Advertisement

Molecular Diagnosis & Therapy

, Volume 22, Issue 4, pp 459–469 | Cite as

Whipple’s Disease: Diagnostic Value of rpoB Gene PCR from Peripheral Blood Mononuclear Cells

  • Kathleen Weigt
  • Alexandra Wiessner
  • Annette Moter
  • Florence Fenollar
  • Didier Raoult
  • Kristina Allers
  • Thomas Schneider
  • Verena Moos
Short Communication
  • 40 Downloads

Abstract

Introduction

Chronic infection with Tropheryma whipplei, known as Whipple’s disease (WD), classically affects the gastrointestinal tract, but any organ system may be affected, and isolated manifestations occur. Reliable diagnosis based on a combination of periodic acid–Schiff (PAS) staining, T. whipplei-specific immunohistochemistry (IHC), and polymerase chain reaction (PCR) from duodenal biopsies may be challenging in cases without classical gastrointestinal infection, so the need for additional diagnostic materials is urgent.

Objective

Our objective was to evaluate additional diagnostic possibilities for WD.

Methods

We analyzed samples from 20 patients with WD and 18 control subjects in a prospective observational pilot study. In addition to WD diagnosis by PAS staining, T. whipplei-specific IHC and PCR of duodenal or extra intestinal tissues, whole EDTA blood, peripheral blood mononuclear cells (PBMCs) and PBMC fractions enriched with or depleted of cluster of differentiation (CD)-14+ cells were examined using T. whipplei rpoB gene PCR.

Results

Tropheryma whipplei DNA was detected in 35 of 60 (58.3%) preparations from 16 of 20 patients with WD, most of whom lacked gastrointestinal signs and characteristic PAS-positive duodenal macrophages.

Conclusion

This study provides evidence for the potential suitability of blood, particularly PBMCs, as material to assist in the diagnosis of WD via rpoB gene real-time PCR. Thus, PCR from blood preparations can be helpful for diagnostic decision making in atypical cases of WD.

Notes

Compliance with Ethical Standards

Funding

This work was supported by Deutsche Forschungsgemeinschaft SFB633, KFO104, SCHN 616/6-2, European commission QLG1-CT-2002-01049 and Charité doctorate grants. The German Consiliary Laboratory for T. whipplei is supported by the Robert Koch Institute. The funders had no role in the study design, the data collection and interpretation, or the decision to submit the work for publication.

Conflict of interest

KW, AW, AM, FF, DR, KA, TS, and VM have no conflicts of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study (ethical commission of the Charité; EA4/122/10).

References

  1. 1.
    Fenollar F, Puechal X, Raoult D. Whipple’s disease. N Engl J Med. 2007;356(1):55–66.CrossRefPubMedGoogle Scholar
  2. 2.
    Schneider T, Moos V, Loddenkemper C, Marth T, Fenollar F, Raoult D. Whipple’s disease: new aspects of pathogenesis and treatment. Lancet Infect Dis. 2008;8(3):179–90.CrossRefPubMedGoogle Scholar
  3. 3.
    La Scola B, Fenollar F, Fournier PE, Altwegg M, Mallet MN, Raoult D. Description of Tropheryma whipplei gen. nov., sp. nov., the Whipple’s disease bacillus. Int J Syst Evol Microbiol. 2001;51(Pt 4):1471–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Fenollar F, Laouira S, Lepidi H, Rolain JM, Raoult D. Value of Tropheryma whipplei quantitative polymerase chain reaction assay for the diagnosis of Whipple disease: usefulness of saliva and stool specimens for first-line screening. Clin Infect Dis. 2008;47(5):659–67.  https://doi.org/10.1086/590559.CrossRefPubMedGoogle Scholar
  5. 5.
    Hinrikson HP, Dutly F, Nair S, Altwegg M. Detection of three different types of ‘Tropheryma whippelii’ directly from clinical specimens by sequencing, single-strand conformation polymorphism (SSCP) analysis and type-specific PCR of their 16S–23S ribosomal intergenic spacer region. Int J Syst Bacteriol. 1999;4:1701–6.CrossRefGoogle Scholar
  6. 6.
    Moos V, Schneider T. Changing paradigms in Whipple’s disease and infection with Tropheryma whipplei. Eur J Clin Microbiol Infect Dis. 2011;30(10):1151–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Relman DA, Schmidt TM, MacDermott RP, Falkow S. Identification of the uncultured bacillus of Whipple’s disease. N Engl J Med. 1992;327(5):293–301.CrossRefPubMedGoogle Scholar
  8. 8.
    Fenollar F, Celard M, Lagier JC, Lepidi H, Fournier PE, Raoult D. Tropheryma whipplei endocarditis. Emerg Infect Dis. 2013;19(11):1721–30.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Geissdorfer W, Moos V, Moter A, Loddenkemper C, Jansen A, Tandler R, et al. High frequency of Tropheryma whipplei in culture-negative endocarditis. J Clin Microbiol. 2012;50(2):216–22.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lehmann P, Ehrenstein B, Hartung W, Dragonas C, Reischl U, Fleck M. PCR analysis is superior to histology for diagnosis of Whipple’s disease mimicking seronegative rheumatic diseases. Scand J Rheumatol. 2016.  https://doi.org/10.1080/03009742.2016.1183038.PubMedGoogle Scholar
  11. 11.
    Lagier JC, Fenollar F, Raoult D. Whipple’s disease and Tropheryma whipplei infections in internal medicine. When to think about it? How to treat? La Revue de medecine interne/fondee par la Societe nationale francaise de medecine interne. 2014;35(12):801–7.  https://doi.org/10.1016/j.revmed.2014.04.016.Google Scholar
  12. 12.
    Gunther U, Moos V, Offenmuller G, Oelkers G, Heise W, Moter A, et al. Gastrointestinal diagnosis of classical Whipple disease: clinical, endoscopic, and histopathologic features in 191 patients. Medicine. 2015;94(15):714.CrossRefGoogle Scholar
  13. 13.
    Marth T, Fredericks D, Strober W, Relman DA. Limited role for PCR-based diagnosis of Whipple’s disease from peripheral blood mononuclear cells. Lancet. 1996;348(9019):66–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Moter A, Schmiedel D, Petrich A, Wiessner A, Kikhney J, Schneider T, et al. Validation of an rpoB gene PCR assay for detection of Tropheryma whipplei: 10 years’ experience in a National Reference Laboratory. J Clin Microbiol. 2013;51(11):3858–61.  https://doi.org/10.1128/JCM.01703-13.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Raoult D, Lepidi H, Harle JR. Tropheryma whipplei circulating in blood monocytes. N Engl J Med. 2001;345(7):548.CrossRefPubMedGoogle Scholar
  16. 16.
    Lepidi H, Costedoat N, Piette JC, Harle JR, Raoult D. Immunohistological detection of Tropheryma whipplei (Whipple bacillus) in lymph nodes. Am J Med. 2002;113(4):334–6.CrossRefPubMedGoogle Scholar
  17. 17.
    von Herbay A, Ditton HJ, Maiwald M. Diagnostic application of a polymerase chain reaction assay for the Whipple’s disease bacterium to intestinal biopsies. Gastroenterology. 1996;110(6):1735–43.CrossRefGoogle Scholar
  18. 18.
    Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA. 1985;82(20):6955–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Blessin UB, Fischer A, Schneider T, Moos V, Muller T, Weylandt KH, et al. More than meets the eye. Gut. 2018;67(1):69.  https://doi.org/10.1136/gutjnl-2016-312390.CrossRefPubMedGoogle Scholar
  20. 20.
    Schinnerling K, Moos V, Geelhaar A, Allers K, Loddenkemper C, Friebel J, et al. Regulatory T cells in patients with Whipple’s disease. J Immunol. 2011;187(8):4061–7.  https://doi.org/10.4049/jimmunol.1101349.CrossRefPubMedGoogle Scholar
  21. 21.
    Schinnerling K, Geelhaar-Karsch A, Allers K, Friebel J, Conrad K, Loddenkemper C, et al. Role of dendritic cells in the pathogenesis of Whipple’s disease. Infect Immun. 2015;83(2):482–91.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Drancourt M, Carlioz A, Raoult D. rpoB sequence analysis of cultured Tropheryma whippelii. J Clin Microbiol. 2001;39(7):2425–30.  https://doi.org/10.1128/JCM.39.7.2425-2430.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Moos V, Schmidt C, Geelhaar A, Kunkel D, Allers K, Schinnerling K, et al. Impaired immune functions of monocytes and macrophages in Whipple’s disease. Gastroenterology. 2010;138(1):210–20.  https://doi.org/10.1053/j.gastro.2009.07.066.CrossRefPubMedGoogle Scholar
  24. 24.
    Desnues B, Raoult D, Mege JL. IL-16 is critical for Tropheryma whipplei replication in Whipple’s disease. J Immunol. 2005;175(7):4575–82.CrossRefPubMedGoogle Scholar
  25. 25.
    Strauss-Ayali D, Conrad SM, Mosser DM. Monocyte subpopulations and their differentiation patterns during infection. J Leukoc Biol. 2007;82(2):244–52.  https://doi.org/10.1189/jlb.0307191.CrossRefPubMedGoogle Scholar
  26. 26.
    Epple HJ, Friebel J, Moos V, Troeger H, Krug SM, Allers K, et al. Architectural and functional alterations of the small intestinal mucosa in classical Whipple’s disease. Mucosal Immunol. 2017;10(6):1542–52.  https://doi.org/10.1038/mi.2017.6.CrossRefPubMedGoogle Scholar
  27. 27.
    Fredricks DN, Relman DA. Localization of Tropheryma whippelii rRNA in tissues from patients with Whipple’s disease. J Infect Dis. 2001;183(8):1229–37.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department for Gastroenterology, Infectious Diseases, and RheumatologyCharité-University Medicine BerlinBerlinGermany
  2. 2.BiofilmcenterGerman Heart Institute BerlinBerlinGermany
  3. 3.URMITE, UMR IRD 198/CNRS 6236, Medical FacultyMediterranean UniversityMarseilleFrance

Personalised recommendations