First Responder to Genomic Information: A Guide for Primary Care Providers

  • Susanne B. HagaEmail author
Review Article


With rapid advances in genetics and genomics, the commercialization and access to new applications has become more widespread and omnipresent throughout biomedical research. Thus, increasingly, more patients will have personal genomic information they may share with primary care providers (PCPs) to better understand the clinical significance of the data. To be able to respond to patient inquiries about genomic data, variant interpretation, disease risk, and other issues, PCPs will need to be able to increase or refresh their awareness about genetics and genomics, and identify reliable resources to use or refer patients. While provider educational efforts have increased, with the rapid advances in the field, ongoing efforts will be needed to prepare PCPs to manage patient needs, integrate results into care, and refer as indicated.


Compliance with Ethical Standards

Conflict of interest

SBH declares no conflicts of interest.


SBH is supported by the US National Institutes of Health (Grant No. R01GM081416).


  1. 1.
    Slomski A. PCPs can manage genomic results but clinical utility is limited. JAMA. 2017;318(16):1532.PubMedGoogle Scholar
  2. 2.
    Guttmacher AE, Jenkins J, Uhlmann WR. Genomic medicine: who will practice it? A call to open arms. Am J Med Genet. 2001;106(3):216–22.CrossRefPubMedGoogle Scholar
  3. 3.
    Greendale K, Pyeritz RE. Empowering primary care health professionals in medical genetics: how soon? How fast? How far? Am J Med Genet. 2001;106(3):223–32.CrossRefPubMedGoogle Scholar
  4. 4.
    Carroll JC, Makuwaza T, Manca DP, Sopcak N, Permaul JA, O’Brien MA, et al. Primary care providers’ experiences with and perceptions of personalized genomic medicine. Can Fam Physician. 2016;62(10):e626–35.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Burke W. Genetic testing in primary care. Annu Rev Genomics Hum Genet. 2004;5:1–14.CrossRefPubMedGoogle Scholar
  6. 6.
    Lose EJ. The emerging role of primary care in genetics. Curr Opin Pediatr. 2008;20(6):634–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Hamilton JG, Abdiwahab E, Edwards HM, Fang ML, Jdayani A, Breslau ES. Primary care providers’ cancer genetic testing-related knowledge, attitudes, and communication behaviors: a systematic review and research agenda. J Gen Intern Med. 2017;32(3):315–24.CrossRefPubMedGoogle Scholar
  8. 8.
    Laforest F, Kirkegaard P, Mann B, Edwards A. Genetic cancer risk assessment in general practice: systematic review of tools available, clinician attitudes, and patient outcomes. Br J Gen Pract. 2019;69(679):e97–105.CrossRefPubMedGoogle Scholar
  9. 9.
    Harding B, Webber C, Ruhland L, Dalgarno N, Armour CM, Birtwhistle R, et al. Primary care providers’ lived experiences of genetics in practice. J Community Genet. 2018;10(1):85–93.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Mikat-Stevens NA, Larson IA, Tarini BA. Primary-care providers’ perceived barriers to integration of genetics services: a systematic review of the literature. Genet Med. 2015;17(3):169–76.CrossRefPubMedGoogle Scholar
  11. 11.
    Trinidad SB, Fryer-Edwards K, Crest A, Kyler P, Lloyd-Puryear MA, Burke W. Educational needs in genetic medicine: primary care perspectives. Community Genet. 2008;11(3):160–5.PubMedGoogle Scholar
  12. 12.
    Burke W, Acheson L, Botkin J, Bridges K, Davis A, Evans J, et al. Genetics in primary care: a USA faculty development initiative. Community Genet. 2002;5(2):138–46.CrossRefPubMedGoogle Scholar
  13. 13.
    Burke W, Emery J. Genetics education for primary-care providers. Nat Rev Genet. 2002;3(7):561–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.CrossRefPubMedGoogle Scholar
  15. 15.
    Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science. 2001;291(5507):1304–51.CrossRefGoogle Scholar
  16. 16.
    Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet. 2017;101(1):5–22.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Stranger BE, Stahl EA, Raj T. Progress and promise of genome-wide association studies for human complex trait genetics. Genetics. 2011;187(2):367–83.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017;18(1):83.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Shen H, Laird PW. Interplay between the cancer genome and epigenome. Cell. 2013;153(1):38–55.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Allyse MA, Robinson DH, Ferber MJ, Sharp RR. Direct-to-Consumer testing 2.0: emerging models of direct-to-consumer genetic testing. Mayo Clin Proc. 2018;93(1):113–20.CrossRefPubMedGoogle Scholar
  21. 21.
    Niemiec E, Kalokairinou L, Howard HC. Current ethical and legal issues in health-related direct-to-consumer genetic testing. Per Med. 2017;14(5):433–45.CrossRefPubMedGoogle Scholar
  22. 22.
    Brower V. FDA to regulate direct-to-consumer genetic tests. J Natl Cancer Inst. 2010;102(21):1610–2.CrossRefPubMedGoogle Scholar
  23. 23.
    Roberts JS, Gornick MC, Carere DA, Uhlmann WR, Ruffin MT, Green RC. Direct-to-consumer genetic testing: user motivations, decision making, and perceived utility of results. Public Health Genom. 2017;20(1):36–45.CrossRefGoogle Scholar
  24. 24.
    Covolo L, Rubinelli S, Ceretti E, Gelatti U. Internet-based direct-to-consumer genetic testing: a systematic review. J Med Internet Res. 2015;17(12):e279.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    van der Wouden CH, Carere DA, Maitland-van der Zee AH, Ruffin 4th MT, Roberts JS, Green RC. Consumer perceptions of interactions with primary care providers after direct-to-consumer personal genomic testing. Ann Intern Med. 2016;164(8):513–22.Google Scholar
  26. 26.
    Pet DB, Holm IA, Williams JL, Myers MF, Novak LL, Brothers KB, et al. Physicians’ perspectives on receiving unsolicited genomic results. Genet Med. 2019;21(2):311–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Christensen KD, Bernhardt BA, Jarvik GP, Hindorff LA, Ou J, Biswas S, et al. Anticipated responses of early adopter genetic specialists and nongenetic specialists to unsolicited genomic secondary findings. Genet Med. 2018;20(10):1186–95.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wang C, Cahill TJ, Parlato A, Wertz B, Zhong Q, Cunningham TN, et al. Consumer use and response to online third-party raw DNA interpretation services. Mol Genet Genomic Med. 2018;6(1):35–43.CrossRefPubMedGoogle Scholar
  29. 29.
    Badalato L, Kalokairinou L, Borry P. Third party interpretation of raw genetic data: an ethical exploration. Eur J Hum Genet. 2017;25(11):1189–94.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Allen CG, Gabriel J, Flynn M, Cunningham TN, Wang C. The impact of raw DNA availability and corresponding online interpretation services: a mixed-methods study. Transl Behav Med. 2018;8(1):105–12.CrossRefPubMedGoogle Scholar
  31. 31.
    Carere DA, VanderWeele TJ, Vassy JL, van der Wouden CH, Roberts JS, Kraft P, et al. Prescription medication changes following direct-to-consumer personal genomic testing: findings from the Impact of Personal Genomics (PGen) Study. Genet Med. 2017;19(5):537–45.CrossRefPubMedGoogle Scholar
  32. 32.
    Koeller DR, Uhlmann WR, Carere DA, Green RC, Roberts JS. Utilization of genetic counseling after direct-to-consumer genetic testing: findings from the Impact of Personal Genomics (PGen) study. J Genet Couns. 2017;26(6):1270–9.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Thorogood A, Bobe J, Prainsack B, Middleton A, Scott E, Nelson S, et al. APPLaUD: access for patients and participants to individual level uninterpreted genomic data. Hum Genomics. 2018;12(1):7.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Pitini E, De Vito C, Marzuillo C, D’Andrea E, Rosso A, Federici A, et al. How is genetic testing evaluated? A systematic review of the literature. Eur J Hum Genet. 2018;26(5):605–15.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Haddow JE, Palomaki GE. ACCE: a model process for evaluating data on emerging genetic tests. In: Khoury M, Little J, Burke W, editors. Human genome epidemiology: a scientific foundation for using genetic information to improve health and prevent disease. Oxford: Oxford University Press; 2003. p. 217–33.Google Scholar
  36. 36.
    Teutsch SM, Bradley LA, Palomaki GE, Haddow JE, Piper M, Calonge N, et al. The evaluation of genomic applications in practice and prevention (EGAPP) Initiative: methods of the EGAPP Working Group. Genet Med. 2009;11(1):3–14.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sanderson S, Zimmern R, Kroese M, Higgins J, Patch C, Emery J. How can the evaluation of genetic tests be enhanced? Lessons learned from the ACCE framework and evaluating genetic tests in the United Kingdom. Genet Med. 2005;7(7):495–500.CrossRefPubMedGoogle Scholar
  38. 38.
    Misyura M, Zhang T, Sukhai MA, Thomas M, Garg S, Kamel-Reid S, et al. Comparison of next-generation sequencing panels and platforms for detection and verification of somatic tumor variants for clinical diagnostics. J Mol Diagn. 2016;18(6):842–50.CrossRefPubMedGoogle Scholar
  39. 39.
    Hampel KJ, de Abreu FB, Sidiropoulos N, Peterson JD, Tsongalis GJ. Variant call concordance between two laboratory-developed, solid tumor targeted genomic profiling assays using distinct workflows and sequencing instruments. Exp Mol Pathol. 2017;102(2):215–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Muller JN, Falk M, Talwar J, Neemann N, Mariotti E, Bertrand M, et al. Concordance between comprehensive cancer genome profiling in plasma and tumor specimens. J Thorac Oncol. 2017;12(10):1503–11.CrossRefPubMedGoogle Scholar
  41. 41.
    Spratt DE, Chan T, Waldron L, Speers C, Feng FY, Ogunwobi OO, et al. Racial/ethnic disparities in genomic sequencing. JAMA Oncol. 2016;2(8):1070–4.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Bousman CA, Dunlop BW. Genotype, phenotype, and medication recommendation agreement among commercial pharmacogenetic-based decision support tools. Pharmacogenomics J. 2018;18(5):613–22.CrossRefPubMedGoogle Scholar
  44. 44.
    Amendola LM, Jarvik GP, Leo MC, McLaughlin HM, Akkari Y, Amaral MD, et al. Performance of ACMG-AMP variant-interpretation guidelines among nine laboratories in the Clinical Sequencing Exploratory Research Consortium. Am J Hum Genet. 2016;98(6):1067–76.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Pepin MG, Murray ML, Bailey S, Leistritz-Kessler D, Schwarze U, Byers PH. The challenge of comprehensive and consistent sequence variant interpretation between clinical laboratories. Genet Med. 2016;18(1):20–4.CrossRefPubMedGoogle Scholar
  46. 46.
    Bland A, Harrington EA, Dunn K, Pariani M, Platt JCK, Grove ME, et al. Clinically impactful differences in variant interpretation between clinicians and testing laboratories: a single-center experience. Genet Med. 2018;20(3):369–73.CrossRefPubMedGoogle Scholar
  47. 47.
    Balmana J, Digiovanni L, Gaddam P, Walsh MF, Joseph V, Stadler ZK, et al. Conflicting Interpretation of genetic variants and cancer risk by commercial laboratories as assessed by the Prospective Registry of Multiplex Testing. J Clin Oncol. 2016;34(34):4071–8.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Hamilton JG, Long JM, Brandt AC, Brower J, Symecko H, Salo-Mullen EE, et al. Patients’ medical and psychosocial experiences after detection of a CDH1 variant with multigene panel testing. JCO Precis Oncol. 2019;3:1–14.Google Scholar
  49. 49.
    Strande NT, Brnich SE, Roman TS, Berg JS. Navigating the nuances of clinical sequence variant interpretation in Mendelian disease. Genet Med. 2018;20(9):918–26.CrossRefPubMedGoogle Scholar
  50. 50.
    Hoskinson DC, Dubuc AM, Mason-Suares H. The current state of clinical interpretation of sequence variants. Curr Opin Genet Dev. 2017;42:33–9.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Bean LJ, Hegde MR. Gene variant databases and sharing: creating a global genomic variant database for personalized medicine. Hum Mutat. 2016;37(6):559–63.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Su XW, Simmons Z. Ethical considerations in neurogenetic testing. Semin Neurol. 2018;38(5):505–14.CrossRefPubMedGoogle Scholar
  53. 53.
    Hall AE, Chowdhury S, Pashayan N, Hallowell N, Pharoah P, Burton H. What ethical and legal principles should guide the genotyping of children as part of a personalised screening programme for common cancer? J Med Ethics. 2014;40(3):163–7.CrossRefPubMedGoogle Scholar
  54. 54.
    Kilbride MK. Genetic privacy, disease prevention, and the principle of rescue. Hastings Cent Rep. 2018;48(3):10–7.CrossRefPubMedGoogle Scholar
  55. 55.
    Ormondroyd E, Oates S, Parker M, Blair E, Watkins H. Pre-symptomatic genetic testing for inherited cardiac conditions: a qualitative exploration of psychosocial and ethical implications. Eur J Hum Genet. 2014;22(1):88–93.CrossRefPubMedGoogle Scholar
  56. 56.
    Joly Y, Feze IN, Song L, Knoppers BM. Comparative approaches to genetic discrimination: chasing shadows? Trends Genet. 2017;33(5):299–302.CrossRefPubMedGoogle Scholar
  57. 57.
    Tandy-Connor S, Guiltinan J, Krempely K, LaDuca H, Reineke P, Gutierrez S, et al. False-positive results released by direct-to-consumer genetic tests highlight the importance of clinical confirmation testing for appropriate patient care. Genet Med. 2018;20(12):1515–21.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Evenson SA, Hoyme HE, Haugen-Rogers JE, Larson EA, Puumala SE. Patient and physician perceptions of genetic testing in primary care. S D Med. 2016;69(11):487–93.PubMedGoogle Scholar
  59. 59.
    National Society of Genetic Counselors. Find a genetic counselor. 2019. Accessed 29 May 2019.
  60. 60.
    Rubanovich CK, Cheung C, Mandel J, Bloss CS. Physician preparedness for big genomic data: a review of genomic medicine education initiatives in the United States. Hum Mol Genet. 2018;27(R2):R250–8.CrossRefPubMedGoogle Scholar
  61. 61.
    Talwar D, Tseng TS, Foster M, Xu L, Chen LS. Genetics/genomics education for nongenetic health professionals: a systematic literature review. Genet Med. 2017;19(7):725–32.CrossRefPubMedGoogle Scholar
  62. 62.
    Smith MK, Wood WB. Teaching genetics: past, present, and future. Genetics. 2016;204(1):5–10.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Slade I, Subramanian DN, Burton H. Genomics education for medical professionals—the current UK landscape. Clin Med (Lond). 2016;16(4):347–52.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Nickola TJ, Green JS, Harralson AF, O’Brien TJ. The current and future state of pharmacogenomics medical education in the USA. Pharmacogenomics. 2012;13(12):1419–25.CrossRefPubMedGoogle Scholar
  65. 65.
    Wilcox RL, Adem PV, Afshinnekoo E, Atkinson JB, Burke LW, Cheung H, et al. The Undergraduate Training in Genomics (UTRIG) Initiative: early & active training for physicians in the genomic medicine era. Per Med. 2018;15(3):199–208.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Haspel RL, Atkinson JB, Barr FG, Kaul KL, Leonard DG, O’Daniel J, et al. TRIG on TRACK: educating pathology residents in genomic medicine. Per Med. 2012;9(3):287–93.CrossRefPubMedGoogle Scholar
  67. 67.
    Nguyen J, Lemons J, Crandell S, Northrup H. Efficacy of a medical genetics rotation during pediatric training. Genet Med. 2016;18(2):199–202.CrossRefPubMedGoogle Scholar
  68. 68.
    Hagiwara N. Application of active learning modalities to achieve medical genetics competencies and their learning outcome assessments. Adv Med Educ Pract. 2017;8:817–29.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Campion M, Goldgar C, Hopkin RJ, Prows CA, Dasgupta S. Genomic education for the next generation of health-care providers. Genet Med. 2019.
  70. 70.
    Gerhard GS, Jin Q, Paynton BV, Popoff SN. The Anatomy to Genomics (ATG) Start Genetics medical school initiative: incorporating exome sequencing data from cadavers used for Anatomy instruction into the first year curriculum. BMC Med Genomics. 2016;9(1):62.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Gerhard GS, Paynton B, Popoff SN. Integrating cadaver exome sequencing into a first-year medical student curriculum. JAMA. 2016;315(6):555–6.CrossRefPubMedGoogle Scholar
  72. 72.
    Paneque M, Cornel MC, Curtisova V, Houwink E, Jackson L, Kent A, et al. Implementing genetic education in primary care: the Gen-Equip programme. J Community Genet. 2017;8(2):147–50.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Linderman MD, Sanderson SC, Bashir A, Diaz GA, Kasarskis A, Zinberg R, et al. Impacts of incorporating personal genome sequencing into graduate genomics education: a longitudinal study over three course years. BMC Med Genomics. 2018;11(1):5.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Korf BR, Berry AB, Limson M, Marian AJ, Murray MF, O’Rourke PP, et al. Framework for development of physician competencies in genomic medicine: report of the Competencies Working Group of the Inter-Society Coordinating Committee for Physician Education in Genomics. Genet Med. 2014;16(11):804–9.CrossRefPubMedGoogle Scholar
  75. 75.
    Skirton H, Lewis C, Kent A, Coviello DA. Genetic education and the challenge of genomic medicine: development of core competences to support preparation of health professionals in Europe. Eur J Hum Genet. 2010;18(9):972–7.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Niederhoffer EC, Cline SD, Osheroff N, Simmons JM, Diekman AB, Franklin DS, et al. Teaching biochemistry and genetics to students of dentistry, medicine, and pharmacy: 6th International Conference of the Association of Biochemistry Educators (ABE) Clearwater Beach, FL, USA, May 7–11, 2017. Med Sci Educ. 2017;27(4):855–9.Google Scholar
  77. 77.
    Wilkes MS, Day FC, Fancher TL, McDermott H, Lehman E, Bell RA, et al. Increasing confidence and changing behaviors in primary care providers engaged in genetic counselling. BMC Med Educ. 2017;17(1):163.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Bell RA, McDermott H, Fancher TL, Green MJ, Day FC, Wilkes MS. Impact of a randomized controlled educational trial to improve physician practice behaviors around screening for inherited breast cancer. J Gen Intern Med. 2015;30(3):334–41.CrossRefPubMedGoogle Scholar
  79. 79.
    Jackson L, O’Connor A, Paneque M, Curtisova V, Lunt PW, Pourova RK, et al. The Gen-Equip Project: evaluation and impact of genetics e-learning resources for primary care in six European languages. Genet Med. 2019;21(3):718–26.CrossRefPubMedGoogle Scholar
  80. 80.
    Houwink EJ, Muijtjens AM, van Teeffelen SR, Henneman L, Rethans JJ, Jacobi F, et al. Effect of comprehensive oncogenetics training interventions for general practitioners, evaluated at multiple performance levels. PLoS One. 2015;10(4):e0122648.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Sharp RR, Goldlust ME, Eng C. Addressing gaps in physician education using personal genomic testing. Genet Med. 2011;13(8):750–1.CrossRefPubMedGoogle Scholar
  82. 82.
    Garber KB, Hyland KM, Dasgupta S. Participatory genomic testing as an educational experience. Trends Genet. 2016;32(6):317–20.CrossRefPubMedGoogle Scholar
  83. 83.
    Sanderson SC, Linderman MD, Zinberg R, Bashir A, Kasarskis A, Zweig M, et al. How do students react to analyzing their own genomes in a whole-genome sequencing course? Outcomes of a longitudinal cohort study. Genet Med. 2015;17(11):866–74.CrossRefPubMedGoogle Scholar
  84. 84.
    Houwink EJ, Muijtjens AM, van Teeffelen SR, Henneman L, Rethans JJ, van der Jagt LE, et al. Effectiveness of oncogenetics training on general practitioners’ consultation skills: a randomized controlled trial. Genet Med. 2014;16(1):45–52.CrossRefPubMedGoogle Scholar
  85. 85.
    Houwink EJ, van Teeffelen SR, Muijtjens AM, Henneman L, Jacobi F, van Luijk SJ, et al. Sustained effects of online genetics education: a randomized controlled trial on oncogenetics. Eur J Hum Genet. 2014;22(3):310–6.CrossRefPubMedGoogle Scholar
  86. 86.
    Henricks WH, Karcher DS, Harrison JH Jr, Sinard JH, Riben MW, Boyer PJ, et al. Pathology informatics essentials for residents: a flexible informatics curriculum linked to Accreditation Council for Graduate Medical Education Milestones. Arch Pathol Lab Med. 2017;141(1):113–24.CrossRefPubMedGoogle Scholar
  87. 87.
    Tognetto A, Michelazzo MB, Ricciardi W, Federici A, Boccia S. Core competencies in genetics for healthcare professionals: results from a literature review and a Delphi method. BMC Med Educ. 2019;19(1):19.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Press KR, Bodurtha J. Milestones for medical students completing a clinical genetics elective. Genet Med. 2017;19(2):236–9.CrossRefPubMedGoogle Scholar
  89. 89.
    Bell GC, Crews KR, Wilkinson MR, Haidar CE, Hicks JK, Baker DK, et al. Development and use of active clinical decision support for preemptive pharmacogenomics. J Am Med Inform Assoc. 2014;21(e1):e93–9.CrossRefPubMedGoogle Scholar
  90. 90.
    O’Donnell PH, Wadhwa N, Danahey K, Borden BA, Lee SM, Hall JP, et al. Pharmacogenomics-based point-of-care clinical decision support significantly alters drug prescribing. Clin Pharmacol Ther. 2017;102(5):859–69.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Houwink EJ, van Luijk SJ, Henneman L, van der Vleuten C, Jan Dinant G, Cornel MC. Genetic educational needs and the role of genetics in primary care: a focus group study with multiple perspectives. BMC Fam Pract. 2011;12:5.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Heale BSE, Khalifa A, Stone BL, Nelson S, Del Fiol G. Physicians’ pharmacogenomics information needs and seeking behavior: a study with case vignettes. BMC Med Inform Decis Mak. 2017;17(1):113.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Prawira A, Pugh TJ, Stockley TL, Siu LL. Data resources for the identification and interpretation of actionable mutations by clinicians. Ann Oncol. 2017;28(5):946–57.CrossRefPubMedGoogle Scholar
  94. 94.
    Dumur CI. Available resources and challenges for the clinical annotation of somatic variations. Cancer Cytopathol. 2014;122(10):730–6.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46(D1):D1062–7.CrossRefPubMedGoogle Scholar
  96. 96.
    Harrison SM, Riggs ER, Maglott DR, Lee JM, Azzariti DR, Niehaus A, et al. Using ClinVar as a resource to support variant interpretation. Curr Protoc Hum Genet. 2016;89:8–23.Google Scholar
  97. 97.
    Rehm HL, Berg JS, Brooks LD, Bustamante CD, Evans JP, Landrum MJ, et al. ClinGen–the clinical genome resource. N Engl J Med. 2015;372(23):2235–42.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Gelb BD, Cave H, Dillon MW, Gripp KW, Lee JA, Mason-Suares H, et al. ClinGen’s RASopathy Expert Panel consensus methods for variant interpretation. Genet Med. 2018;20(11):1334–45.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Madhavan S, Ritter D, Micheel C, Rao S, Roy A, Sonkin D, et al. ClinGen Cancer Somatic Working Group—standardizing and democratizing access to cancer molecular diagnostic data to drive translational research. Pac Symp Biocomput. 2018;23:247–58.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Rivera-Munoz EA, Milko LV, Harrison SM, Azzariti DR, Kurtz CL, Lee K, et al. ClinGen Variant Curation Expert Panel experiences and standardized processes for disease and gene-level specification of the ACMG/AMP guidelines for sequence variant interpretation. Hum Mutat. 2018;39(11):1614–22.CrossRefPubMedGoogle Scholar
  101. 101.
    Milko LV, Funke BH, Hershberger RE, Azzariti DR, Lee K, Riggs ER, et al. Development of Clinical Domain Working Groups for the Clinical Genome Resource (ClinGen): lessons learned and plans for the future. Genet Med. 2019;21(4):987–93.CrossRefPubMedGoogle Scholar
  102. 102.
    Falk MJ, Shen L, Gonzalez M, Leipzig J, Lott MT, Stassen AP, et al. Mitochondrial Disease Sequence Data Resource (MSeqDR): a global grass-roots consortium to facilitate deposition, curation, annotation, and integrated analysis of genomic data for the mitochondrial disease clinical and research communities. Mol Genet Metab. 2015;114(3):388–96.CrossRefPubMedGoogle Scholar
  103. 103.
    Shen L, Attimonelli M, Bai R, Lott MT, Wallace DC, Falk MJ, et al. MSeqDR mvTool: a mitochondrial DNA Web and API resource for comprehensive variant annotation, universal nomenclature collation, and reference genome conversion. Hum Mutat. 2018;39(6):806–10.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Sequencing errors rife in genome databases. Cancer Discov. 2017;7(4):344–5.Google Scholar
  105. 105.
    Kaur P, Porras TB, Ring A, Carpten JD, Lang JE. Comparison of TCGA and GENIE genomic datasets for the detection of clinically actionable alterations in breast cancer. Sci Rep. 2019;9(1):1482.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    U.S. Centers for Disease Control and Prevention. Public Health Knowledge Genomics Base (v5.4). 2019. Accessed 25 Mar 2019.
  107. 107.
    Yu W, Gwinn M, Dotson WD, Green RF, Clyne M, Wulf A, et al. A knowledge base for tracking the impact of genomics on population health. Genet Med. 2016;18(12):1312–4.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Mensah GA, Yu W, Barfield WL, Clyne M, Engelgau MM, Khoury MJ. HLBS-PopOmics: an online knowledge base to accelerate dissemination and implementation of research advances in population genomics to reduce the burden of heart, lung, blood, and sleep disorders. Genet Med. 2019;21(3):519–24.CrossRefPubMedGoogle Scholar
  109. 109.
    U.S. Centers for Disease Control and Prevention. HLBS-PopOmics 2019. Accessed 25 Mar 2019.
  110. 110.
    Seaby EG, Pengelly RJ, Ennis S. Exome sequencing explained: a practical guide to its clinical application. Brief Funct Genomics. 2016;15(5):374–84.CrossRefPubMedGoogle Scholar
  111. 111.
    Jalali Sefid Dashti M, Gamieldien J. A practical guide to filtering and prioritizing genetic variants. Biotechniques. 2017;62(1):18-30.Google Scholar
  112. 112.
    Sabour L, Sabour M, Ghorbian S. Clinical applications of next-generation sequencing in cancer diagnosis. Pathol Oncol Res. 2017;23(2):225–34.CrossRefPubMedGoogle Scholar
  113. 113.
    Dienstmann R, Dong F, Borger D, Dias-Santagata D, Ellisen LW, Le LP, et al. Standardized decision support in next generation sequencing reports of somatic cancer variants. Mol Oncol. 2014;8(5):859–73.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Haga SB. Educating patients and providers through comprehensive pharmacogenetic test reports. Pharmacogenomics. 2017;18(11):1047–50.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Dorschner MO, Amendola LM, Shirts BH, Kiedrowski L, Salama J, Gordon AS, et al. Refining the structure and content of clinical genomic reports. Am J Med Genet C Semin Med Genet. 2014;166C(1):85–92.CrossRefPubMedGoogle Scholar
  116. 116.
    Crump JK, Del Fiol G, Williams MS, Freimuth RR. Prototype of a standards-based EHR and genetic test reporting tool coupled with HL7-compliant Infobuttons. AMIA Jt Summits Transl Sci Proc. 2018;2017:330–9.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Center for Applied Genomics and Precision MedicineDuke University School of MedicineDurhamUSA

Personalised recommendations