Advertisement

Integrated Interaction Network of MicroRNA Target Genes in Keloid Scarring

  • Lechun Lyu
  • Yu Zhao
  • Hongquan Lu
  • Zijie Liu
  • Jiazhi Guo
  • Di LuEmail author
  • Xiang Li
Current Opinion

Abstract

Keloids are a common dermal pathological disorder characterized by the excessive deposition of extracellular matrix components; however, the exact pathogenesis of the disease is still not clear. Studies increasingly suggest that microRNAs (miRNAs) can play a key role in the process of keloid scarring. In this study, the valuable miRNAs and target genes were screened and the interaction network was constructed. We also predicted target genes of reported miRNAs using TargetScan and miRTarBase software. Cytoscape 3.0.1 further showed the interaction network of miRNA and target genes. Among the various miRNAs involved in keloid pathogenesis, miRNA-21, miRNA-141-3p, miRNA-181a, and miRNA-205 were thought to up-regulate the proliferation and decrease apoptosis of keloid-derived fibroblasts through the PI3K/Akt/mammalian target of rapamycin (mTOR) signaling pathway. miRNA-637 and miRNA-1224 inhibited keloid fibroblasts proliferation and promoted apoptosis via the transforming growth factor (TGF)-β1/Smad3 signaling pathway. miRNA-21 was also involved in mitochondrial-mediated apoptosis and miRNA-31 targeted vascular endothelial growth factor (VEGF) signaling pathway. miRNA-199a may be one key factor in the cell cycle checkpoint signal pathway of keloid-derived fibroblasts. It was also found that miRNA-29a and miRNA-196a mediated collagen metabolism. These pivotal miRNAs and regulatory processes further improve the data on the epigenetic mechanisms of keloids and provide hope for the use of small molecules in the treatment of keloids.

Notes

Compliance with Ethical Standards

Conflict of interest

Lechun Lyu, Yu Zhao, Hongquan Lu, Zijie Liu, Jiazhi Guo, Di Lu, and Xiang Li have no conflicts of interest.

Funding

The authors are supported by grants from the National Natural Science Foundation of China (NSFC; Grant no. 81560502), the National Natural Science Foundation of Yunnan Province (Grant no. 2017FB116), the Talent Project of Yunnan Province (Lechun Lyu) and 100 Talents Program of Kunming Medical University (Lechun Lyu).

Supplementary material

40291_2018_378_MOESM1_ESM.doc (210 kb)
Supplementary material 1 (DOC 210 kb)

References

  1. 1.
    Shi C, Zhu J, Yang D. The pivotal role of inflammation in scar/keloid formation after acne. Dermatoendocrinology. 2017;9(1):e1448327.  https://doi.org/10.1080/19381980.2018.1448327.CrossRefGoogle Scholar
  2. 2.
    Mari W, Alsabri SG, Tabal N, Younes S, Sherif A, Simman R. Novel insights on understanding of keloid scar: article review. J Am Coll Clin Wound Spec. 2015;7(1–3):1–7.  https://doi.org/10.1016/j.jccw.2016.10.001.CrossRefPubMedGoogle Scholar
  3. 3.
    Seifert O, Mrowietz U. Keloid scarring: bench and bedside. Arch Dermatol Res. 2009;301(4):259–72.  https://doi.org/10.1007/s00403-009-0952-8.CrossRefPubMedGoogle Scholar
  4. 4.
    Agis H, Collins A, Taut AD, Jin Q, Kruger L, Gorlach C, et al. Cell population kinetics of collagen scaffolds in ex vivo oral wound repair. PLoS One. 2014;9(11):e112680.  https://doi.org/10.1371/journal.pone.0112680.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16(5):585–601.  https://doi.org/10.1111/j.1524-475X.2008.00410.x.CrossRefPubMedGoogle Scholar
  6. 6.
    Atiyeh BS, Costagliola M, Hayek SN. Keloid or hypertrophic scar: the controversy: review of the literature. Ann Plast Surg. 2005;54(6):676–80.CrossRefGoogle Scholar
  7. 7.
    Berman B, Perez OA, Konda S, Kohut BE, Viera MH, Delgado S, et al. A review of the biologic effects, clinical efficacy, and safety of silicone elastomer sheeting for hypertrophic and keloid scar treatment and management. Dermatol Surg. 2007;33(11):1291–302.  https://doi.org/10.1111/j.1524-4725.2007.33280.x (discussion 302–3).CrossRefPubMedGoogle Scholar
  8. 8.
    Shih B, Bayat A. Genetics of keloid scarring. Arch Dermatol Res. 2010;302(5):319–39.  https://doi.org/10.1007/s00403-009-1014-y.CrossRefPubMedGoogle Scholar
  9. 9.
    He Y, Deng Z, Alghamdi M, Lu L, Fear MW, He L. From genetics to epigenetics: new insights into keloid scarring. Cell Prolif. 2017.  https://doi.org/10.1111/cpr.12326.
  10. 10.
    Zhong L, Bian L, Lyu J, Jin H, Liu Z, Lyu L, et al. Identification and integrated analysis of microRNA expression profiles in keloid. J Cosmet Dermatol. 2018.  https://doi.org/10.1111/jocd.12706.
  11. 11.
    Onoufriadis A, Hsu CK, Ainali C, Ung CY, Rashidghamat E, Yang HS, et al. Time series integrative analysis of RNA sequencing and microRNA expression data reveals key biologic wound healing pathways in keloid-prone individuals. J Invest Dermatol. 2018;138(12):2690–3.  https://doi.org/10.1016/j.jid.2018.05.017.CrossRefPubMedGoogle Scholar
  12. 12.
    Liu Y, Yang D, Xiao Z, Zhang M. miRNA expression profiles in keloid tissue and corresponding normal skin tissue. Aesthetic Plast Surg. 2012;36(1):193–201.  https://doi.org/10.1007/s00266-011-9773-1.CrossRefPubMedGoogle Scholar
  13. 13.
    Yao X, Cui X, Wu X, Xu P, Zhu W, Chen X, et al. Tumor suppressive role of miR-1224-5p in keloid proliferation, apoptosis and invasion via the TGF-beta1/Smad3 signaling pathway. Biochem Biophys Res Commun. 2018;495(1):713–20.  https://doi.org/10.1016/j.bbrc.2017.10.070.CrossRefPubMedGoogle Scholar
  14. 14.
    An G, Liang S, Sheng C, Liu Y, Yao W. Upregulation of microRNA-205 suppresses vascular endothelial growth factor expression-mediated PI3K/Akt signaling transduction in human keloid fibroblasts. Exp Biol Med (Maywood). 2017;242(3):275–85.  https://doi.org/10.1177/1535370216669839.CrossRefPubMedGoogle Scholar
  15. 15.
    Zhang M, Liu S, Guan E, Liu H, Dong X, Hao Y, et al. Hyperbaric oxygen therapy can ameliorate the EMT phenomenon in keloid tissue. Medicine. 2018;97(29):e11529.  https://doi.org/10.1097/MD.0000000000011529.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Yan L, Cao R, Liu Y, Wang L, Pan B, Lv X, et al. MiR-21-5p links epithelial-mesenchymal transition phenotype with stem-like cell signatures via AKT signaling in keloid keratinocytes. Sci Rep. 2016;6:28281.  https://doi.org/10.1038/srep28281.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mitra A, Raychaudhuri SK, Raychaudhuri SP. IL-22 induced cell proliferation is regulated by PI3K/Akt/mTOR signaling cascade. Cytokine. 2012;60(1):38–42.  https://doi.org/10.1016/j.cyto.2012.06.316.CrossRefPubMedGoogle Scholar
  18. 18.
    Wang L, Wu J, Lu J, Ma R, Sun D, Tang J. Regulation of the cell cycle and PI3K/Akt/mTOR signaling pathway by tanshinone I in human breast cancer cell lines. Mol Med Rep. 2015;11(2):931–9.  https://doi.org/10.3892/mmr.2014.2819.CrossRefPubMedGoogle Scholar
  19. 19.
    Vadlakonda L, Pasupuleti M, Pallu R. Role of PI3K-AKT-mTOR and Wnt signaling pathways in transition of G1-S phase of cell cycle in cancer cells. Front Oncol. 2013;3:85.  https://doi.org/10.3389/fonc.2013.00085.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ayyadevara S, Alla R, Thaden JJ, Shmookler Reis RJ. Remarkable longevity and stress resistance of nematode PI3K-null mutants. Aging Cell. 2008;7(1):13–22.  https://doi.org/10.1111/j.1474-9726.2007.00348.x.CrossRefPubMedGoogle Scholar
  21. 21.
    Dienstmann R, Rodon J, Serra V, Tabernero J. Picking the point of inhibition: a comparative review of PI3K/AKT/mTOR pathway inhibitors. Mol Cancer Ther. 2014;13(5):1021–31.  https://doi.org/10.1158/1535-7163.MCT-13-0639.CrossRefPubMedGoogle Scholar
  22. 22.
    Syed F, Sherris D, Paus R, Varmeh S, Singh S, Pandolfi PP, et al. Keloid disease can be inhibited by antagonizing excessive mTOR signaling with a novel dual TORC1/2 inhibitor. Am J Pathol. 2012;181(5):1642–58.  https://doi.org/10.1016/j.ajpath.2012.08.006.CrossRefPubMedGoogle Scholar
  23. 23.
    Ong CT, Khoo YT, Mukhopadhyay A, Do DV, Lim IJ, Aalami O, et al. mTOR as a potential therapeutic target for treatment of keloids and excessive scars. Exp Dermatol. 2007;16(5):394–404.  https://doi.org/10.1111/j.1600-0625.2007.00550.x.CrossRefPubMedGoogle Scholar
  24. 24.
    Sang PF, Wang H, Wang M, Hu C, Zhang JS, Li XJ, et al. NEDD4-1 and PTEN expression in keloid scarring. Genet Mol Res. 2015;14(4):13467–75.  https://doi.org/10.4238/2015.October.28.7.CrossRefPubMedGoogle Scholar
  25. 25.
    Kumarswamy R, Volkmann I, Thum T. Regulation and function of miRNA-21 in health and disease. RNA Biol. 2011;8(5):706–13.  https://doi.org/10.4161/rna.8.5.16154.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wu H, Wang J, Ma H, Xiao Z, Dong X. MicroRNA-21 inhibits mitochondria-mediated apoptosis in keloid. Oncotarget. 2017;8(54):92914–25.  https://doi.org/10.18632/oncotarget.21656.
  27. 27.
    Liu Y, Wang X, Yang D, Xiao Z, Chen X. MicroRNA-21 affects proliferation and apoptosis by regulating expression of PTEN in human keloid fibroblasts. Plast Reconstr Surg. 2014;134(4):561e–73e.  https://doi.org/10.1097/PRS.0000000000000577.CrossRefPubMedGoogle Scholar
  28. 28.
    Wu X, Zhao Z, Ding Y, Xiang F, Kang X, Pu X. Differential expression of microRNAs in the normal skin of the Han and Uyghur populations in Xinjiang Province. Medicine (Baltimore). 2018;97(7):e9928.CrossRefGoogle Scholar
  29. 29.
    Zimmermann L, Reinhard T, Lange C, Heegaard S, Auw-Haedrich C. Corneal myofibroma (keloid) in a young patient with neurofibromatosis type 2. Ocular Oncol Pathol. 2017;3(4):247–9.  https://doi.org/10.1159/000457959.CrossRefGoogle Scholar
  30. 30.
    Zhang MZ, Dong XH, Guan EL, Si LB, Zhuge RQ, Zhao PX, et al. A comparison of apoptosis levels in keloid tissue, physiological scars and normal skin. Am J Transl Res. 2017;9(12):5548–57.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Li T, Zhao J. Knockdown of elF3a inhibits TGFbeta1induced extracellular matrix protein expression in keloid fibroblasts. Mol Med Rep. 2018;17(3):4057–61.  https://doi.org/10.3892/mmr.2017.8365.CrossRefPubMedGoogle Scholar
  32. 32.
    Bijlard E, Verduijn GM, Harmeling JX, Dehnad H, Niessen FB, Meijer OWM, et al. Optimal high-dose-rate brachytherapy fractionation scheme after keloid excision: a retrospective multicenter comparison of recurrence rates and complications. Int J Radiat Oncol Biol Phys. 2018;100(3):679–86.  https://doi.org/10.1016/j.ijrobp.2017.10.044.CrossRefPubMedGoogle Scholar
  33. 33.
    Caposiena Caro RD, Mazzeo M, Didona D, Del Duca E, De Simoni I, Bianchi L. Keloid like reaction to cocaine use. G Ital Dermatol Venereol. 2017.  https://doi.org/10.23736/S0392-0488.17.05833-3.
  34. 34.
    Feng J, Xue S, Pang Q, Rang Z, Cui F. miR-141-3p inhibits fibroblast proliferation and migration by targeting GAB1 in keloids. Biochem Biophys Res Commun. 2017;490(2):302–8.  https://doi.org/10.1016/j.bbrc.2017.06.040.CrossRefPubMedGoogle Scholar
  35. 35.
    Goutos I, Ogawa R. Brachytherapy in the adjuvant management of keloid scars: literature review. Scars Burn Heal. 2017;3:2059513117735483.  https://doi.org/10.1177/2059513117735483.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tu Y, Lineaweaver WC, Zhang F. TGF-beta1 -509C/T polymorphism and susceptibility to keloid disease: a systematic review and meta-analysis. Scars Burn Heal. 2017;3:2059513117709943.  https://doi.org/10.1177/2059513117709943.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Prasad BRH, Leelavathy B, Aradhya SS, Shilpa K, Vasudevan B. Easing the excision of earlobe keloid. J Cutan Aesthet Surg. 2017;10(3):168–71.  https://doi.org/10.4103/JCAS.JCAS_122_16.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kant SB, van den Kerckhove E, Colla C, Tuinder S, van der Hulst R, Piatkowski de Grzymala AA. A new treatment of hypertrophic and keloid scars with combined triamcinolone and verapamil: a retrospective study. Eur J Plast Surg. 2018;41(1):69–80.  https://doi.org/10.1007/s00238-017-1322-y.
  39. 39.
    Liu H, Song K, Zhang M, Dong X, Liu S, Wang Y. Toe keloid after nail extraction treated with surgical excision: a case report. Medicine. 2017;96(51):e9373.  https://doi.org/10.1097/MD.0000000000009373.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rang Z, Wang ZY, Pang QY, Wang YW, Yang G, Cui F. MiR-181a Targets PHLPP2 to augment AKT signaling and regulate proliferation and apoptosis in human keloid fibroblasts. Cell Physiol Biochem. 2016;40(3–4):796–806.  https://doi.org/10.1159/000453139.CrossRefPubMedGoogle Scholar
  41. 41.
    Vosgha H, Salajegheh A, Smith RA, Lam AK. The important roles of miR-205 in normal physiology, cancers and as a potential therapeutic target. Curr Cancer Drug Targets. 2014;14(7):621–37.CrossRefGoogle Scholar
  42. 42.
    Zhang JY, Sun MY, Song NH, Deng ZL, Xue CY, Yang J. Prognostic role of microRNA-205 in multiple human malignant neoplasms: a meta-analysis of 17 studies. BMJ Open. 2015;5(1):e006244.  https://doi.org/10.1136/bmjopen-2014-006244.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Adi N, Adi J, Lassance-Soares RM, Kurlansky P, Yu H, Webster KA. High protein/fish oil diet prevents hepatic steatosis in NONcNZO10 mice; association with diet/genetics-regulated micro-RNAs. J Diabetes Metab. 2016.  https://doi.org/10.4172/2155-6156.1000676.CrossRefGoogle Scholar
  44. 44.
    Hozzein WN, Badr G, Al Ghamdi AA, Sayed A, Al-Waili NS, Garraud O. Topical application of propolis enhances cutaneous wound healing by promoting TGF-beta/Smad-mediated collagen production in a streptozotocin-induced type I diabetic mouse model. Cell Physiol Biochem. 2015;37(3):940–54.  https://doi.org/10.1159/000430221.CrossRefPubMedGoogle Scholar
  45. 45.
    Hameedaldeen A, Liu J, Batres A, Graves GS, Graves DT. FOXO1, TGF-beta regulation and wound healing. Int J Mol Sci. 2014;15(9):16257–69.  https://doi.org/10.3390/ijms150916257.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Alves CC, Torrinhas RS, Giorgi R, Brentani MM, Logullo AF, Waitzberg DL. TGF-beta1 expression in wound healing is acutely affected by experimental malnutrition and early enteral feeding. Int Wound J. 2014;11(5):533–9.  https://doi.org/10.1111/j.1742-481X.2012.01120.x.CrossRefPubMedGoogle Scholar
  47. 47.
    Chen J, Zeng B, Yao H, Xu J. The effect of TLR4/7 on the TGF-beta-induced Smad signal transduction pathway in human keloid. Burns. 2013;39(3):465–72.  https://doi.org/10.1016/j.burns.2012.07.019.CrossRefPubMedGoogle Scholar
  48. 48.
    Lee CH, Hong CH, Chen YT, Chen YC, Shen MR. TGF-beta1 increases cell rigidity by enhancing expression of smooth muscle actin: keloid-derived fibroblasts as a model for cellular mechanics. J Dermatol Sci. 2012;67(3):173–80.  https://doi.org/10.1016/j.jdermsci.2012.06.004.CrossRefPubMedGoogle Scholar
  49. 49.
    Jiao H, Dong P, Yan L, Yang Z, Lv X, Li Q, et al. TGF-beta1 induces polypyrimidine tract-binding protein to alter fibroblasts proliferation and fibronectin deposition in keloid. Sci Rep. 2016;6:38033.  https://doi.org/10.1038/srep38033.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Bettinger DA, Yager DR, Diegelmann RF, Cohen IK. The effect of TGF-beta on keloid fibroblast proliferation and collagen synthesis. Plast Reconstr Surg. 1996;98(5):827–33.CrossRefGoogle Scholar
  51. 51.
    Yan L, Cao R, Pan B, Wang L, Lyu X, Sun X, et al. In vitro study of TGF-beta1-induced epithelial-mesenchymal transition of keloid epithelial cells [in Chinese]. Zhonghua Zheng Xing Wai Ke Za Zhi. 2015;31(2):128–33.PubMedGoogle Scholar
  52. 52.
    Yan L, Cao R, Wang L, Liu Y, Pan B, Yin Y, et al. Epithelial-mesenchymal transition in keloid tissues and TGF-beta1-induced hair follicle outer root sheath keratinocytes. Wound Repair Regen. 2015;23(4):601–10.  https://doi.org/10.1111/wrr.12320.CrossRefPubMedGoogle Scholar
  53. 53.
    Deng Z, He Y, Yang X, Shi H, Shi A, Lu L, et al. MicroRNA-29: a crucial player in fibrotic disease. Mol Diagn Ther. 2017;21(3):285–94.  https://doi.org/10.1007/s40291-016-0253-9.CrossRefPubMedGoogle Scholar
  54. 54.
    Liang C, Bu S, Fan X. Suppressive effect of microRNA-29b on hepatic stellate cell activation and its crosstalk with TGF-beta1/Smad3. Cell Biochem Funct. 2016;34(5):326–33.  https://doi.org/10.1002/cbf.3193.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Zhou L, Wang L, Lu L, Jiang P, Sun H, Wang H. Inhibition of miR-29 by TGF-beta-Smad3 signaling through dual mechanisms promotes transdifferentiation of mouse myoblasts into myofibroblasts. PLoS One. 2012;7(3):e33766.  https://doi.org/10.1371/journal.pone.0033766.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Zhang GY, Wu LC, Liao T, Chen GC, Chen YH, Zhao YX, et al. A novel regulatory function for miR-29a in keloid fibrogenesis. Clin Exp Dermatol. 2016;41(4):341–5.  https://doi.org/10.1111/ced.12734.CrossRefPubMedGoogle Scholar
  57. 57.
    Gallant-Behm CL, Piper J, Lynch JM, Seto AG, Hong SJ, Mustoe TA, et al. A microRNA-29 mimic (remlarsen) represses extracellular matrix expression and fibroplasia in the skin. J Invest Dermatol. 2018.  https://doi.org/10.1016/j.jid.2018.11.007.
  58. 58.
    Li JX, Ding XM, Han S, Wang K, Jiao CY, Li XC. mir-637 inhibits the proliferation of cholangiocarcinoma cell QBC939 through interfering CTSB expression. Eur Rev Med Pharmacol Sci. 2018;22(5):1265–76.  https://doi.org/10.26355/eurrev_201803_14467.
  59. 59.
    Yu J, Xu QG, Wang ZG, Yang Y, Zhang L, Ma JZ, et al. Circular RNA cSMARCA5 inhibits growth and metastasis in hepatocellular carcinoma. J Hepatol. 2018;68(6):1214–27.  https://doi.org/10.1016/j.jhep.2018.01.012.CrossRefPubMedGoogle Scholar
  60. 60.
    Zhang JF, Fu WM, He ML, Wang H, Wang WM, Yu SC, et al. MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix. Mol Biol Cell. 2011;22(21):3955–61.  https://doi.org/10.1091/mbc.E11-04-0356.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Zhang JF, He ML, Fu WM, Wang H, Chen LZ, Zhu X, et al. Primate-specific microRNA-637 inhibits tumorigenesis in hepatocellular carcinoma by disrupting signal transducer and activator of transcription 3 signaling. Hepatology. 2011;54(6):2137–48.  https://doi.org/10.1002/hep.24595.CrossRefPubMedGoogle Scholar
  62. 62.
    Xu RL, He W, Tang J, Guo W, Zhuang P, Wang CQ, et al. Primate-specific miRNA-637 inhibited tumorigenesis in human pancreatic ductal adenocarcinoma cells by suppressing Akt1 expression. Exp Cell Res. 2018;363(2):310–4.  https://doi.org/10.1016/j.yexcr.2018.01.026.CrossRefPubMedGoogle Scholar
  63. 63.
    Hu YB, Li CB, Song N, Zou Y, Chen SD, Ren RJ, et al. Corrigendum: diagnostic value of microrna for alzheimer’s disease: a systematic review and meta-analysis. Front Aging Neurosci. 2017;9:35.  https://doi.org/10.3389/fnagi.2017.00035.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Yang C, Yuan W, Yang X, Li P, Wang J, Han J, et al. Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression. Mol Cancer. 2018;17(1):19.  https://doi.org/10.1186/s12943-018-0771-7.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Zhang Y, Guo B, Hui Q, Li W, Chang P, Tao K. Downregulation of miR637 promotes proliferation and metastasis by targeting Smad3 in keloids. Mol Med Rep. 2018;18(2):1628–36.  https://doi.org/10.3892/mmr.2018.9099.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Alipoor SD, Mortaz E, Tabarsi P, Marjani M, Varahram M, Folkerts G, et al. miR-1224 expression is increased in human macrophages after infection with Bacillus Calmette-Guérin (BCG). Iran J Allergy Asthma Immunol. 2018;17(3):250–7.PubMedGoogle Scholar
  67. 67.
    Niu Y, Mo D, Qin L, Wang C, Li A, Zhao X, et al. Lipopolysaccharide-induced miR-1224 negatively regulates tumour necrosis factor-alpha gene expression by modulating Sp1. Immunology. 2011;133(1):8–20.  https://doi.org/10.1111/j.1365-2567.2010.03374.x.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Sakai E, Miura Y, Suzuki-Kouyama E, Oka K, Tachibana M, Kawabata K, et al. A mammalian mirtron miR-1224 promotes tube-formation of human primary endothelial cells by targeting anti-angiogenic factor epsin2. Sci Rep. 2017;7(1):5541.  https://doi.org/10.1038/s41598-017-05782-3.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Roy S, Bantel H, Wandrer F, Schneider AT, Gautheron J, Vucur M, et al. miR-1224 inhibits cell proliferation in acute liver failure by targeting the antiapoptotic gene Nfib. J Hepatol. 2017;67(5):966–78.  https://doi.org/10.1016/j.jhep.2017.06.007.CrossRefPubMedGoogle Scholar
  70. 70.
    Dudziec E, Miah S, Choudhry HM, Owen HC, Blizard S, Glover M, et al. Hypermethylation of CpG islands and shores around specific microRNAs and mirtrons is associated with the phenotype and presence of bladder cancer. Clin Cancer Res. 2011;17(6):1287–96.  https://doi.org/10.1158/1078-0432.CCR-10-2017.CrossRefPubMedGoogle Scholar
  71. 71.
    Mujtaba SF, Dwivedi A, Yadav N, Ch R, Kushwaha HN, Mudiam MK, et al. Superoxide mediated photomodification and DNA damage induced apoptosis by Benz(a)anthracene via mitochondrial mediated pathway. J Photochem Photobiol, B. 2015;142:92–102.  https://doi.org/10.1016/j.jphotobiol.2014.11.006.CrossRefGoogle Scholar
  72. 72.
    Lin SS, Huang HP, Yang JS, Wu JY, Hsia TC, Lin CC, et al. DNA damage and endoplasmic reticulum stress mediated curcumin-induced cell cycle arrest and apoptosis in human lung carcinoma A-549 cells through the activation caspases cascade- and mitochondrial-dependent pathway. Cancer Lett. 2008;272(1):77–90.  https://doi.org/10.1016/j.canlet.2008.06.031.CrossRefPubMedGoogle Scholar
  73. 73.
    Sun Y, Su Q, Li L, Wang X, Lu Y, Liang J. MiR-486 regulates cardiomyocyte apoptosis by p53-mediated BCL-2 associated mitochondrial apoptotic pathway. BMC Cardiovasc Disord. 2017;17(1):119.  https://doi.org/10.1186/s12872-017-0549-7.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Sun XM, Bratton SB, Butterworth M, MacFarlane M, Cohen GM. Bcl-2 and Bcl-xL inhibit CD95-mediated apoptosis by preventing mitochondrial release of Smac/DIABLO and subsequent inactivation of X-linked inhibitor-of-apoptosis protein. J Biol Chem. 2002;277(13):11345–51.  https://doi.org/10.1074/jbc.M109893200.CrossRefPubMedGoogle Scholar
  75. 75.
    Wang X, Liu Y, Chen X, Zhang M, Xiao Z. Impact of MiR-21 on the expression of FasL in the presence of TGF-beta1. Aesthet Surg J. 2013;33(8):1186–98.  https://doi.org/10.1177/1090820X13511969.CrossRefPubMedGoogle Scholar
  76. 76.
    Stepicheva NA, Song JL. Function and regulation of microRNA-31 in development and disease. Mol Reprod Dev. 2016;83(8):654–74.  https://doi.org/10.1002/mrd.22678.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Valastyan S, Weinberg RA. miR-31: a crucial overseer of tumor metastasis and other emerging roles. Cell Cycle. 2010;9(11):2124–9.  https://doi.org/10.4161/cc.9.11.11843.CrossRefPubMedGoogle Scholar
  78. 78.
    Wang S, Hu J, Zhang D, Li J, Fei Q, Sun Y. Prognostic role of microRNA-31 in various cancers: a meta-analysis. Tumour Biol. 2014;35(11):11639–45.  https://doi.org/10.1007/s13277-014-2492-x.CrossRefPubMedGoogle Scholar
  79. 79.
    Hu J, Chen C, Liu Q, Liu B, Song C, Zhu S, et al. The role of the miR-31/FIH1 pathway in TGF-beta-induced liver fibrosis. Clin Sci (Lond). 2015;129(4):305–17.  https://doi.org/10.1042/CS20140012.CrossRefPubMedGoogle Scholar
  80. 80.
    Yang G, Yang L, Wang W, Wang J, Wang J, Xu Z. Discovery and validation of extracellular/circulating microRNAs during idiopathic pulmonary fibrosis disease progression. Gene. 2015;562(1):138–44.  https://doi.org/10.1016/j.gene.2015.02.065.CrossRefPubMedGoogle Scholar
  81. 81.
    Huang C, Yang Y, Liu L. Interaction of long noncoding RNAs and microRNAs in the pathogenesis of idiopathic pulmonary fibrosis. Physiol Genom. 2015;47(10):463–9.  https://doi.org/10.1152/physiolgenomics.00064.2015.CrossRefGoogle Scholar
  82. 82.
    Zhu H, Li Y, Qu S, Luo H, Zhou Y, Wang Y, et al. MicroRNA expression abnormalities in limited cutaneous scleroderma and diffuse cutaneous scleroderma. J Clin Immunol. 2012;32(3):514–22.  https://doi.org/10.1007/s10875-011-9647-y.CrossRefPubMedGoogle Scholar
  83. 83.
    Zhou B, Zuo XX, Li YS, Gao SM, Dai XD, Zhu HL, et al. Integration of microRNA and mRNA expression profiles in the skin of systemic sclerosis patients. Sci Rep. 2017;7:42899.  https://doi.org/10.1038/srep42899.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Wang X, Zhang Y, Jiang BH, Zhang Q, Zhou RP, Zhang L, et al. Study on the role of Hsa-miR-31-5p in hypertrophic scar formation and the mechanism. Exp Cell Res. 2017;361(2):201–9.  https://doi.org/10.1016/j.yexcr.2017.09.009.CrossRefPubMedGoogle Scholar
  85. 85.
    Li C, Bai Y, Liu H, Zuo X, Yao H, Xu Y, et al. Comparative study of microRNA profiling in keloid fibroblast and annotation of differential expressed microRNAs. Acta Biochim Biophysi Sin (Shanghai). 2013;45(8):692–9.  https://doi.org/10.1093/abbs/gmt057.CrossRefGoogle Scholar
  86. 86.
    Zhang J, Xu D, Li N, Li Y, He Y, Hu X, et al. Downregulation of microRNA-31 inhibits proliferation and induces apoptosis by targeting HIF1AN in human keloid. Oncotarget. 2017;8(43):74623–34.  https://doi.org/10.18632/oncotarget.20284.
  87. 87.
    Guo W, Qiu Z, Wang Z, Wang Q, Tan N, Chen T, et al. MiR-199a-5p is negatively associated with malignancies and regulates glycolysis and lactate production by targeting hexokinase 2 in liver cancer. Hepatology. 2015;62(4):1132–44.  https://doi.org/10.1002/hep.27929.CrossRefPubMedGoogle Scholar
  88. 88.
    Yi M, Liu B, Tang Y, Li F, Qin W, Yuan X. Irradiated human umbilical vein endothelial cells undergo endothelial-mesenchymal transition via the Snail/miR-199a-5p axis to promote the differentiation of fibroblasts into myofibroblasts. Biomed Res Int. 2018;2018:4135806.  https://doi.org/10.1155/2018/4135806.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Lino Cardenas CL, Henaoui IS, Courcot E, Roderburg C, Cauffiez C, Aubert S, et al. miR-199a-5p Is upregulated during fibrogenic response to tissue injury and mediates TGFbeta-induced lung fibroblast activation by targeting caveolin-1. PLoS Genet. 2013;9(2):e1003291.  https://doi.org/10.1371/journal.pgen.1003291.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Wu ZY, Lu L, Liang J, Guo XR, Zhang PH, Luo SJ. Keloid microRNA expression analysis and the influence of miR-199a-5p on the proliferation of keloid fibroblasts. Genet Mol Res. 2014;13(2):2727–38.  https://doi.org/10.4238/2014.April.14.2.CrossRefPubMedGoogle Scholar
  91. 91.
    Wu ZY, Lu L, Guo XR, Zhang PH. Identification of differently expressed microRNAs in keloid and pilot study on biological function of miR-199a-5p [in Chinese]. Zhonghua Zheng Xing Wai Ke Za Zhi. 2013;29(4):279–84.PubMedGoogle Scholar
  92. 92.
    Zhang Y, Wu L, Wang Y, Zhang M, Li L, Zhu D, et al. Protective role of estrogen-induced miRNA-29 expression in carbon tetrachloride-induced mouse liver injury. J Biol Chem. 2012;287(18):14851–62.  https://doi.org/10.1074/jbc.M111.314922.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Kwiecinski M, Noetel A, Elfimova N, Trebicka J, Schievenbusch S, Strack I, et al. Hepatocyte growth factor (HGF) inhibits collagen I and IV synthesis in hepatic stellate cells by miRNA-29 induction. PLoS One. 2011;6(9):e24568.  https://doi.org/10.1371/journal.pone.0024568.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Chen ZY, Chen X, Wang ZX. The role of microRNA-196a in tumorigenesis, tumor progression, and prognosis. Tumour Biol. 2016.  https://doi.org/10.1007/s13277-016-5430-2.
  95. 95.
    Cai X, Liu X, Lu N, Xiao M, Li Z. Prognostic value of microRNA-196a in Asian cancer patients: a meta-analysis. Clin Lab. 2016;62(11):2257–65.  https://doi.org/10.7754/Clin.Lab.2016.160425.CrossRefPubMedGoogle Scholar
  96. 96.
    Meng J, Li L, Zhao Y, Zhou Z, Zhang M, Li D, et al. MicroRNA-196a/b mitigate renal fibrosis by targeting TGF-beta receptor 2. J Am Soc Nephrol. 2016;27(10):3006–21.  https://doi.org/10.1681/ASN.2015040422.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Makino T, Jinnin M, Etoh M, Yamane K, Kajihara I, Makino K, et al. Down-regulation of microRNA-196a in the sera and involved skin of localized scleroderma patients. Eur J Dermatol. 2014;24(4):470–6.  https://doi.org/10.1684/ejd.2014.2384.CrossRefPubMedGoogle Scholar
  98. 98.
    Kashiyama K, Mitsutake N, Matsuse M, Ogi T, Saenko VA, Ujifuku K, et al. miR-196a downregulation increases the expression of type I and III collagens in keloid fibroblasts. J Invest Dermatol. 2012;132(6):1597–604.  https://doi.org/10.1038/jid.2012.22.CrossRefPubMedGoogle Scholar
  99. 99.
    Costa PM, Cardoso AL, Custodia C, Cunha P, Pereira de Almeida L, Pedroso de Lima MC. MiRNA-21 silencing mediated by tumor-targeted nanoparticles combined with sunitinib: a new multimodal gene therapy approach for glioblastoma. J Control Release. 2015;207:31–9.  https://doi.org/10.1016/j.jconrel.2015.04.002.
  100. 100.
    Munoz-Alarcon A, Guterstam P, Romero C, Behlke MA, Lennox KA, Wengel J, et al. Modulating anti-microRNA-21 activity and specificity using oligonucleotide derivatives and length optimization. ISRN Pharm. 2012;2012:407154.  https://doi.org/10.5402/2012/407154.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Garchow BG, Bartulos Encinas O, Leung YT, Tsao PY, Eisenberg RA, Caricchio R, et al. Silencing of microRNA-21 in vivo ameliorates autoimmune splenomegaly in lupus mice. EMBO Mol Med. 2011;3(10):605–15.  https://doi.org/10.1002/emmm.201100171.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Hanessian S, Wagger J, Merner BL, Giacometti RD, Ostergaard ME, Swayze EE, et al. A constrained tricyclic nucleic acid analogue of alpha-L-LNA: investigating the effects of dual conformational restriction on duplex thermal stability. J Org Chem. 2013;78(18):9064–75.  https://doi.org/10.1021/jo401170y.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lechun Lyu
    • 1
  • Yu Zhao
    • 2
  • Hongquan Lu
    • 2
  • Zijie Liu
    • 3
  • Jiazhi Guo
    • 2
  • Di Lu
    • 1
    • 2
    Email author
  • Xiang Li
    • 4
  1. 1.Technology Transfer CenterKunming Medical UniversityKunmingChina
  2. 2.Biomedical Engineering Research CenterKunming Medical UniversityKunmingChina
  3. 3.Department of Medical Laboratory Sciencesthe First Affiliated Hospital of Kunming Medical UniversityKunmingChina
  4. 4.Department of RehabilitationAffiliated Hospital of Jining Medical UniversityJiningChina

Personalised recommendations