Advertisement

Molecular Diagnosis & Therapy

, Volume 22, Issue 5, pp 515–522 | Cite as

Cell-Free eccDNAs: A New Type of Nucleic Acid Component for Liquid Biopsy?

  • Jing ZhuEmail author
  • Siyu Chen
  • Fan Zhang
  • Liang WangEmail author
Current Opinion

Abstract

Extrachromosomal circular DNAs (eccDNAs) are circular DNAs that are originated from chromosomes, but are independent from chromosomal DNA. The eccDNAs are commonly found in various tissues and cell types, and in both normal and diseased conditions. Due to their highly heterogeneous origins and being widely spread in nearly all eukaryotes, the eccDNAs are believed to reflect the genome’s plasticity and instability. With the assistance of next-generation sequencing, more eccDNAs have been characterized at the molecular level. Recently, eccDNAs have been reported as cell-free DNAs in the circulation system. Importantly, these circulating eccDNAs have shown some evidence with disease associations, suggesting their potential utility as a new type of biomarker for disease detection, treatment assessment and progress surveillance. However, many challenges need to be addressed before implementing the eccDNAs as a new source of genetic material for liquid biopsy.

Notes

Compliance with Ethical Standards

Conflict of interest

The authors, JZ, SC, FZ and LW, disclose no potential conflicts of interest.

Funding

This study was partially supported by a National Institute of Health (R01CA212097) Grant to LW and National Natural Science Foundation of China (NSFC) (project# 81301752) and University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (project# UNPYSCT-2017056) Grants to JZ.

References

  1. 1.
    Lanciano S, Carpentier MC, Llauro C, Jobet E, Robakowska-Hyzorek D, Lasserre E, et al. Sequencing the extrachromosomal circular mobilome reveals retrotransposon activity in plants. PLoS Genet. 2017;13(2):e1006630.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Koo DH, Molin WT, Saski CA, Jiang J, Putta K, Jugulam M, et al. Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed Amaranthus palmeri. Proc Natl Acad Sci USA. 2018;115(13):3332–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Moller HD, Parsons L, Jorgensen TS, Botstein D, Regenberg B. Extrachromosomal circular DNA is common in yeast. Proc Natl Acad Sci USA. 2015;112(24):E3114–22.CrossRefPubMedGoogle Scholar
  4. 4.
    Moller HD, Larsen CE, Parsons L, Hansen AJ, Regenberg B, Mourier T. Formation of extrachromosomal circular DNA from long terminal repeats of retrotransposons in Saccharomyces cerevisiae. G3 (Bethesda). 2015;6(2):453–62.CrossRefGoogle Scholar
  5. 5.
    Shibata Y, Kumar P, Layer R, Willcox S, Gagan JR, Griffith JD, et al. Extrachromosomal microDNAs and chromosomal microdeletions in normal tissues. Science. 2012;336(6077):82–6.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Moller HD, Mohiyuddin M, Prada-Luengo I, Sailani MR, Halling JF, Plomgaard P, et al. Circular DNA elements of chromosomal origin are common in healthy human somatic tissue. Nat Commun. 2018;9(1):1069.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Paulsen T, Kumar P, Koseoglu MM, Dutta A. Discoveries of extrachromosomal circles of DNA in normal and tumor cells. Trends Genet. 2018;34(4):270–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Alsford NS, Navarro M, Jamnadass HR, Dunbar H, Ackroyd M, Murphy NB, et al. The identification of circular extrachromosomal DNA in the nuclear genome of Trypanosoma brucei. Mol Microbiol. 2003;47(2):277–89.CrossRefPubMedGoogle Scholar
  9. 9.
    Shore D, Langowski J, Baldwin RL. DNA flexibility studied by covalent closure of short fragments into circles. Proc Natl Acad Sci USA. 1981;78(8):4833–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Von Hoff DD, Needham-VanDevanter DR, Yucel J, Windle BE, Wahl GM. Amplified human MYC oncogenes localized to replicating submicroscopic circular DNA molecules. Proc Natl Acad Sci USA. 1988;85(13):4804–8.CrossRefGoogle Scholar
  11. 11.
    Ruiz JC, Choi KH, von Hoff DD, Roninson IB, Wahl GM. Autonomously replicating episomes contain mdr1 genes in a multidrug-resistant human cell line. Mol Cell Biol. 1989;9(1):109–15.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Albertson DG. Gene amplification in cancer. Trends Genet. 2006;22(8):447–55.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhu J, Yu Y, Meng X, Fan Y, Zhang Y, Zhou C, et al. De novo-generated small palindromes are characteristic of amplicon boundary junction of double minutes. Int J Cancer. 2013;133(4):797–806.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cohen S, Regev A, Lavi S. Small polydispersed circular DNA (spcDNA) in human cells: association with genomic instability. Oncogene. 1997;14(8):977–85.CrossRefPubMedGoogle Scholar
  15. 15.
    Kunisada T, Yamagishi H. Sequence organization of repetitive sequences enriched in small polydisperse circular DNAs from HeLa cells. J Mol Biol. 1987;198(4):557–65.CrossRefPubMedGoogle Scholar
  16. 16.
    Dillon LW, Kumar P, Shibata Y, Wang YH, Willcox S, Griffith JD, et al. Production of extrachromosomal MicroDNAs is linked to mismatch repair pathways and transcriptional activity. Cell Rep. 2015;11(11):1749–59.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Motejlek K, Schindler D, Assum G, Krone W. Increased amount and contour length distribution of small polydisperse circular DNA (spcDNA) in Fanconi anemia. Mutat Res. 1993;293(3):205–14.CrossRefPubMedGoogle Scholar
  18. 18.
    Regev A, Cohen S, Cohen E, Bar-Am I, Lavi S. Telomeric repeats on small polydisperse circular DNA (spcDNA) and genomic instability. Oncogene. 1998;17(26):3455–61.CrossRefPubMedGoogle Scholar
  19. 19.
    Windle B, Draper BW, Yin YX, O’Gorman S, Wahl GM. A central role for chromosome breakage in gene amplification, deletion formation, and amplicon integration. Genes Dev. 1991;5(2):160–74.CrossRefPubMedGoogle Scholar
  20. 20.
    Neidlinger C, Assum G, Krone W, Dietrich C, Hochsattel R, Klotz G. Increased amounts of small polydisperse circular DNA (spcDNA) in angiofibroma-derived cell cultures from patients with tuberous sclerosis (TS). Hum Genet. 1988;79(3):286–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Motejlek K, Assum G, Krone W, Kleinschmidt AK. The size of small polydisperse circular DNA (spcDNA) in angiofibroma-derived cell cultures from patients with tuberous sclerosis (TSC) differs from that in fibroblasts. Hum Genet. 1991;87(1):6–10.CrossRefPubMedGoogle Scholar
  22. 22.
    Mehanna P, Gagne V, Lajoie M, Spinella JF, St-Onge P, Sinnett D, et al. Characterization of the microDNA through the response to chemotherapeutics in lymphoblastoid cell lines. PLoS One. 2017;12(9):e0184365.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Shoura MJ, Gabdank I, Hansen L, Merker J, Gotlib J, Levene SD, et al. Intricate and cell type-specific populations of endogenous circular DNA (eccDNA) in Caenorhabditis elegans and Homo sapiens. G3 (Bethesda). 2017;7(10):3295–303.CrossRefGoogle Scholar
  24. 24.
    Gaubatz JW. Extrachromosomal circular DNAs and genomic sequence plasticity in eukaryotic cells. Mutat Res. 1990;237(5–6):271–92.CrossRefPubMedGoogle Scholar
  25. 25.
    Jorgensen TS, Xu Z, Hansen MA, Sorensen SJ, Hansen LH. Hundreds of circular novel plasmids and DNA elements identified in a rat cecum metamobilome. PLoS One. 2014;9(2):e87924.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zhu J, Zhang F, Du M, Zhang P, Fu S, Wang L. Molecular characterization of cell-free eccDNAs in human plasma. Sci Rep. 2017;7(1):10968.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kinoshita Y, Ohnishi N, Yamada Y, Kunisada T, Yamagishi H. Extrachromosomal circular DNA from nuclear fraction of higher plants. Plant Cell Physiol. 1985;26(7):1401–9.Google Scholar
  28. 28.
    Diaz-Lara A, Gent DH, Martin RR. Identification of extrachromosomal circular DNA in hop via rolling circle amplification. Cytogenet Genome Res. 2016;148(2–3):237–40.CrossRefPubMedGoogle Scholar
  29. 29.
    Cohen S, Yacobi K, Segal D. Extrachromosomal circular DNA of tandemly repeated genomic sequences in Drosophila. Genome Res. 2003;13(6A):1133–45.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Cohen S, Houben A, Segal D. Extrachromosomal circular DNA derived from tandemly repeated genomic sequences in plants. Plant J. 2008;53(6):1027–34.CrossRefPubMedGoogle Scholar
  31. 31.
    Cohen S, Lavi S. Induction of circles of heterogeneous sizes in carcinogen-treated cells: two-dimensional gel analysis of circular DNA molecules. Mol Cell Biol. 1996;16(5):2002–14.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cohen S, Mechali M. A novel cell-free system reveals a mechanism of circular DNA formation from tandem repeats. Nucl acids Res. 2001;29(12):2542–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Cohen S, Menut S, Mechali M. Regulated formation of extrachromosomal circular DNA molecules during development in Xenopus laevis. Mol Cell Biol. 1999;19(10):6682–9.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Reon BJ, Dutta A. Biological processes discovered by high-throughput sequencing. Am J Pathol. 2016;186(4):722–32.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Yamagishi H, Tsuda T, Fujimoto S, Toda M, Kato K, Maekawa Y, et al. Purification of small polydisperse circular DNA of eukaryotic cells by use of ATP-dependent deoxyribonuclease. Gene. 1983;26(2–3):317–21.PubMedGoogle Scholar
  36. 36.
    Kumar P, Dillon LW, Shibata Y, Jazaeri AA, Jones DR, Dutta A. Normal and cancerous tissues release extrachromosomal circular DNA (eccDNA) into the circulation. Mol Cancer Res. 2017;15(9):1197–205.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Moller HD, Bojsen RK, Tachibana C, Parsons L, Botstein D, Regenberg B. Genome-wide purification of extrachromosomal circular DNA from eukaryotic cells. J Vis Exp. 2016;110:1–8.Google Scholar
  38. 38.
    Ji W, Bian Z, Yu Y, Yuan C, Liu Y, Yu L, et al. Expulsion of micronuclei containing amplified genes contributes to a decrease in double minute chromosomes from malignant tumor cells. Int J Cancer. 2014;134(6):1279–88.CrossRefPubMedGoogle Scholar
  39. 39.
    Turner KM, Deshpande V, Beyter D, Koga T, Rusert J, Lee C, et al. Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature. 2017;543(7643):122–5.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Mourier T. Transposable elements and circular DNAs. Mobile Genet Elem. 2016;6(6):e1240748.CrossRefGoogle Scholar
  41. 41.
    Sinclair DA, Guarente L. Extrachromosomal rDNA circles—a cause of aging in yeast. Cell. 1997;91(7):1033–42.CrossRefPubMedGoogle Scholar
  42. 42.
    Meng X, Qi X, Guo H, Cai M, Li C, Zhu J, et al. Novel role for non-homologous end joining in the formation of double minutes in methotrexate-resistant colon cancer cells. J Med Genet. 2015;52(2):135–44.CrossRefPubMedGoogle Scholar
  43. 43.
    de Carvalho AC, Kim H, Poisson LM, Winn ME, Mueller C, Cherba D, et al. Discordant inheritance of chromosomal and extrachromosomal DNA elements contributes to dynamic disease evolution in glioblastoma. Nat Genet. 2018;50(5):708–17.CrossRefGoogle Scholar
  44. 44.
    Stergianou K, Fox C, Russell NH. Fusion of NUP214 to ABL1 on amplified episomes in T-ALL—implications for treatment. Leukemia. 2005;19(9):1680–1.CrossRefPubMedGoogle Scholar
  45. 45.
    Graux C, Cools J, Melotte C, Quentmeier H, Ferrando A, Levine R, et al. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet. 2004;36(10):1084–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Rowley JD, Le Beau MM, Rabbitts TH. Chromosomal translocations and genome rearrangements in cancer. Berlin: Springer; 2015.CrossRefGoogle Scholar
  47. 47.
    Schmidt H, Taubert H, Lange H, Kriese K, Schmitt WD, Hoffmann S, et al. Small polydispersed circular DNA contains strains of mobile genetic elements and occurs more frequently in permanent cell lines of malignant tumors than in normal lymphocytes. Oncol Rep. 2009;22(2):393–400.PubMedGoogle Scholar
  48. 48.
    Autiero M, Camarca A, Ciullo M, Debily MA, El Marhomy S, Pasquinelli R, et al. Intragenic amplification and formation of extrachromosomal small circular DNA molecules from the PIP gene on chromosome 7 in primary breast carcinomas. Int J Cancer. 2002;99(3):370–7.CrossRefPubMedGoogle Scholar
  49. 49.
    Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol. 2013;10(8):472–84.CrossRefPubMedGoogle Scholar
  50. 50.
    Alix-Panabieres C, Pantel K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov. 2016;6(5):479–91.CrossRefPubMedGoogle Scholar
  51. 51.
    Ashoor G, Syngelaki A, Wagner M, Birdir C, Nicolaides KH. Chromosome-selective sequencing of maternal plasma cell-free DNA for first-trimester detection of trisomy 21 and trisomy 18. Am J Obstet Gynecol. 2012;206(4):322e1–5.CrossRefGoogle Scholar
  52. 52.
    Heitzer E, Auer M, Ulz P, Geigl JB, Speicher MR. Circulating tumor cells and DNA as liquid biopsies. Genome Med. 2013;5(8):73.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Mouliere F, Piskorz AM, Chandrananda D, Moore E, Morris J, Smith CG, Goranova T, Heider K, Mair R, Supernat A, Gounaris I, Ros S, Wan JCM, Jimenez-Linan M, Gale D, Brindle K, Massie CE, Parkinson CA, Brenton JD, Rosenfeld N. Selecting short DNA fragments in plasma improves detection of circulating tumour DNA. bioRxiv. 2017.  https://doi.org/10.1101/134437.CrossRefGoogle Scholar
  54. 54.
    Wen F, Shen A, Choi A, Gerner EW, Shi J. Extracellular DNA in pancreatic cancer promotes cell invasion and metastasis. Cancer Res. 2013;73(14):4256–66.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Alekseeva LA, Mironova NL, Brenner EV, Kurilshikov AM, Patutina OA, Zenkova MA. Alteration of the exDNA profile in blood serum of LLC-bearing mice under the decrease of tumour invasion potential by bovine pancreatic DNase I treatment. PLoS One. 2017;12(2):e0171988.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Bakhoum SF, Ngo B, Laughney AM, Cavallo JA, Murphy CJ, Ly P, et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature. 2018;553(7689):467–72.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Gaubatz JW, Flores SC. Tissue-specific and age-related variations in repetitive sequences of mouse extrachromosomal circular DNAs. Mutat Res. 1990;237(1):29–36.CrossRefPubMedGoogle Scholar
  58. 58.
    Greene J, Baird AM, Brady L, Lim M, Gray SG, McDermott R, et al. Circular RNAs: biogenesis, function and role in human diseases. Front Mol Biosci. 2017;4:38.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Allen SE, Hug I, Pabian S, Rzeszutek I, Hoehener C, Nowacki M. Circular concatemers of ultra-short DNA segments produce regulatory RNAs. Cell. 2017;168(6):990–9.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Medical GeneticsHarbin Medical UniversityHarbinChina
  2. 2.School of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina
  3. 3.Department of Pathology and MCW Cancer CenterMedical College of WisconsinMilwaukeeUSA

Personalised recommendations