin receptor (NPTXR) as a biomarker of progression of Alzheimer’s disease. Clin Chem Lab Med. 2019;57(12):1875–81.PubMedCrossRefGoogle Scholar
  60. 60.
    Frost & Sullivan, Growth opportunities in the global liquid biopsy market, (2018).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of OncologyTongzhou People’s HospitalNantongChina
  2. 2.Department of Anesthesiology, Affiliated Shanghai Sixth People’s HospitalShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Department of OncologyPeking University-Shenzhen HospitalShenzhenChina
  4. 4.CuraCloud CorporationSeattleUSA
  5. 5.Department of OrthopedicsTongzhou People’s HospitalNantongChina

Personalised recommendations