Skip to main content
Log in

Validation Strategy for Ultrasensitive Mutation Detection

  • Original Research Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background

Ultrasensitive detection of low-abundance DNA point mutations is a challenging molecular biology problem, because nearly identical mutant and wild-type molecules exhibit crosstalk. Reliable ultrasensitive point mutation detection will facilitate early detection of cancer and therapeutic monitoring of cancer patients.

Objective

The objective of this study was to develop a method to correct errors in low-level cell line mixes.

Materials and Methods

We tested sample mixes with digital-droplet PCR (ddPCR) and next-generation sequencing.

Results

We introduced two corrections: baseline variant allele frequency (VAF) in the parental cell line was used to correct for copy number variation; and haplotype counting was used to correct errors in cell counting and pipetting. We found ddPCR to have better correlation for detecting low-level mutations without applying any correction (R2 = 0.80) and be more linear after introducing both corrections (R2 = 0.99).

Conclusions

The VAF correction was found to be more significant than haplotype correction. It is imperative that various technologies be evaluated against each other and laboratories be provided with defined quality control samples for proficiency testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Samuel N, Hudson TJ. The molecular and cellular heterogeneity of pancreatic ductal adenocarcinoma. Nat Rev Gastroenterol Hepatol. 2012;9:77–87.

    Article  CAS  Google Scholar 

  2. Network Cancer Genome Atlas. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.

    Article  CAS  Google Scholar 

  3. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511:543–50.

    Article  CAS  Google Scholar 

  4. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–8.

    Article  CAS  Google Scholar 

  5. Network Cancer Genome Atlas. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.

    Article  CAS  Google Scholar 

  6. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14:985–90.

    Article  PubMed  CAS  Google Scholar 

  8. Sausen M, Phallen J, Adleff V, Jones S, Leary RJ, Barrett MT, et al. Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients. Nat Commun. 2015;6:7686.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014; 6:224ra24.

  10. Tie J, Kinde I, Wang Y, Wong HL, Roebert J, Christie M, et al. Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer. Ann Oncol. 2015;26:1715–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Nowell PC, Hungerford DA. Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst. 1960;25:85–109.

    PubMed  CAS  Google Scholar 

  12. Rowley JD. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243:290–3.

    Article  PubMed  CAS  Google Scholar 

  13. Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell. 1984;36:93–9.

    Article  PubMed  CAS  Google Scholar 

  14. Do H, Wong SQ, Li J, Dobrovic A. Reducing sequence artifacts in amplicon-based massively parallel sequencing of formalin-fixed paraffin-embedded DNA by enzymatic depletion of uracil-containing templates. Clin Chem. 2013;59:1376–83.

    Article  PubMed  CAS  Google Scholar 

  15. Lin MT, Mosier SL, Thiess M, Beierl KF, Debeljak M, Tseng LH, et al. Clinical validation of KRAS, BRAF, and EGFR mutation detection using next-generation sequencing. Am J Clin Pathol. 2014;141:856–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Chen G, Mosier S, Gocke CD, Lin MT, Eshleman JR. Cytosine deamination is a major cause of baseline noise in next-generation sequencing. Mol Diagn Ther. 2014;18:587–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B. Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci USA. 2011;108:9530–5.

    Article  PubMed  Google Scholar 

  18. Schmitt MW, Kennedy SR, Salk JJ, Fox EJ, Hiatt JB, Loeb LA. Detection of ultra-rare mutations by next-generation sequencing. Proc Natl Acad Sci U S A. 2012;109:14508–13.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jabara CB, Jones CD, Roach J, Anderson JA, Swanstrom R. Accurate sampling and deep sequencing of the HIV-1 protease gene using a Primer ID. Proc Natl Acad Sci USA. 2011;108:20166–71.

    Article  PubMed  Google Scholar 

  20. Fletcher RH. Carcinoembryonic antigen. Ann Intern Med. 1986;104:66–73.

    Article  PubMed  CAS  Google Scholar 

  21. Garcia-Murillas I, Schiavon G, Weigelt B, Ng C, Hrebien S, Cutts RJ, et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Transl Med. 2015;7:302ra133.

  22. Jobbagy Z, van Atta R, Murphy KM, Eshleman JR, Gocke CD. Evaluation of the Cepheid GeneXpert BCR-ABL assay. J Mol Diagn. 2007;9:220–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Amant F, Verheecke M, Wlodarska I, Dehaspe L, Brady P, Brison N, et al. Presymptomatic identification of cancers in pregnant women during noninvasive prenatal testing. JAMA Oncol. 2015;1:814–9.

    Article  PubMed  Google Scholar 

  24. Bianchi DW, Chudova D, Sehnert AJ, Bhatt S, Murray K, Prosen TL, et al. Noninvasive prenatal testing and incidental detection of occult maternal malignancies. JAMA. 2015;314:162–9.

    Article  PubMed  CAS  Google Scholar 

  25. Jones S, Chen WD, Parmigiani G, Diehl F, Beerenwinkel N, Antal T, et al. Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci USA. 2008;105:4283–8.

    Article  PubMed  Google Scholar 

  26. Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010;467:1114–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Katz MH, Fleming JB, Bhosale P, Varadhachary G, Lee JE, Wolff R, et al. Response of borderline resectable pancreatic cancer to neoadjuvant therapy is not reflected by radiographic indicators. Cancer. 2012;118:5749–56.

    Article  PubMed  Google Scholar 

  28. Freidin MB, Freydina DV, Leung M, Montero Fernandez A, Nicholson AG, Lim E. Circulating tumor DNA outperforms circulating tumor cells for KRAS mutation detection in thoracic malignancies. Clin Chem. 2015;61:1299–304.

    Article  PubMed  CAS  Google Scholar 

  29. Shinozaki M, O’Day SJ, Kitago M, Amersi F, Kuo C, Kim J, et al. Utility of circulating B-RAF DNA mutation in serum for monitoring melanoma patients receiving biochemotherapy. Clin Cancer Res. 2007;13:2068–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Tsao SC, Weiss J, Hudson C, Christophi C, Cebon J, Behren A, et al. Monitoring response to therapy in melanoma by quantifying circulating tumour DNA with droplet digital PCR for BRAF and NRAS mutations. Sci Rep. 2015;5:11198.

    Article  PubMed  CAS  Google Scholar 

  31. Debeljak M, Freed DN, Welch JA, Haley L, Beierl K, Iglehart BS, et al. Haplotype counting by next-generation sequencing for ultrasensitive human DNA detection. J Mol Diagn. 2014;16:495–503.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Efron B, Tibshirani R. An introduction to the bootstrap. New York: Chapman & Hall; 1993. pp. xvi, 436.

  33. Hancock DK, Tully LA, Levin BC. A standard reference material to determine the sensitivity of techniques for detecting low-frequency mutations, SNPs, and heteroplasmies in mitochondrial DNA. Genomics. 2005;86:446–61.

    Article  PubMed  CAS  Google Scholar 

  34. Liu C, Zhou W, Zhang T, Jiang K, Li H, Dong W. An automated approach to classification of duplex assay for digital droplet PCR. J Bioinform Comput Biol. 2018;16:1850003. https://doi.org/10.1142/S0219720018500038.

    Article  PubMed  CAS  Google Scholar 

  35. Brink BG, Meskas J, Brinkman RR. ddPCRclust—an R package and Shiny app for automated analysis of multiplexed ddPCR data. Bioinformatics. 2018. https://doi.org/10.1093/bioinformatics/bty136.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Boonstra JJ, van Marion R, Beer DG, Lin L, Chaves P, Ribeiro C, et al. Verification and unmasking of widely used human esophageal adenocarcinoma cell lines. J Natl Cancer Inst. 2010;102:271–4.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Christensen TM, Jama M, Ponek V, Lyon E, Wilson JA, Hoffmann ML, et al. Design, development, validation, and use of synthetic nucleic acid controls for diagnostic purposes and application to cystic fibrosis testing. J Mol Diagn. 2007;9:315–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Cohen JD, Javed AA, Thoburn C, Wong F, Tie J, Gibbs P, et al. Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers. Proc Natl Acad Sci U S A. 2017;114:10202–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Lang AH, Drexel H, Geller-Rhomberg S, Stark N, Winder T, Geiger K, et al. Optimized allele-specific real-time PCR assays for the detection of common mutations in KRAS and BRAF. J Mol Diagn. 2011;13:23–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Dressman D, Yan H, Traverso G, Kinzler KW, Vogelstein B. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci USA. 2003;100:8817–22.

    Article  PubMed  CAS  Google Scholar 

  41. Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20:548–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Shi C, Eshleman SH, Jones D, Fukushima N, Hua L, Parker AR, et al. LigAmp for sensitive detection of single-nucleotide differences. Nat Methods. 2004;1:141–7.

    Article  PubMed  CAS  Google Scholar 

  43. Milbury CA, Zhong Q, Lin J, Williams M, Olson J, Link DR, et al. Determining lower limits of detection of digital PCR assays for cancer-related gene mutations. Biomol Detect Quantif. 2014;1:8–22.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sykes PJ, Neoh SH, Brisco MJ, Hughes E, Condon J, Morley AA. Quantitation of targets for PCR by use of limiting dilution. Biotechniques. 1992;13:444–9.

    PubMed  CAS  Google Scholar 

  45. Lou DI, Hussmann JA, McBee RM, Acevedo A, Andino R, Press WH, et al. High-throughput DNA sequencing errors are reduced by orders of magnitude using circle sequencing. Proc Natl Acad Sci USA. 2013;110:19872–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Zhen Zhang for his insight and expert statistical analysis. We acknowledge Drs. Lori Sokoll, Jun Yu, Maria Bettinotti, Annette Jackson, Bo Song (Bio-Rad), and Kenneth Pienta, in addition to Brian Iglehart and Don Vindivich, for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Eshleman.

Ethics declarations

Conflict of interest

Marija Debeljak, Stacy L. Riel, Lisa M. Haley, Alexis L. Norris, Derek A. Anderson, Emily M. Adams, Masaya Suenaga, Katie F. Beierl, Ming-Tseh Lin, Michael G. Goggins, Christopher D. Gocke, James R. Eshleman, and Michael Noë have no conflicts of interest that are directly relevant to the content of this work.

Funding

This work was funded in part by The Sol Goldman Pancreatic Cancer Research Center, the Stringer Foundation, the Michael Rolfe Pancreatic Cancer Foundation, Mary Lou Wootton Pancreatic Cancer Research Fund, and the Institute for Clinical and Translational Research (ICTR) Accelerated Translational Incubator Pilot (ATIP) Program.

Ethical Approval and Informed Consent

No patients were enrolled and nor was protected health information used in this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 633 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debeljak, M., Noë, M., Riel, S.L. et al. Validation Strategy for Ultrasensitive Mutation Detection. Mol Diagn Ther 22, 603–611 (2018). https://doi.org/10.1007/s40291-018-0350-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-018-0350-z

Navigation