Molecular Diagnosis & Therapy

, Volume 22, Issue 4, pp 431–442 | Cite as

The Role of DNA Methylation in Renal Cell Carcinoma

  • Brittany N. LasseigneEmail author
  • James D. Brooks
Review Article


Renal cell carcinoma (RCC) is the most common kidney cancer and includes several molecular and histological subtypes with different clinical characteristics. While survival rates are high if RCC is diagnosed when still confined to the kidney and treated definitively, there are no specific diagnostic screening tests available and symptoms are rare in early stages of the disease. Management of advanced RCC has changed significantly with the advent of targeted therapies, yet survival is usually increased by months due to acquired resistance to these therapies. DNA methylation, the covalent addition of a methyl group to a cytosine, is essential for normal development and transcriptional regulation, but becomes altered commonly in cancer. These alterations result in broad transcriptional changes, including in tumor suppressor genes. Because DNA methylation is one of the earliest molecular changes in cancer and is both widespread and stable, its role in cancer biology, including RCC, has been extensively studied. In this review, we examine the role of DNA methylation in RCC disease etiology and progression, the preclinical use of DNA methylation alterations as diagnostic, prognostic and predictive biomarkers, and the potential for DNA methylation-directed therapies.


Compliance with Ethical Standards

Conflict of interest

A patent is in process for the DNA methylation markers identified in the authors’ cited work: Lasseigne et al., BMC Medicine, 2014.


BNL was funded by the William J. Maier III Fellowship in Cancer Prevention (Prevent Cancer Foundation). JDB was funded by NIH/NCI (CA196387) and the Department of Defense (W81XWH-16-1-0553).


  1. 1.
    Jonasch E, Gao J, Rathmell WK. Renal cell carcinoma. BMJ. 2014;349:g4797.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Chen F, Zhang Y, Şenbabaoğlu Y, Ciriello G, Yang L, Reznik E, et al. Multilevel genomics-based taxonomy of renal cell carcinoma. Cell Rep. 2016;14:2476–89.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Hsieh JJ, Le V, Cao D, Cheng EH, Creighton CJ. Genomic classifications of renal cell carcinoma: a critical step towards the future application of personalized kidney cancer care with panomics precision. J Pathol. 2018;244:525–37.PubMedCrossRefGoogle Scholar
  4. 4.
    Lightfoot N, Conlon M, Kreiger N, Bissett R, Desai M, Warde P, et al. Impact of noninvasive imaging on increased incidental detection of renal cell carcinoma. Eur Urol. 2000;37:521–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Silverman SG, Israel GM, Herts BR, Richie JP. Management of the incidental renal mass. Radiology. 2008;249:16–31.PubMedCrossRefGoogle Scholar
  6. 6.
    Howlader N, Noone A, Krapcho M, Garshell J, Miller D, Altekruse S, et al. SEER cancer statistics review, 1975–2012. Rockville: National Cancer Institute; 2015.Google Scholar
  7. 7.
    Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, et al. Renal cell carcinoma. Nat Rev Dis Prim. 2017;3:17009.PubMedCrossRefGoogle Scholar
  8. 8.
    Jonasch E, Futreal PA, Davis IJ, Bailey ST, Kim WY, Brugarolas J, et al. State of the science: an update on renal cell carcinoma. Mol Cancer Res. 2012;10:859–80.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Linehan WM, Ricketts CJ. Decade in review-kidney cancer: discoveries, therapies and opportunities. Nat Rev Urol. 2014;11:614–6.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30. Scholar
  11. 11.
    Gnarra JR, Tory K, Weng Y, Schmidt L, Wei MH, Li H, et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet. 1994;7:85–90.PubMedCrossRefGoogle Scholar
  12. 12.
    Creighton CJ, Morgan M, Gunaratne PH, Wheeler DA, Gibbs RA, Gordon Robertson A, et al. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43–9.CrossRefGoogle Scholar
  13. 13.
    Rankin EB, Tomaszewski JE, Haase VH. Renal cyst development in mice with conditional inactivation of the von Hippel–Lindau tumor suppressor. Cancer Res. 2006;66:2576–83.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Kapitsinou PP, Haase VH. The VHL tumor suppressor and HIF: insights from genetic studies in mice. Cell Death Differ. 2008;15:650–9.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43–9.CrossRefGoogle Scholar
  16. 16.
    Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P, et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature. 2011;469:539–42.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Ricketts CJ, De Cubas AA, Fan H, Smith CC, Lang M, Reznik E, et al. The cancer genome atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep. 2018;23:313–26.PubMedCrossRefGoogle Scholar
  18. 18.
    Nargund AM, Pham CG, Dong Y, Wang PI, Osmangeyoglu HU, Xie Y, et al. The SWI/SNF protein PBRM1 restrains VHL-loss-driven clear cell renal cell carcinoma. Cell Rep. 2017;18:2893–906.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Montero LM, Filipski J, Gil P, Capel J, Martinez-Zapater JM, Salinas J. The distribution of 5-methylcytosine in the nuclear genome of plants. Nucleic Acids Res. 1992;20:3207–10.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Laird PW, Jaenisch R. DNA methylation and cancer. Hum Mol Genet. 1994;3:1487–95.PubMedCrossRefGoogle Scholar
  21. 21.
    Ushijima T. Detection and interpretation of altered methylation patterns in cancer cells. Nat Rev Cancer. 2005;5:223–31.PubMedCrossRefGoogle Scholar
  22. 22.
    Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31:27–36.PubMedCrossRefGoogle Scholar
  23. 23.
    Tsai H-C, Baylin SB. Cancer epigenetics: linking basic biology to clinical medicine. Cell Res. 2011;21:502–17.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Wu P, Cao Z, Wu S. New progress of epigenetic biomarkers in urological cancer. Dis Markers. 2016;2016:1–8.Google Scholar
  25. 25.
    Baylin SB, Jones PA. A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer. 2011;11:726–34.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Kanai Y. Genome-wide DNA methylation profiles in precancerous conditions and cancers. Cancer Sci. 2010;101:36–45.PubMedCrossRefGoogle Scholar
  27. 27.
    Arai E, Kanai Y. Genetic and epigenetic alterations during renal carcino-genesis. Int J Clin Pathol. 2011;4:58–73.Google Scholar
  28. 28.
    NCBI Resource Coordinators. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2017;45:D12–7.CrossRefGoogle Scholar
  29. 29.
    Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S, et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA. 1994;91:9700–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Clifford SC, Prowse AH, Affara NA, Buys CH, Maher ER. Inactivation of the von Hippel-Lindau (VHL) tumour suppressor gene and allelic losses at chromosome arm 3p in primary renal cell carcinoma: evidence for a VHL-independent pathway in clear cell renal tumourigenesis. Genes Chromosomes Cancer. 1998;22:200–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Yang L, Zhao Z, Zhao S, Chen C, Cong X, Li Z, et al. The clinicopathological significance of epigenetic silencing of VHL promoter and renal cell carcinoma: a meta-analysis. Cell Physiol Biochem. 2016;40:1465–72.PubMedCrossRefGoogle Scholar
  32. 32.
    Donninger H, Vos MD, Clark GJ. The RASSF1A tumor suppressor. J Cell Sci. 2007;120:3163–72.PubMedCrossRefGoogle Scholar
  33. 33.
    Morrissey C, Martinez A, Zatyka M, Agathanggelou A, Honorio S, Astuti D, et al. Epigenetic inactivation of the RASSF1A 3p21.3 tumor suppressor gene in both clear cell and papillary renal cell carcinoma. Cancer Res. 2001;61:7277–81.PubMedGoogle Scholar
  34. 34.
    Huang YQ, Guan H, Liu CH, Liu DC, Xu B, Jiang L, et al. Association between RASSF1A promoter methylation and renal cell cancer susceptibility: a meta-analysis. Genet Mol Res. 2016. Scholar
  35. 35.
    Yu G-S, Lai C-Y, Xu Y, Bu C-F, Su Z-X. Aberrant methylation of RASSF1A gene contribute to the risk of renal cell carcinoma: a meta-analysis. Asian Pac J Cancer Prev. 2015;16:4665–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Wang J, Ren Y, Guo X, Cheng H, Ye Y, Qi J, et al. Alterations in enhancer of zeste homolog 2, matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 expression are associated with ex vivo and in vitro bone metastasis in renal cell carcinoma. Mol Med Rep. 2015;11:3585–92.PubMedCrossRefGoogle Scholar
  37. 37.
    Shenoy N, Vallumsetla N, Zou Y, Galeas JN, Shrivastava M, Hu C, et al. Role of DNA methylation in renal cell carcinoma. J Hematol Oncol. 2015;8:88.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Morris MR, Ricketts CJ, Gentle D, McRonald F, Carli N, Khalili H, et al. Genome-wide methylation analysis identifies epigenetically inactivated candidate tumour suppressor genes in renal cell carcinoma. Oncog Nat Publ Group. 2011;30:1390–401.Google Scholar
  39. 39.
    McRonald FE, Morris MR, Gentle D, Winchester L, Baban D, Ragoussis J, et al. CpG methylation profiling in VHL related and VHL unrelated renal cell carcinoma. Mol Cancer. 2009;8:31.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Arai E, Ushijima S, Tsuda H. Genetic clustering of clear cell renal cell carcinoma based on array-comparative genomic hybridization: its association with DNA methylation alteration and patient outcome. Clin Cancer Res. 2008;14:5531–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Arai E, Chiku S, Mori T, Gotoh M, Nakagawa T, Fujimoto H, et al. Single-CpG-resolution methylome analysis identifies clinicopathologically aggressive CpG island methylator phenotype clear cell renal cell carcinomas. Carcinogenesis. 2012;33:1487–93.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Mendoza-Perez J, Gu J, Herrera LA, Tannir NM, Matin SF, Karam JA, et al. Genomic DNA hypomethylation and risk of renal cell carcinoma: a case–control study. Clin Cancer Res. 2016;22:2074–82.PubMedCrossRefGoogle Scholar
  43. 43.
    Ramakrishnan N, Bose R. Analysis of distribution of DNA methylation in kidney-renal-clear-cell-carcinoma specific genes using entropy. Genom Data. 2016;10:109–13.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Hu CY, Mohtat D, Yu Y, Ko Y-A, Shenoy N, Bhattacharya S, et al. Kidney cancer is characterized by aberrant methylation of tissue-specific enhancers that are prognostic for overall survival. Clin Cancer Res. 2014;20:4349–60.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Liu Y, Sun L, Fong P, Yang J, Zhang Z, Yin S, et al. An association between overexpression of DNA methyltransferase 3B4 and clear cell renal cell carcinoma. Oncotarget Impact J. 2017;8:19712–22.Google Scholar
  46. 46.
    Mahalingaiah PKS, Ponnusamy L, Singh KP. Oxidative stress-induced epigenetic changes associated with malignant transformation of human kidney epithelial cells. Oncotarget. 2016;8:11127–43.PubMedCentralGoogle Scholar
  47. 47.
    Wagner EJ, Carpenter PB. Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol. 2012;13:115–26.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Tiedemann RL, Hlady RA, Hanavan PD, Lake DF, Tibes R, Lee J-H, et al. Dynamic reprogramming of DNA methylation in SETD2-deregulated renal cell carcinoma. Oncotarget. 2016;7:1927–46.PubMedCrossRefGoogle Scholar
  49. 49.
    Liu L, Guo R, Zhang X, Liang Y, Kong F, Wang J, et al. Loss of SETD2, but not H3K36me3, correlates with aggressive clinicopathological features of clear cell renal cell carcinoma patients. Biosci Trends. 2017;11:214–20.PubMedCrossRefGoogle Scholar
  50. 50.
    Wang Y, Guo X, Bray MJ, Ding Z, Zhao Z. An integrative genomics approach for identifying novel functional consequences of PBRM1 truncated mutations in clear cell renal cell carcinoma (ccRCC). BMC Genom. 2016;17:515.CrossRefGoogle Scholar
  51. 51.
    He C, Zhao X, Jiang H, Zhong Z, Xu R. Demethylation of miR-10b plays a suppressive role in ccRCC cells. Int J Clin Exp Pathol. 2015;8:10595–604.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Hildebrandt MAT, Gu J, Lin J, Ye Y, Tan W, Tamboli P, et al. Hsa-miR-9 methylation status is associated with cancer development and metastatic recurrence in patients with clear cell renal cell carcinoma. Oncogene. 2010;29:5724–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Johnson DC, Vukina J, Smith AB, Meyer A-M, Wheeler SB, Kuo T-M, et al. Preoperatively misclassified, surgically removed benign renal masses: a systematic review of surgical series and United States population level burden estimate. J Urol. 2015;193:30–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Haas NB, Nathanson KL. Hereditary kidney cancer syndromes. Adv Chronic Kidney Dis. 2014;21:81–90.PubMedCrossRefGoogle Scholar
  55. 55.
    Mikeska T, Bock C, Do H, Dobrovic A. DNA methylation biomarkers in cancer: progress towards clinical implementation. Expert Rev Mol Diagn. 2012;12:473–87.PubMedCrossRefGoogle Scholar
  56. 56.
    Battagli C, Uzzo RG, Dulaimi E, Ibanez de Caceres I, Krassenstein R, Al-Saleem T, et al. Promoter hypermethylation of tumor suppressor genes in urine from kidney cancer patients. Cancer Res. 2003;63:8695–9.PubMedGoogle Scholar
  57. 57.
    Hoque MO, Begum S, Topaloglu O, Jeronimo C, Mambo E, Westra WH, et al. Quantitative detection of promoter hypermethylation of multiple genes in the tumor, urine, and serum DNA of patients with renal cancer. Cancer Res. 2004;64:5511–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Hauser S, Zahalka T, Fechner G, Müller SC, Ellinger J. Serum DNA hypermethylation in patients with kidney cancer: results of a prospective study. Anticancer Res. 2013;33:4651–6.PubMedGoogle Scholar
  59. 59.
    de Martino M, Klatte T, Haitel A, Marberger M. Serum cell-free DNA in renal cell carcinoma: a diagnostic and prognostic marker. Cancer. 2012;118:82–90. Scholar
  60. 60.
    Skrypkina I, Tsyba L, Onyshchenko K, Morderer D, Kashparova O, Nikolaienko O, et al. Concentration and methylation of cell-free DNA from blood plasma as diagnostic markers of renal cancer. Dis Markers. 2016;2016:1–10.CrossRefGoogle Scholar
  61. 61.
    Lasseigne BN, Burwell TC, Patil MA, Absher DM, Brooks JD, Myers RM. DNA methylation profiling reveals novel diagnostic biomarkers in renal cell carcinoma. BMC Med. 2014;12:235.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Chopra S, Liu J, Alemozaffar M, Nichols PW, Aron M, Weisenberger DJ, et al. Improving needle biopsy accuracy in small renal mass using tumor-specific DNA methylation markers. Oncotarget. 2017;8:5439–48.PubMedCrossRefGoogle Scholar
  63. 63.
    Slater AA, Alokail M, Gentle D, Yao M, Kovacs G, Maher ER, et al. DNA methylation profiling distinguishes histological subtypes of renal cell carcinoma. Epigenetics. 2013;8:252–67.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Malouf GG, Su X, Zhang J, Creighton CJ, Ho TH, Lu Y, et al. DNA methylation signature reveals cell ontogeny of renal cell carcinomas. Clin Cancer Res. 2016;22:6236–46.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Ristau BT, Kutikov A, Uzzo RG, Smaldone MC. Active surveillance for small renal masses: when less is more. Eur Urol Focus. 2016;2:660–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Ravaud A, Motzer RJ, Pandha HS, George DJ, Pantuck AJ, Patel A, et al. Adjuvant sunitinib in high-risk renal-cell carcinoma after nephrectomy. N Engl J Med. 2016;375:2246–54.PubMedCrossRefGoogle Scholar
  67. 67.
    Golovastova MO, Korolev DO, Tsoy LV, Varshavsky VA, Xu W-H, Vinarov AZ, et al. Biomarkers of renal tumors: the current state and clinical perspectives. Curr Urol Rep. 2017;18:3.PubMedCrossRefGoogle Scholar
  68. 68.
    Golovastova MO, Tsoy LV, Bocharnikova AV, Korolev DO, Gancharova OS, Alekseeva EA, et al. The cancer-retina antigen recoverin as a potential biomarker for renal tumors. Tumour Biol. 2016;37:9899–907. Scholar
  69. 69.
    Tezval H, Dubrowinskaja N, Peters I, Reese C, Serth K, Atschekzei F, et al. Tumor specific epigenetic silencing of corticotropin releasing hormone-binding protein in renal cell carcinoma: association of hypermethylation and metastasis. Castresana JS, editor. PLoS One. 2016;11:e0163873.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Zhao H, Leppert JT, Peehl DM. A protective role for androgen receptor in clear cell renal cell carcinoma based on mining TCGA data. Chai KX, editor. PLoS One. 2016;11:e0146505.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Mitsui Y, Hirata H, Arichi N, Hiraki M, Yasumoto H, Chang I, et al. Inactivation of bone morphogenetic protein 2 may predict clinical outcome and poor overall survival for renal cell carcinoma through epigenetic pathways. Oncotarget. 2015;6:9577–91.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Deckers IAG, Schouten LJ, Van Neste L, van Vlodrop IJH, Soetekouw PMMB, Baldewijns MMLL, et al. Promoter methylation of CDO1 identifies clear-cell renal cell cancer patients with poor survival outcome. Clin Cancer Res. 2015;21:3492–500.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Wang Z-R, Wei J-H, Zhou J-C, Haddad A, Zhao L-Y, Kapur P, et al. Validation of DAB2IP methylation and its relative significance in predicting outcome in renal cell carcinoma. Oncotarget Impact J. 2016;7:31508–19.Google Scholar
  74. 74.
    Pio Fabrizio F, Costantini M, Copetti M, la Torre A, Sparaneo A, Fontana A, et al. Keap1/Nrf2 pathway in kidney cancer: frequent methylation of KEAP1 gene promoter in clear renal cell carcinoma. Oncotarget. 2017;8:11187–98.Google Scholar
  75. 75.
    Brooks JD. Translational genomics: the challenge of developing cancer biomarkers. Genome Res. 2012;22:183–7. Scholar
  76. 76.
    van Vlodrop IJH, Joosten SC, De Meyer T, Smits KM, Van Neste L, Melotte V, et al. A four-gene promoter methylation marker panel consisting of GREM1, NEURL, LAD1, and NEFH predicts survival of clear cell renal cell cancer patients. Clin Cancer Res. 2017;23:2006–18.PubMedCrossRefGoogle Scholar
  77. 77.
    Evelönn EA, Degerman S, Köhn L, Landfors M, Ljungberg B, Roos G. DNA methylation status defines clinicopathological parameters including survival for patients with clear cell renal cell carcinoma (ccRCC). Tumor Biol. 2016;37:10219–28.CrossRefGoogle Scholar
  78. 78.
    Tian Y, Arai E, Gotoh M, Komiyama M, Fujimoto H, Kanai Y. Prognostication of patients with clear cell renal cell carcinomas based on quantification of DNA methylation levels of CpG island methylator phenotype marker genes. BMC Cancer. 2014;14:772.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Arai E, Gotoh M, Tian Y, Sakamoto H, Ono M, Matsuda A, et al. Alterations of the spindle checkpoint pathway in clinicopathologically aggressive CpG island methylator phenotype clear cell renal cell carcinomas. Int J cancer. 2015;137:2589–606.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Cancer Genome Atlas Research Network, Linehan WM, Spellman PT, Ricketts CJ, Creighton CJ, Fei SS, et al. Comprehensive molecular characterization of papillary renal-cell carcinoma. N Engl J Med. 2016;374:135–45.CrossRefGoogle Scholar
  81. 81.
    Xiao M, Yang H, Xu W, Ma S, Lin H, Zhu H, et al. Inhibition of -KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 2012;26:1326–38.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Chen K, Zhang J, Guo Z, Ma Q, Xu Z, Zhou Y, et al. Loss of 5-hydroxymethylcytosine is linked to gene body hypermethylation in kidney cancer. Cell Res. 2016;26:103–18.PubMedCrossRefGoogle Scholar
  83. 83.
    Chen G, Wang Y, Wang L, Xu W. Identifying prognostic biomarkers based on aberrant DNA methylation in kidney renal clear cell carcinoma. Oncotarget. 2017;8:5268–80.PubMedGoogle Scholar
  84. 84.
    Dimitrieva S, Schlapbach R, Rehrauer H. Prognostic value of cross-omics screening for kidney clear cell renal cancer survival. Biol Direct. 2016;11:68.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Wei J-H, Haddad A, Wu K-J, Zhao H-W, Kapur P, Zhang Z-L, et al. A CpG-methylation-based assay to predict survival in clear cell renal cell carcinoma. Nat Commun. 2015;6:8699.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Joosten SC, Deckers IA, Aarts MJ, Hoeben A, van Roermund JG, Smits KM, et al. Prognostic DNA methylation markers for renal cell carcinoma: a systematic review. Epigenomics. 2017;9(9):1243–57.PubMedCrossRefGoogle Scholar
  87. 87.
    Choueiri TK, Fay AP, Gagnon R, Lin Y, Bahamon B, Brown V, et al. The role of aberrant VHL/HIF pathway elements in predicting clinical outcome to pazopanib therapy in patients with metastatic clear-cell renal cell carcinoma. Clin Cancer Res. 2013;19:5218–26. Scholar
  88. 88.
    Stewart GD, Powles T, Van Neste C, Meynert A, O’Mahony F, Laird A, et al. Dynamic epigenetic changes to VHL occur with sunitinib in metastatic clear cell renal cancer. Oncotarget Impact J. 2016;7:25241–50.Google Scholar
  89. 89.
    Peters I, Dubrowinskaja N, Abbas M, Seidel C, Kogosov M, Scherer R, et al. DNA methylation biomarkers predict progression-free and overall survival of metastatic renal cell cancer (mRCC) treated with antiangiogenic therapies. Zhang Z, editor. PLoS One. 2014;9:e91440. Scholar
  90. 90.
    Dubrowinskaja N, Gebauer K, Peters I, Hennenlotter J, Abbas M, Scherer R, et al. Neurofilament heavy polypeptide CpG island methylation associates with prognosis of renal cell carcinoma and prediction of antivascular endothelial growth factor therapy response. Cancer Med. 2014;3:300–9. Scholar
  91. 91.
    Wieczorek G, Asemissen A, Model F, Turbachova I, Floess S, Liebenberg V, et al. Quantitative DNA methylation analysis of FOXP3 as a new method for counting regulatory T cells in peripheral blood and solid tissue. Cancer Res. 2009;69:599–608. Scholar
  92. 92.
    Schwarzer A, Wolf B, Fisher JL, Schwaab T, Olek S, Baron U, et al. Regulatory T-cells and associated pathways in metastatic renal cell carcinoma (mRCC) patients undergoing DC-vaccination and cytokine-therapy. Hoshino Y, editor. PLoS One. 2012;7:e46600. Scholar
  93. 93.
    To KKW, Zhan Z, Bates SE. Aberrant promoter methylation of the ABCG2 gene in renal carcinoma. Mol Cell Biol. 2006;26:8572–85.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Han T, Shang D, Xu X, Tian Y. Gene expression profiling of the synergy of 5-aza-2′-deoxycytidine and paclitaxel against renal cell carcinoma. World J Surg Oncol. 2012;10:183.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Shang D, Liu Y, Xu X, Han T, Tian Y. 5-Aza-2′-deoxycytidine enhances susceptibility of renal cell carcinoma to paclitaxel by decreasing LEF1/phospho-β-catenin expression. Cancer Lett. 2011;311:230–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Liu Y, Zheng X, Yu Q, Wang H, Tan F, Zhu Q, et al. Epigenetic activation of the drug transporter OCT2 sensitizes renal cell carcinoma to oxaliplatin. Sci Transl Med. 2016;8:348ra97. Scholar
  97. 97.
    Gollob JA, Sciambi CJ, Peterson BL, Richmond T, Thoreson M, Moran K, et al. Phase I trial of sequential low-dose 5-aza-2′-deoxycytidine plus high-dose intravenous bolus interleukin-2 in patients with melanoma or renal cell carcinoma. Clin Cancer Res Am Assoc Cancer Res. 2006;12:4619–27.CrossRefGoogle Scholar
  98. 98.
    Abele R, Clavel M, Dodion P, Bruntsch U, Gundersen S, Smyth J, et al. The EORTC Early Clinical Trials Cooperative Group experience with 5-aza-2′-deoxycytidine (NSC 127716) in patients with colorectal, head and neck, renal carcinomas and malignant melanomas. Eur J Cancer Clin Oncol. 1987;23:1921–4.PubMedCrossRefGoogle Scholar
  99. 99.
    Shang D, Han T, Xu X, Liu Y. Decitabine induces G2/M cell cycle arrest by suppressing p38/NF-κB signaling in human renal clear cell carcinoma. Int J Clin Exp Pathol. 2015;8:11140–8.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Saleh MH, Wang L, Goldberg MS. Improving cancer immunotherapy with DNA methyltransferase inhibitors. Cancer Immunol Immunother. 2016;65:787–96.PubMedCrossRefGoogle Scholar
  101. 101.
    Coral S, Sigalotti L, Altomonte M, Engelsberg A, Colizzi F, Cattarossi I, et al. 5-aza-2′-deoxycytidine-induced expression of functional cancer testis antigens in human renal cell carcinoma: immunotherapeutic implications. Clin Cancer Res. 2002;8:2690–5.PubMedGoogle Scholar
  102. 102.
    Reu FJ, Bae SI, Cherkassky L, Leaman DW, Lindner D, Beaulieu N, et al. Overcoming resistance to interferon-induced apoptosis of renal carcinoma and melanoma cells by DNA demethylation. J Clin Oncol. 2006;24:3771–9. Scholar
  103. 103.
    Bhagat TD, Zou Y, Huang S, Park J, Palmer MB, Hu C, et al. Notch pathway is activated via genetic and epigenetic alterations and is a therapeutic target in clear cell renal cancer. J Biol Chem. 2017;292:837–46.PubMedCrossRefGoogle Scholar
  104. 104.
    Hamilton E, Infante JR. Targeting CDK4/6 in patients with cancer. Cancer Treat Rev. 2016;45:129–38.PubMedCrossRefGoogle Scholar
  105. 105.
    Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373:1803–13.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Miao D, Margolis CA, Gao W, Voss MH, Li W, Martini DJ, et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Sci Am Assoc Adv Sci. 2018;359:801–6.Google Scholar
  107. 107.
    Bradley AJ, Lim YY, Singh FM. Imaging features, follow-up, and management of incidentally detected renal lesions. Clin Radiol. 2011;66:1129–39.PubMedCrossRefGoogle Scholar
  108. 108.
    Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883–92.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Faleiro I, Leão R, Binnie A, de Mello RA, Maia A-T, Castelo-Branco P. Epigenetic therapy in urologic cancers: an update on clinical trials. Oncotarget Impact J. 2017;8:12484–500.Google Scholar
  110. 110.
    Day K, Waite LL, Thalacker-Mercer A, West A, Bamman MM, Brooks JD, et al. Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome Biol. 2013;14:R102.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Rius M, Lyko F. Epigenetic cancer therapy: rationales, targets and drugs. Oncog Nat Publ Group. 2012;31:4257–65.Google Scholar
  112. 112.
    Halby L, Champion C, Sénamaud-Beaufort C, Ajjan S, Drujon T, Rajavelu A, et al. Rapid synthesis of new DNMT inhibitors derivatives of procainamide. Chembiochem. 2012;13:157–65. Scholar
  113. 113.
    Lee BH, Yegnasubramanian S, Lin X, Nelson WG. Procainamide is a specific inhibitor of DNA methyltransferase 1. J Biol Chem. 2005;280:40749–56. Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.HudsonAlpha Institute for BiotechnologyHuntsvilleUSA
  2. 2.Department of UrologyStanford University Medical CenterStanfordUSA

Personalised recommendations