Attenuation of Inherited and Acquired Retinal Degeneration Progression with Gene-based Techniques

  • Galaxy Y. Cho
  • Kyle Bolo
  • Karen Sophia Park
  • Jesse D. Sengillo
  • Stephen H. Tsang
Review Article


Inherited retinal dystrophies cause progressive vision loss and are major contributors to blindness worldwide. Advances in gene therapy have brought molecular approaches into the realm of clinical trials for these incurable illnesses. Select phase I, II and III trials are complete and provide some promise in terms of functional outcomes and safety, although questions do remain over the durability of their effects and the prevalence of inflammatory reactions. This article reviews gene therapy as it can be applied to inherited retinal dystrophies, provides an update of results from recent clinical trials, and discusses the future prospects of gene therapy and genome surgery.



The Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory are supported by the National Institutes of Health (P30EY019007, R01EY018213, R01EY024698, R01EY026682, R21AG050437), National Cancer Institute Core (5P30CA013696), Foundation Fighting Blindness [TA-NMT-0116-0692-COLU], the Research to Prevent Blindness (RPB) Physician-Scientist Award, and unrestricted funds from RPB, New York, NY, USA. SHT is a member of the RD-CURE Consortium and is supported by Kobi and Nancy Karp, the Crowley Family Fund, the Rosenbaum Family Foundation, the Tistou and Charlotte Kerstan Foundation, the Schneeweiss Stem Cell Fund, New York State [C029572], and the Gebroe Family Foundation.

Author Contributions

GYC and KB performed the literature searches and composed the manuscript. KSP and JDS assisted in manuscript composition. SHT oversaw all aspects of the manuscript preparation and holds final responsibility for content and the decision to publish.

Compliance with Ethical Standards

Conflict of interest

The authors Galaxy Y. Cho, Kyle Bolo, Karen Sophia Park, Jesse D. Sengillo, Stephen H. Tsang have no conflicts to declare.


  1. 1.
    Sengillo JD, Justus S, Tsai YT, Cabral T, Tsang SH. Gene and cell-based therapies for inherited retinal disorders: an update. Am J Med Genet C Semin Med Genet. 2016;172(4):349–66.PubMedCrossRefGoogle Scholar
  2. 2.
    Sengillo JD, Justus S, Cabral T, Tsang SH. Correction of monogenic and common retinal disorders with gene therapy. Genes (Basel). 2017;8(2):53.CrossRefGoogle Scholar
  3. 3.
    Sohocki MM, Daiger SP, Bowne SJ, Rodriquez JA, Northrup H, Heckenlively JR, et al. Prevalence of mutations causing retinitis pigmentosa and other inherited retinopathies. Hum Mutat. 2001;17(1):42–51.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Berson EL. Nutrition and retinal degenerations. Vitamin A, taurine, ornithine, and phytanic acid. Retina. 1982;2(4):236–55.PubMedCrossRefGoogle Scholar
  5. 5.
    Cho GY, Abdulla Y, Sengillo JD, Justus S, Schaefer KA, Bassuk AG, et al. CRISPR-mediated ophthalmic genome surgery. Curr Ophthalmol Rep. 2017;5(3):199–206.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Yu-Wai-Man P. Genetic manipulation for inherited neurodegenerative diseases: myth or reality? Br J Ophthalmol. 2016;100(10):1322–31.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Grimm D, Kay MA, Kleinschmidt JA. Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6. Mol Ther. 2003;7(6):839–50.PubMedCrossRefGoogle Scholar
  8. 8.
    Boye SE, Alexander JJ, Witherspoon CD, Boye SL, Peterson JJ, Clark ME, et al. Highly efficient delivery of adeno-associated viral vectors to the primate retina. Hum Gene Ther. 2016;27(8):580–97.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Naso MF, Tomkowicz B, Perry WL 3rd, Strohl WR. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs. 2017;31(4):317–34.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Salganik M, Hirsch ML, Samulski RJ. Adeno-associated virus as a mammalian DNA vector. Microbiol Spectr. 2015;3(4).Google Scholar
  11. 11.
    Hastie E, Samulski RJ. Adeno-associated virus at 50: a golden anniversary of discovery, research, and gene therapy success–a personal perspective. Hum Gene Ther. 2015;26(5):257–65.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Pillay S, Carette JE. Host determinants of adeno-associated viral vector entry. Curr Opin Virol. 2017;24:124–31.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Gaj T, Epstein BE, Schaffer DV. Genome engineering using adeno-associated virus: basic and clinical research applications. Mol Ther. 2016;24(3):458–64.PubMedCrossRefGoogle Scholar
  14. 14.
    Trapani I, Banfi S, Simonelli F, Surace EM, Auricchio A. Gene therapy of inherited retinal degenerations: prospects and challenges. Hum Gene Ther. 2015;26(4):193–200.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Jacobson SG, Cideciyan AV, Ratnakaram R, Heon E, Schwartz SB, Roman AJ, et al. Gene therapy for Leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol. 2012;130(1):9–24.PubMedCrossRefGoogle Scholar
  16. 16.
    Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med. 2008;358(21):2231–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Cideciyan AV, Hauswirth WW, Aleman TS, Kaushal S, Schwartz SB, Boye SL, et al. Human RPE65 gene therapy for Leber congenital amaurosis: persistence of early visual improvements and safety at 1 year. Hum Gene Ther. 2009;20(9):999–1004.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Mingozzi F, High KA. Overcoming the host immune response to adeno-associated virus gene delivery vectors: the race between clearance, tolerance, neutralization, and escape. Annu Rev Virol. 2017;4(1):511–34.PubMedCrossRefGoogle Scholar
  19. 19.
    Cho GY, Justus S, Sengillo JD, Tsang SH. CRISPR in the retina: evaluation of future potential. Adv Exp Med Biol. 2017;1016:147–55.PubMedCrossRefGoogle Scholar
  20. 20.
    Yang T, Justus S, Li Y, Tsang SH. BEST1: the best target for gene and cell therapies. Mol Ther. 2015;23(12):1805–9.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Reichel FF, Dauletbekov DL, Klein R, Peters T, Ochakovski GA, Seitz IP, et al. AAV8 can induce innate and adaptive immune response in the primate eye. Mol Ther. 2017;25(12):2648–60.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Vacca O, El Mathari B, Darche M, Sahel JA, Rendon A, Dalkara D. Using adeno-associated virus as a tool to study retinal barriers in disease. J Vis Exp. 2015;19(98).Google Scholar
  23. 23.
    Cabral T, DiCarlo JE, Justus S, Sengillo JD, Xu Y, Tsang SH. CRISPR applications in ophthalmologic genome surgery. Curr Opin Ophthalmol. 2017.Google Scholar
  24. 24.
    Cabral T, Sengillo JD, Duong JK, Justus S, Boudreault K, Schuerch K, et al. Retrospective analysis of structural disease progression in retinitis pigmentosa utilizing multimodal imaging. Sci Rep. 2017;7(1):10347.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    DiCarlo JE, Sengillo JD, Justus S, Cabral T, Tsang SH, Mahajan VB. CRISPR-Cas genome surgery in ophthalmology. Transl Vis Sci Technol. 2017;6(3):13.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Bennett J, Tanabe T, Sun D, Zeng Y, Kjeldbye H, Gouras P, et al. Photoreceptor cell rescue in retinal degeneration (rd) mice by in vivo gene therapy. Nat Med. 1996;2(6):649–54.PubMedCrossRefGoogle Scholar
  27. 27.
    Auricchio A, Smith AJ, Ali RR. The future looks brighter after 25 years of retinal gene therapy. Hum Gene Ther. 2017;28(11):982–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Peng Y, Tang L, Zhou Y. Subretinal injection: a review on the novel route of therapeutic delivery for vitreoretinal diseases. Ophthalmic Res. 2017;58(4):217–26.PubMedCrossRefGoogle Scholar
  29. 29.
    Moore NA, Bracha P, Hussain RM, Morral N, Ciulla TA. Gene therapy for age-related macular degeneration. Expert Opin Biol Ther. 2017;17(10):1235–44.PubMedCrossRefGoogle Scholar
  30. 30.
    Cho GY, Schaefer KA, Bassuk AG, Tsang SH, Mahajan VB. CRISPR genome surgery in the retina in light of off-targeting. Retina. 2018.Google Scholar
  31. 31.
    Cepko CL, Vandenberghe LH. Retinal gene therapy coming of age. Hum Gene Ther. 2013;24(3):242–4.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Bennett J, Wellman J, Marshall KA, McCague S, Ashtari M, DiStefano-Pappas J, et al. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial. Lancet. 2016;388(10045):661–72.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    MacLaren RE, Groppe M, Barnard AR, Cottriall CL, Tolmachova T, Seymour L, et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet. 2014;383(9923):1129–37.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Conlon TJ, Deng WT, Erger K, Cossette T, Pang JJ, Ryals R, et al. Preclinical potency and safety studies of an AAV2-mediated gene therapy vector for the treatment of MERTK associated retinitis pigmentosa. Hum Gene Ther Clin Dev. 2013;24(1):23–8.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Ghazi NG, Abboud EB, Nowilaty SR, Alkuraya H, Alhommadi A, Cai H, et al. Treatment of retinitis pigmentosa due to MERTK mutations by ocular subretinal injection of adeno-associated virus gene vector: results of a phase I trial. Hum Genet. 2016;135(3):327–43.PubMedCrossRefGoogle Scholar
  36. 36.
    Feuer WJ, Schiffman JC, Davis JL, Porciatti V, Gonzalez P, Koilkonda RD, et al. Gene therapy for Leber hereditary optic neuropathy: initial results. Ophthalmology. 2016;123(3):558–70.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Bainbridge JW, Mehat MS, Sundaram V, Robbie SJ, Barker SE, Ripamonti C, et al. Long-term effect of gene therapy on Leber’s congenital amaurosis. N Engl J Med. 2015;372(20):1887–97.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Takahashi VKL, Takiuti JT, Jauregui R, Tsang SH. Gene therapy in inherited retinal degenerative diseases, a review. Ophthalmic Genet. 2018;24:1–9.Google Scholar
  39. 39.
    Daiger SP. RetNet: summaries of genes and loci causing retinal diseases. January 24, 2017 [cited 2017 February 2, 2017].
  40. 40.
    Jauregui R, Cho GY, Takahashi VKL, Takiuti JT, Bassuk AG, Mahajan VB, et al. Caring for hereditary childhood retinal blindness. Asia Pac J Ophthalmol (Phila). 2018.Google Scholar
  41. 41.
    Weleber RG, Francis PJ, Trzupek KM, Beattie C. Leber congenital amaurosis. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. GeneReviews ((R)). Seattle (WA). 1993.Google Scholar
  42. 42.
    Redmond TM. Focus on molecules: RPE65, the visual cycle retinol isomerase. Exp Eye Res. 2009;88(5):846–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Koenekoop RK. An overview of Leber congenital amaurosis: a model to understand human retinal development. Surv Ophthalmol. 2004;49(4):379–98.PubMedCrossRefGoogle Scholar
  44. 44.
    Bennett J, Ashtari M, Wellman J, Marshall KA, Cyckowski LL, Chung DC, et al. AAV2 gene therapy readministration in three adults with congenital blindness. Sci Transl Med. 2012;4(120):120ra15.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Simonelli F, Maguire AM, Testa F, Pierce EA, Mingozzi F, Bennicelli JL, et al. Gene therapy for Leber’s congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther. 2010;18(3):643–50.PubMedCrossRefGoogle Scholar
  46. 46.
    Le Meur G, Lebranchu P, Billaud F, Adjali O, Schmitt S, Bezieau S, et al. Safety and long-term efficacy of AAV4 gene therapy in patients with RPE65 Leber congenital amaurosis. Mol Ther. 2018;26(1):256–68.PubMedCrossRefGoogle Scholar
  47. 47.
    Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF, Tillman A, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390(10097):849–60.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Weleber RG, Pennesi ME, Wilson DJ, Kaushal S, Erker LR, Jensen L, et al. Results at 2 years after gene therapy for RPE65-deficient Leber congenital amaurosis and severe early-childhood-onset retinal dystrophy. Ophthalmology. 2016;123(7):1606–20.PubMedCrossRefGoogle Scholar
  49. 49.
    Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F, Bennicelli J, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med. 2008;358(21):2240–8.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Maguire AM, High KA, Auricchio A, Wright JF, Pierce EA, Testa F, et al. Age-dependent effects of RPE65 gene therapy for Leber’s congenital amaurosis: a phase 1 dose-escalation trial. Lancet. 2009;374(9701):1597–605.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Lin MK, Tsai YT, Tsang SH. Emerging treatments for retinitis pigmentosa: genes and stem cells, as well as new electronic and medical therapies, are gaining ground. Retin Physician. 2015;12:52–70.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Cideciyan AV, Jacobson SG, Beltran WA, Sumaroka A, Swider M, Iwabe S, et al. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. Proc Natl Acad Sci USA. 2013;110(6):E517–25.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    MacDonald IM, Hume S, Chan S, Seabra MC. Choroideremia. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al. (eds). GeneReviews((R)). Seattle (WA). 1993.Google Scholar
  54. 54.
    Zinkernagel MS, MacLaren RE. Recent advances and future prospects in choroideremia. Clin Ophthalmol. 2015;9:2195–200.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Dimopoulos IS, Hoang SC, Radziwon A, Binczyk NM, Seabra MC, MacLaren RE, et al. Two-year results after AAV2-mediated gene therapy for choroideremia: the Alberta experience. Am J Ophthalmol. 2018;27(193):130–42.CrossRefGoogle Scholar
  56. 56.
    Yu-Wai-Man P, Chinnery PF. Leber hereditary optic neuropathy. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al. editors. GeneReviews ((R)). Seattle (WA). 1993.Google Scholar
  57. 57.
    Vestergaard N, Rosenberg T, Torp-Pedersen C, Vorum H, Andersen CU, Aasbjerg K. Increased mortality and comorbidity associated with Leber’s hereditary optic neuropathy: a nationwide cohort study. Invest Ophthalmol Vis Sci. 2017;58(11):4586–92.PubMedCrossRefGoogle Scholar
  58. 58.
    Yu-Wai-Man P, Griffiths PG, Hudson G, Chinnery PF. Inherited mitochondrial optic neuropathies. J Med Genet. 2009;46(3):145–58.PubMedCrossRefGoogle Scholar
  59. 59.
    Meyerson C, Van Stavern G, McClelland C. Leber hereditary optic neuropathy: current perspectives. Clin Ophthalmol. 2015;9:1165–76.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Cwerman-Thibault H, Augustin S, Lechauve C, Ayache J, Ellouze S, Sahel JA, et al. Nuclear expression of mitochondrial ND4 leads to the protein assembling in complex I and prevents optic atrophy and visual loss. Mol Ther Methods Clin Dev. 2015;2:15003.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Carelli V, Barboni P, Zacchini A, Mancini R, Monari L, Cevoli S, et al. Leber’s hereditary optic neuropathy (LHON) with 14484/ND6 mutation in a North African patient. J Neurol Sci. 1998;160(2):183–8.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Barnils N, Mesa E, Munoz S, Ferrer-Artola A, Arruga J. Response to idebenone and multivitamin therapy in Leber’s hereditary optic neuropathy. Archivos de la Sociedad Espanola de Oftalmologia. 2007;82(6):377–80.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Angebault C, Gueguen N, Desquiret-Dumas V, Chevrollier A, Guillet V, Verny C, et al. Idebenone increases mitochondrial complex I activity in fibroblasts from LHON patients while producing contradictory effects on respiration. BMC Res Notes. 2011;4:557.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Wan X, Pei H, Zhao M-J, Yang S, Hu W-K, He H, et al. Efficacy and safety of rAAV2-ND4 treatment for Leber’s hereditary optic neuropathy. Sci Rep. 2016;6:21587.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Congdon N, O’Colmain B, Klaver CC, Klein R, Munoz B, Friedman DS, et al. Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol. 2004;122(4):477–85.PubMedCrossRefGoogle Scholar
  66. 66.
    Campochiaro PA, Lauer AK, Sohn EH, Mir TA, Naylor S, Anderton MC, et al. Lentiviral vector gene transfer of endostatin/angiostatin for macular degeneration (GEM) study. Hum Gene Ther. 2017;28(1):99–111.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Rakoczy EP, Lai CM, Magno AL, Wikstrom ME, French MA, Pierce CM, et al. Gene therapy with recombinant adeno-associated vectors for neovascular age-related macular degeneration: 1 year follow-up of a phase 1 randomised clinical trial. Lancet. 2015;386(10011):2395–403.PubMedCrossRefGoogle Scholar
  68. 68.
    Constable IJ, Lai CM, Magno AL, French MA, Barone SB, Schwartz SD, et al. Gene therapy in neovascular age-related macular degeneration: three-year follow-up of a phase 1 randomized dose escalation trial. Am J Ophthalmol. 2017;177:150–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Constable IJ, Pierce CM, Lai CM, Magno AL, Degli-Esposti MA, French MA, et al. Phase 2a randomized clinical trial: safety and post hoc analysis of subretinal rAAV.sFLT-1 for wet age-related macular degeneration. EBioMedicine. 2016;14:168–75.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Heier JS, Kherani S, Desai S, Dugel P, Kaushal S, Cheng SH, et al. Intravitreous injection of AAV2-sFLT01 in patients with advanced neovascular age-related macular degeneration: a phase 1, open-label trial. The Lancet. 2017;390(10089):50–61.CrossRefGoogle Scholar
  71. 71.
    Barrangou R, Doudna JA. Applications of CRISPR technologies in research and beyond. Nat Biotechnol. 2016;34(9):933–41.PubMedCrossRefGoogle Scholar
  72. 72.
    Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096.PubMedCrossRefGoogle Scholar
  73. 73.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Schaefer KA, Wu WH, Colgan DF, Tsang SH, Bassuk AG, Mahajan VB. Unexpected mutations after CRISPR-Cas9 editing in vivo. Nat Methods. 2017;14(6):547–8.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH. Off-target Effects in CRISPR/Cas9-mediated Genome Engineering. Mol Ther Nucleic Acids. 2015;17(4):e264.CrossRefGoogle Scholar
  76. 76.
    Tsai SQ, Joung JK. Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases. Nat Rev Genet. 2016;17(5):300–12.PubMedCrossRefGoogle Scholar
  77. 77.
    Rees HA, Komor AC, Yeh WH, Caetano-Lopes J, Warman M, Edge ASB, et al. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat Commun. 2017;06(8):15790.CrossRefGoogle Scholar
  78. 78.
    Shin J, Jiang F, Liu JJ, Bray NL, Rauch BJ, Baik SH, et al. Disabling Cas9 by an anti-CRISPR DNA mimic. Sci Adv. 2017;3(7):e1701620.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Zischewski J, Fischer R, Bortesi L. Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases. Biotechnol Adv. 2017;35(1):95–104.PubMedCrossRefGoogle Scholar
  80. 80.
    Chew WL. Immunity to CRISPR Cas9 and Cas12a therapeutics. Wiley Interdiscip Rev Syst Biol Med. 2018;10(1):e1408.CrossRefGoogle Scholar
  81. 81.
    Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016;529(7587):490–5.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Tsai SQ, Joung JK. What’s changed with genome editing? Cell Stem Cell. 2014;15(1):3–4.PubMedCrossRefGoogle Scholar
  83. 83.
    Jamal M, Khan FA, Da L, Habib Z, Dai J, Cao G. Keeping CRISPR/Cas on-target. Curr Issues Mol Biol. 2016;20:1–12.PubMedGoogle Scholar
  84. 84.
    Peng R, Lin G, Li J. Potential pitfalls of CRISPR/Cas9-mediated genome editing. FEBS J. 2016;283(7):1218–31.PubMedCrossRefGoogle Scholar
  85. 85.
    Kiani S, Chavez A, Tuttle M, Hall RN, Chari R, Ter-Ovanesyan D, et al. Cas9 gRNA engineering for genome editing, activation and repression. Nat Methods. 2015;12(11):1051–4.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823–6.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Xu H, Xiao T, Chen CH, Li W, Meyer CA, Wu Q, et al. Sequence determinants of improved CRISPR sgRNA design. Genome Res. 2015;25(8):1147–57.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Flowers GP, Timberlake AT, McLean KC, Monaghan JR, Crews CM. Highly efficient targeted mutagenesis in axolotl using Cas9 RNA-guided nuclease. Development. 2014;141(10):2165–71.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Hess GT, Fresard L, Han K, Lee CH, Li A, Cimprich KA, et al. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat Methods. 2016;13(12):1036–42.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 2018.Google Scholar
  91. 91.
    Kim K, Park SW, Kim JH, Lee SH, Kim D, Koo T, et al. Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration. Genome Res. 2017.Google Scholar
  92. 92.
    Nihongaki Y, Kawano F, Nakajima T, Sato M. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat Biotechnol. 2015;33(7):755–60.PubMedCrossRefGoogle Scholar
  93. 93.
    Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L, et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods. 2014;11(4):399–402.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma LaboratoryNew YorkUSA
  2. 2.Department of OphthalmologyColumbia UniversityNew YorkUSA
  3. 3.Frank H. Netter MD School of MedicineQuinnipiac UniversityNorth HavenUSA
  4. 4.Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkUSA
  5. 5.Department of Internal MedicineReading HospitalWest ReadingUSA
  6. 6.Department of Pathology & Cell Biology, Stem Cell Initiative (CSCI)Institute of Human NutritionNew YorkUSA
  7. 7.Harkness Eye Institute, Columbia University Medical CenterNew YorkUSA

Personalised recommendations