Advertisement

Molecular Diagnosis & Therapy

, Volume 22, Issue 4, pp 409–420 | Cite as

The Role of Pharmacogenomics in Bipolar Disorder: Moving Towards Precision Medicine

  • Claudia Pisanu
  • Urs Heilbronner
  • Alessio Squassina
Review Article

Abstract

Bipolar disorder (BD) is a common and disabling psychiatric condition with a severe socioeconomic impact. BD is treated with mood stabilizers, among which lithium represents the first-line treatment. Lithium alone or in combination is effective in 60% of chronically treated patients, but response remains heterogenous and a large number of patients require a change in therapy after several weeks or months. Many studies have so far tried to identify molecular and genetic markers that could help us to predict response to mood stabilizers or the risk for adverse drug reactions. Pharmacogenetic studies in BD have been for the most part focused on lithium, but the complexity and variability of the response phenotype, together with the unclear mechanism of action of lithium, limited the power of these studies to identify robust biomarkers. Recent pharmacogenomic studies on lithium response have provided promising findings, suggesting that the integration of genome-wide investigations with deep phenotyping, in silico analyses and machine learning could lead us closer to personalized treatments for BD. Nevertheless, to date none of the genes suggested by pharmacogenetic studies on mood stabilizers have been included in any of the genetic tests approved by the Food and Drug Administration (FDA) for drug efficacy. On the other hand, genetic information has been included in drug labels to test for the safety of carbamazepine and valproate. In this review, we will outline available studies investigating the pharmacogenetics and pharmacogenomics of lithium and other mood stabilizers, with a specific focus on the limitations of these studies and potential strategies to overcome them. We will also discuss FDA-approved pharmacogenetic tests for treatments commonly used in the management of BD.

Notes

Compliance with Ethical Standards

Conflict of interest

CP, UH and AS declare they have no conflict of interest.

Funding

None.

References

  1. 1.
    Merikangas KR, Akiskal HS, Angst J, Greenberg PE, Hirschfeld RM, Petukhova M, et al. Lifetime and 12-month prevalence of bipolar spectrum disorder in the National Comorbidity Survey replication. Arch Gen Psychiatry. 2007;64(5):543–52.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Kleine-Budde K, Touil E, Moock J, Bramesfeld A, Kawohl W, Rossler W. Cost of illness for bipolar disorder: a systematic review of the economic burden. Bipolar Disord. 2014;16(4):337–53.PubMedGoogle Scholar
  3. 3.
    Yatham LN, Kennedy SH, Parikh SV, Schaffer A, Beaulieu S, Alda M, et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) collaborative update of CANMAT guidelines for the management of patients with bipolar disorder: update 2013. Bipolar Disord. 2013;15(1):1–44.PubMedGoogle Scholar
  4. 4.
    Grof P, Duffy A, Cavazzoni P, Grof E, Garnham J, MacDougall M, et al. Is response to prophylactic lithium a familial trait? J Clin Psychiatry. 2002;63(10):942–7.PubMedGoogle Scholar
  5. 5.
    Grof P, Alda M, Grof E, Fox D, Cameron P. The challenge of predicting response to stabilising lithium treatment. The importance of patient selection. Br J Psychiatry Suppl. 1993;21:16–9.Google Scholar
  6. 6.
    Budde M, Degner D, Brockmoller J, Schulze TG. Pharmacogenomic aspects of bipolar disorder: an update. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2017;27(6):599–609.Google Scholar
  7. 7.
    Asai T, Bundo M, Sugawara H, Sunaga F, Ueda J, Tanaka G, et al. Effect of mood stabilizers on DNA methylation in human neuroblastoma cells. Int J Neuropsychopharmacol. 2013;16(10):2285–94.PubMedGoogle Scholar
  8. 8.
    Pisanu C, Katsila T, Patrinos GP, Squassina A. Recent trends on the role of epigenomics, metabolomics and noncoding RNAs in rationalizing mood stabilizing treatment. Pharmacogenomics. 2018;19(2):129–43.PubMedGoogle Scholar
  9. 9.
    de Bartolomeis A, Tomasetti C, Cicale M, Yuan PX, Manji HK. Chronic treatment with lithium or valproate modulates the expression of Homer1b/c and its related genes Shank and Inositol 1,4,5-trisphosphate receptor. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2012;22(7):527–35.Google Scholar
  10. 10.
    Rybakowski JK. Genetic influences on response to mood stabilizers in bipolar disorder: current status of knowledge. CNS Drugs. 2013;27(3):165–73.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Severino G, Squassina A, Costa M, Pisanu C, Calza S, Alda M, et al. Pharmacogenomics of bipolar disorder. Pharmacogenomics. 2013;14(6):655–74.PubMedGoogle Scholar
  12. 12.
    Squassina A, Manchia M, Del Zompo M. Pharmacogenomics of mood stabilizers in the treatment of bipolar disorder. Hum Genom Proteom HGP. 2010;2010:159761.Google Scholar
  13. 13.
    Serretti A, Lilli R, Mandelli L, Lorenzi C, Smeraldi E. Serotonin transporter gene associated with lithium prophylaxis in mood disorders. Pharmacogenom J. 2001;1(1):71–7.Google Scholar
  14. 14.
    Bremer T, Diamond C, McKinney R, Shehktman T, Barrett TB, Herold C, et al. The pharmacogenetics of lithium response depends upon clinical co-morbidity. Mol Diagn Ther. 2007;11(3):161–70.PubMedGoogle Scholar
  15. 15.
    Manchia M, Congiu D, Squassina A, Lampus S, Ardau R, Chillotti C, et al. No association between lithium full responders and the DRD1, DRD2, DRD3, DAT1, 5-HTTLPR and HTR2A genes in a Sardinian sample. Psychiatry Res. 2009;169(2):164–6.PubMedGoogle Scholar
  16. 16.
    Michelon L, Meira-Lima I, Cordeiro Q, Miguita K, Breen G, Collier D, et al. Association study of the INPP1, 5HTT, BDNF, AP-2beta and GSK-3beta GENE variants and retrospectively scored response to lithium prophylaxis in bipolar disorder. Neurosci Lett. 2006;403(3):288–93.PubMedGoogle Scholar
  17. 17.
    Serretti A, Lorenzi C, Lilli R, Mandelli L, Pirovano A, Smeraldi E. Pharmacogenetics of lithium prophylaxis in mood disorders: analysis of COMT, MAO-A, and Gbeta3 variants. Am J Med Genet. 2002;114(4):370–9.PubMedGoogle Scholar
  18. 18.
    Serretti A, Malitas PN, Mandelli L, Lorenzi C, Ploia C, Alevizos B, et al. Further evidence for a possible association between serotonin transporter gene and lithium prophylaxis in mood disorders. Pharmacogenom J. 2004;4(4):267–73.Google Scholar
  19. 19.
    Rybakowski JK, Suwalska A, Czerski PM, Dmitrzak-Weglarz M, Leszczynska-Rodziewicz A, Hauser J. Prophylactic effect of lithium in bipolar affective illness may be related to serotonin transporter genotype. Pharmacol Rep PR. 2005;57(1):124–7.PubMedGoogle Scholar
  20. 20.
    Rybakowski JK, Czerski P, Dmitrzak-Weglarz M, Kliwicki S, Leszczynska-Rodziewicz A, Permoda-Osip A, et al. Clinical and pathogenic aspects of candidate genes for lithium prophylactic efficacy. J Psychopharmacol. 2012;26(3):368–73.PubMedGoogle Scholar
  21. 21.
    Rybakowski JK, Suwalska A, Skibinska M, Dmitrzak-Weglarz M, Leszczynska-Rodziewicz A, Hauser J. Response to lithium prophylaxis: interaction between serotonin transporter and BDNF genes. Am J Med Genet Part B Neuropsychiatr Genet. 2007;144B(6):820–3.Google Scholar
  22. 22.
    Tharoor H, Kotambail A, Jain S, Sharma PS, Satyamoorthy K. Study of the association of serotonin transporter triallelic 5-HTTLPR and STin2 VNTR polymorphisms with lithium prophylaxis response in bipolar disorder. Psychiatr Genet. 2013;23(2):77–81.PubMedGoogle Scholar
  23. 23.
    Serretti A, Lilli R, Lorenzi C, Gasperini M, Smeraldi E. Tryptophan hydroxylase gene and response to lithium prophylaxis in mood disorders. J Psychiatr Res. 1999;33(5):371–7.PubMedGoogle Scholar
  24. 24.
    Serretti A, Lilli R, Lorenzi C, Franchini L, Di Bella D, Catalano M, et al. Dopamine receptor D2 and D4 genes, GABA(A) alpha-1 subunit genes and response to lithium prophylaxis in mood disorders. Psychiatry Res. 1999;87(1):7–19.PubMedGoogle Scholar
  25. 25.
    Turecki G, Grof P, Cavazzoni P, Duffy A, Grof E, Ahrens B, et al. MAOA: association and linkage studies with lithium responsive bipolar disorder. Psychiatr Genet. 1999;9(1):13–6.PubMedGoogle Scholar
  26. 26.
    Serretti A, Lilli R, Lorenzi C, Franchini L, Smeraldi E. Dopamine receptor D3 gene and response to lithium prophylaxis in mood disorders. Int J Neuropsychopharmacol. 1998;1(2):125–9.PubMedGoogle Scholar
  27. 27.
    Rybakowski JK, Dmitrzak-Weglarz M, Suwalska A, Leszczynska-Rodziewicz A, Hauser J. Dopamine D1 receptor gene polymorphism is associated with prophylactic lithium response in bipolar disorder. Pharmacopsychiatry. 2009;42(1):20–2.PubMedGoogle Scholar
  28. 28.
    Dmitrzak-Weglarz M, Rybakowski JK, Suwalska A, Skibinska M, Leszczynska-Rodziewicz A, Szczepankiewicz A, et al. Association studies of the BDNF and the NTRK2 gene polymorphisms with prophylactic lithium response in bipolar patients. Pharmacogenomics. 2008;9(11):1595–603.PubMedGoogle Scholar
  29. 29.
    Wang Z, Li Z, Chen J, Huang J, Yuan C, Hong W, et al. Association of BDNF gene polymorphism with bipolar disorders in Han Chinese population. Genes Brain Behav. 2012;11(5):524–8.PubMedGoogle Scholar
  30. 30.
    Pae CU, Chiesa A, Porcelli S, Han C, Patkar AA, Lee SJ, et al. Influence of BDNF variants on diagnosis and response to treatment in patients with major depression, bipolar disorder and schizophrenia. Neuropsychobiology. 2012;65(1):1–11.PubMedGoogle Scholar
  31. 31.
    Allison JH, Stewart MA. Reduced brain inositol in lithium-treated rats. Nat New Biol. 1971;233(43):267–8.PubMedGoogle Scholar
  32. 32.
    Berridge MJ, Downes CP, Hanley MR. Neural and developmental actions of lithium: a unifying hypothesis. Cell. 1989;59(3):411–9.PubMedGoogle Scholar
  33. 33.
    Dimitrova A, Milanova V, Krastev S, Nikolov I, Toncheva D, Owen MJ, et al. Association study of myo-inositol monophosphatase 2 (IMPA2) polymorphisms with bipolar affective disorder and response to lithium treatment. Pharmacogenom J. 2005;5(1):35–41.Google Scholar
  34. 34.
    Steen VM, Lovlie R, Osher Y, Belmaker RH, Berle JO, Gulbrandsen AK. The polymorphic inositol polyphosphate 1-phosphatase gene as a candidate for pharmacogenetic prediction of lithium-responsive manic-depressive illness. Pharmacogenetics. 1998;8(3):259–68.PubMedGoogle Scholar
  35. 35.
    Szczepankiewicz A, Rybakowski JK, Suwalska A, Skibinska M, Leszczynska-Rodziewicz A, Dmitrzak-Weglarz M, et al. Association study of the glycogen synthase kinase-3beta gene polymorphism with prophylactic lithium response in bipolar patients. World J Biol Psychiatry. 2006;7(3):158–61.PubMedGoogle Scholar
  36. 36.
    Squassina A, Congiu D, Manconi F, Manchia M, Chillotti C, Lampus S, et al. The PDLIM5 gene and lithium prophylaxis: an association and gene expression analysis in Sardinian patients with bipolar disorder. Pharmacol Res. 2008;57(5):369–73.PubMedGoogle Scholar
  37. 37.
    Mamdani F, Alda M, Grof P, Young LT, Rouleau G, Turecki G. Lithium response and genetic variation in the CREB family of genes. Am J Med Genet Part B Neuropsychiatr Genet. 2008;147B(4):500–4.Google Scholar
  38. 38.
    Impey S, McCorkle SR, Cha-Molstad H, Dwyer JM, Yochum GS, Boss JM, et al. Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell. 2004;119(7):1041–54.PubMedGoogle Scholar
  39. 39.
    Boer U, Eglins J, Krause D, Schnell S, Schofl C, Knepel W. Enhancement by lithium of cAMP-induced CRE/CREB-directed gene transcription conferred by TORC on the CREB basic leucine zipper domain. Biochem J. 2007;408(1):69–77.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Masui T, Hashimoto R, Kusumi I, Suzuki K, Tanaka T, Nakagawa S, et al. A possible association between the -116C/G single nucleotide polymorphism of the XBP1 gene and lithium prophylaxis in bipolar disorder. Int J Neuropsychopharmacol. 2006;9(1):83–8.PubMedGoogle Scholar
  41. 41.
    Kakiuchi C, Kato T. Lithium response and -116C/G polymorphism of XBP1 in Japanese patients with bipolar disorder. Int J Neuropsychopharmacol. 2005;8(4):631–2.PubMedGoogle Scholar
  42. 42.
    Perlis RH, Smoller JW, Ferreira MA, McQuillin A, Bass N, Lawrence J, et al. A genomewide association study of response to lithium for prevention of recurrence in bipolar disorder. Am J Psychiatry. 2009;166(6):718–25.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Squassina A, Manchia M, Borg J, Congiu D, Costa M, Georgitsi M, et al. Evidence for association of an ACCN1 gene variant with response to lithium treatment in Sardinian patients with bipolar disorder. Pharmacogenomics. 2011;12(11):1559–69.PubMedGoogle Scholar
  44. 44.
    Manchia M, Adli M, Akula N, Ardau R, Aubry JM, Backlund L, et al. Assessment of response to lithium maintenance treatment in bipolar disorder: a Consortium on Lithium Genetics (ConLiGen) report. PLoS One. 2013;8(6):e65636.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Chen CH, Lee CS, Lee MT, Ouyang WC, Chen CC, Chong MY, et al. Variant GADL1 and response to lithium therapy in bipolar I disorder. N Engl J Med. 2014;370(2):119–28.PubMedGoogle Scholar
  46. 46.
    Consortium on Lithium G, Hou L, Heilbronner U, Rietschel M, Kato T, Kuo PH, et al. Variant GADL1 and response to lithium in bipolar I disorder. N Engl J Med. 2014;370(19):1857–9.Google Scholar
  47. 47.
    Hou L, Heilbronner U, Degenhardt F, Adli M, Akiyama K, Akula N, et al. Genetic variants associated with response to lithium treatment in bipolar disorder: a genome-wide association study. Lancet. 2016;387(10023):1085–93.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Maranville JC, Cox NJ. Pharmacogenomic variants have larger effect sizes than genetic variants associated with other dichotomous complex traits. Pharmacogenom J. 2016;16(4):388–92.Google Scholar
  49. 49.
    Zhou K, Pearson ER. Insights from genome-wide association studies of drug response. Annu Rev Pharmacol Toxicol. 2013;53:299–310.PubMedGoogle Scholar
  50. 50.
    Ioannidis JP. Why most published research findings are false. PLoS Med. 2005;2(8):e124.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Maxwell SE, Lau MY, Howard GS. Is psychology suffering from a replication crisis? What does “failure to replicate” really mean? Am Psychol. 2015;70(6):487–98.PubMedGoogle Scholar
  52. 52.
    Higgins GA, Allyn-Feuer A, Barbour E, Athey BD. A glutamatergic network mediates lithium response in bipolar disorder as defined by epigenome pathway analysis. Pharmacogenomics. 2015;16(14):1547–63.PubMedGoogle Scholar
  53. 53.
    Hunsberger JG, Chibane FL, Elkahloun AG, Henderson R, Singh R, Lawson J, et al. Novel integrative genomic tool for interrogating lithium response in bipolar disorder. Transl Psychiatry. 2015;5:e504.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Squassina A, Costa M, Congiu D, Manchia M, Angius A, Deiana V, et al. Insulin-like growth factor 1 (IGF-1) expression is up-regulated in lymphoblastoid cell lines of lithium responsive bipolar disorder patients. Pharmacol Res. 2013;73:1–7.PubMedGoogle Scholar
  55. 55.
    Milanesi E, Hadar A, Maffioletti E, Werner H, Shomron N, Gennarelli M, et al. Insulin-like growth factor 1 differentially affects lithium sensitivity of lymphoblastoid cell lines from lithium responder and non-responder bipolar disorder patients. J Mol Neurosci MN. 2015;56(3):681–7.PubMedGoogle Scholar
  56. 56.
    Jack J, Rotroff D, Motsinger-Reif A. Lymphoblastoid cell lines models of drug response: successes and lessons from this pharmacogenomic model. Curr Mol Med. 2014;14(7):833–40.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Chen H, Wang N, Burmeister M, McInnis MG. MicroRNA expression changes in lymphoblastoid cell lines in response to lithium treatment. Int J Neuropsychopharmacol. 2009;12(7):975–81.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Milanesi E, Voinsky I, Hadar A, Srouji A, Maj C, Shekhtman T, et al. RNA sequencing of bipolar disorder lymphoblastoid cell lines implicates the neurotrophic factor HRP-3 in lithium’s clinical efficacy. World J Biol Psychiatry. 2017;22:1–13.Google Scholar
  59. 59.
    Sugawara H, Iwamoto K, Bundo M, Ishiwata M, Ueda J, Kakiuchi C, et al. Effect of mood stabilizers on gene expression in lymphoblastoid cells. J Neural Transm. 2010;117(2):155–64.PubMedGoogle Scholar
  60. 60.
    Breen MS, White CH, Shekhtman T, Lin K, Looney D, Woelk CH, et al. Lithium-responsive genes and gene networks in bipolar disorder patient-derived lymphoblastoid cell lines. Pharmacogenom J. 2016;16(5):446–53.Google Scholar
  61. 61.
    Geoffroy PA, Curis E, Courtin C, Moreira J, Morvillers T, Etain B, et al. Lithium response in bipolar disorders and core clock genes expression. World J Biol Psychiatry. 2017;28:1–14.Google Scholar
  62. 62.
    Papadima EM, Niola P, Melis C, Pisanu C, Congiu D, Cruceanu C, et al. Evidence towards RNA binding motif (RNP1, RRM) protein 3 (RBM3) as a potential biomarker of lithium response in bipolar disorder patients. J Mol Neurosci MN. 2017;62(3–4):304–8.PubMedGoogle Scholar
  63. 63.
    Viswanath B, Jose SP, Squassina A, Thirthalli J, Purushottam M, Mukherjee O, et al. Cellular models to study bipolar disorder: a systematic review. J Affect Disord. 2015;184:36–50.PubMedGoogle Scholar
  64. 64.
    Stern S, Santos R, Marchetto MC, Mendes AP, Rouleau GA, Biesmans S, et al. Neurons derived from patients with bipolar disorder divide into intrinsically different sub-populations of neurons, predicting the patients’ responsiveness to lithium. Mol Psychiatry. 2017. doi: https://doi.org/10.1038/mp.2016.260.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Tobe BTD, Crain AM, Winquist AM, Calabrese B, Makihara H, Zhao WN, et al. Probing the lithium-response pathway in hiPSCs implicates the phosphoregulatory set-point for a cytoskeletal modulator in bipolar pathogenesis. Proc Natl Acad Sci USA. 2017;114(22):E4462–71.PubMedGoogle Scholar
  66. 66.
    Grof P. Sixty years of lithium responders. Neuropsychobiology. 2010;62(1):8–16.PubMedGoogle Scholar
  67. 67.
    Etain B, Lajnef M, Brichant-Petitjean C, Geoffroy PA, Henry C, Gard S, et al. Childhood trauma and mixed episodes are associated with poor response to lithium in bipolar disorders. Acta Psychiatr Scand. 2017;135(4):319–27.PubMedGoogle Scholar
  68. 68.
    Scott J, Geoffroy PA, Sportiche S, Brichant-Petit-Jean C, Gard S, Kahn JP, et al. Cross-validation of clinical characteristics and treatment patterns associated with phenotypes for lithium response defined by the Alda scale. J Affect Disord. 2017;208:62–7.PubMedGoogle Scholar
  69. 69.
    Sportiche S, Geoffroy PA, Brichant-Petitjean C, Gard S, Khan JP, Azorin JM, et al. Clinical factors associated with lithium response in bipolar disorders. Aust N Z J Psychiatry. 2017;51(5):524–30.PubMedGoogle Scholar
  70. 70.
    Potkin SG, Turner JA, Guffanti G, Lakatos A, Torri F, Keator DB, et al. Genome-wide strategies for discovering genetic influences on cognition and cognitive disorders: methodological considerations. Cognit Neuropsychiatry. 2009;14(4–5):391–418.Google Scholar
  71. 71.
    Zondervan KT. Genetic association study design. In: Zeggini E, Morris A, editors. Analysis of complex disease association studies: a practical guide; 2011. Academic Press, London. ISBN: 978-0-12-375142-3.Google Scholar
  72. 72.
    Song J, Bergen SE, Di Florio A, Karlsson R, Charney A, Ruderfer DM, et al. Genome-wide association study identifies SESTD1 as a novel risk gene for lithium-responsive bipolar disorder. Mol Psychiatry. 2016;21(9):1290–7.PubMedGoogle Scholar
  73. 73.
    Song J, Bergen SE, Di Florio A, Karlsson R, Charney A, Ruderfer DM, Stahl EA, Chambert KD, Moran JL, Gordon-Smith K, Forty L, Green EK, Jones I, Jones L, Scolnick EM, Sklar P, Smoller JW, Lichtenstein P, Hultman C, Craddock N, Landén M. Genome-wide association study identifies SESTD1 as a novel risk gene for lithium-responsive bipolar disorder. Mol Psychiatry. 2017;22(8):1223.PubMedGoogle Scholar
  74. 74.
    Alda M. The phenotypic spectra of bipolar disorder. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2004;14(Suppl 2):S94–9.Google Scholar
  75. 75.
    Kelsoe JR. Arguments for the genetic basis of the bipolar spectrum. J Affect Disord. 2003;73(1–2):183–97.PubMedGoogle Scholar
  76. 76.
    McMahon FJ, Insel TR. Pharmacogenomics and personalized medicine in neuropsychiatry. Neuron. 2012;74(5):773–6.PubMedPubMedCentralGoogle Scholar
  77. 77.
    International Consortium on Lithium G, Amare AT, Schubert KO, Hou L, Clark SR, Papiol S, et al. Association of polygenic score for schizophrenia and HLA antigen and inflammation genes with response to lithium in bipolar affective disorder: a genome-wide association study. JAMA psychiatry. 2018;75(1):65–74.Google Scholar
  78. 78.
    Perlis RH, Adams DH, Fijal B, Sutton VK, Farmen M, Breier A, et al. Genetic association study of treatment response with olanzapine/fluoxetine combination or lamotrigine in bipolar I depression. J Clin Psychiatry. 2010;71(5):599–605.PubMedGoogle Scholar
  79. 79.
    Kim B, Kim CY, Lee MJ, Joo YH. Preliminary evidence on the association between XBP1-116C/G polymorphism and response to prophylactic treatment with valproate in bipolar disorders. Psychiatry Res. 2009;168(3):209–12.PubMedGoogle Scholar
  80. 80.
    Lee HY, Kim YK. Catechol-O-methyltransferase Val158Met polymorphism affects therapeutic response to mood stabilizer in symptomatic manic patients. Psychiatry Res. 2010;175(1–2):63–6.PubMedGoogle Scholar
  81. 81.
    Wang Z, Fan J, Gao K, Li Z, Yi Z, Wang L, et al. Neurotrophic tyrosine kinase receptor type 2 (NTRK2) gene associated with treatment response to mood stabilizers in patients with bipolar I disorder. J Mol Neurosci MN. 2013;50(2):305–10.PubMedGoogle Scholar
  82. 82.
    McCormack M, Alfirevic A, Bourgeois S, Farrell JJ, Kasperaviciute D, Carrington M, et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N Engl J Med. 2011;364(12):1134–43.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Cohen BH, Chinnery PF, Copeland WC. POLG-related disorders. Seattle: University of Washington; 2010.Google Scholar
  84. 84.
    Li S, Guo J, Ying Z, Chen S, Yang L, Chen K, et al. Valproic acid-induced hepatotoxicity in Alpers syndrome is associated with mitochondrial permeability transition pore opening-dependent apoptotic sensitivity in an induced pluripotent stem cell model. Hepatology. 2015;61(5):1730–9.PubMedGoogle Scholar
  85. 85.
    Pisanu C, Papadima EM, Del Zompo M, Squassina A. Understanding the molecular mechanisms underlying mood stabilizer treatments in bipolar disorder: potential involvement of epigenetics. Neurosci Lett. 2018;669:24–31.PubMedGoogle Scholar
  86. 86.
    Alda M. Lithium in the treatment of bipolar disorder: pharmacology and pharmacogenetics. Mol Psychiatry. 2015;20(6):661–70.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Duffy A, Turecki G, Grof P, Cavazzoni P, Grof E, Joober R, et al. Association and linkage studies of candidate genes involved in GABAergic neurotransmission in lithium-responsive bipolar disorder. J Psychiatry Neurosci JPN. 2000;25(4):353–8.PubMedGoogle Scholar
  88. 88.
    Mitjans M, Arias B, Jimenez E, Goikolea JM, Saiz PA, Garcia-Portilla MP, et al. Exploring genetic variability at PI, GSK3, HPA, and glutamatergic pathways in lithium response: association with IMPA2, INPP1, and GSK3B genes. J Clin Psychopharmacol. 2015;35(5):600–4.PubMedGoogle Scholar
  89. 89.
    Chiesa A, Crisafulli C, Porcelli S, Han C, Patkar AA, Lee SJ, et al. Influence of GRIA1, GRIA2 and GRIA4 polymorphisms on diagnosis and response to treatment in patients with major depressive disorder. Eur Arch Psychiatry Clin Neurosci. 2012;262(4):305–11.PubMedGoogle Scholar
  90. 90.
    Szczepankiewicz A, Skibinska M, Suwalska A, Hauser J, Rybakowski JK. No association of three GRIN2B polymorphisms with lithium response in bipolar patients. Pharmacol Rep PR. 2009;61(3):448–52.PubMedGoogle Scholar
  91. 91.
    Serretti A, Lorenzi C, Lilli R, Smeraldi E. Serotonin receptor 2A, 2C, 1A genes and response to lithium prophylaxis in mood disorders. J Psychiatr Res. 2000;34(2):89–98.PubMedGoogle Scholar
  92. 92.
    Dmitrzak-Weglarz M, Rybakowski JK, Suwalska A, Slopien A, Czerski PM, Leszczynska-Rodziewicz A, et al. Association studies of 5-HT2A and 5-HT2C serotonin receptor gene polymorphisms with prophylactic lithium response in bipolar patients. Pharmacol Rep PR. 2005;57(6):761–5.PubMedGoogle Scholar
  93. 93.
    Cavazzoni P, Alda M, Turecki G, Rouleau G, Grof E, Martin R, et al. Lithium-responsive affective disorders: no association with the tyrosine hydroxylase gene. Psychiatry Res. 1996;64(2):91–6.PubMedGoogle Scholar
  94. 94.
    Serretti A, Chiesa A, Porcelli S, Han C, Patkar AA, Lee SJ, et al. Influence of TPH2 variants on diagnosis and response to treatment in patients with major depression, bipolar disorder and schizophrenia. Psychiatry Res. 2011;189(1):26–32.PubMedGoogle Scholar
  95. 95.
    Rybakowski JK, Suwalska A, Skibinska M, Szczepankiewicz A, Leszczynska-Rodziewicz A, Permoda A, et al. Prophylactic lithium response and polymorphism of the brain-derived neurotrophic factor gene. Pharmacopsychiatry. 2005;38(4):166–70.PubMedGoogle Scholar
  96. 96.
    Drago A, Serretti A, Smith R, Huezo-Diaz P, Malitas P, Albani D, et al. No association between genetic markers in BDNF gene and lithium prophylaxis in a Greek sample. Int J Psychiatry Clin Pract. 2010;14(2):154–7.PubMedGoogle Scholar
  97. 97.
    Sjoholt G, Ebstein RP, Lie RT, Berle JO, Mallet J, Deleuze JF, et al. Examination of IMPA1 and IMPA2 genes in manic-depressive patients: association between IMPA2 promoter polymorphisms and bipolar disorder. Mol Psychiatry. 2004;9(6):621–9.PubMedGoogle Scholar
  98. 98.
    Turecki G, Grof P, Cavazzoni P, Duffy A, Grof E, Ahrens B, et al. Evidence for a role of phospholipase C-gamma1 in the pathogenesis of bipolar disorder. Mol Psychiatry. 1998;3(6):534–8.PubMedGoogle Scholar
  99. 99.
    Lovlie R, Berle JO, Stordal E, Steen VM. The phospholipase C-gamma1 gene (PLCG1) and lithium-responsive bipolar disorder: re-examination of an intronic dinucleotide repeat polymorphism. Psychiatr Genet. 2001;11(1):41–3.PubMedGoogle Scholar
  100. 100.
    Ftouhi-Paquin N, Alda M, Grof P, Chretien N, Rouleau G, Turecki G. Identification of three polymorphisms in the translated region of PLC-gamma1 and their investigation in lithium responsive bipolar disorder. Am J Med Genet. 2001;105(3):301–5.PubMedGoogle Scholar
  101. 101.
    Squassina A, Manchia M, Congiu D, Severino G, Chillotti C, Ardau R, et al. The diacylglycerol kinase eta gene and bipolar disorder: a replication study in a Sardinian sample. Mol Psychiatry. 2009;14(4):350–1.PubMedGoogle Scholar
  102. 102.
    Manchia M, Squassina A, Congiu D, Chillotti C, Ardau R, Severino G, et al. Interacting genes in lithium prophylaxis: preliminary results of an exploratory analysis on the role of DGKH and NR1D1 gene polymorphisms in 199 Sardinian bipolar patients. Neurosci Lett. 2009;467(2):67–71.PubMedGoogle Scholar
  103. 103.
    Masui T, Hashimoto R, Kusumi I, Suzuki K, Tanaka T, Nakagawa S, et al. Lithium response and Val66Met polymorphism of the brain-derived neurotrophic factor gene in Japanese patients with bipolar disorder. Psychiatr Genet. 2006;16(2):49–50.PubMedGoogle Scholar
  104. 104.
    McCarthy MJ, Nievergelt CM, Shekhtman T, Kripke DF, Welsh DK, Kelsoe JR. Functional genetic variation in the Rev-Erbalpha pathway and lithium response in the treatment of bipolar disorder. Genes Brain Behav. 2011;10(8):852–61.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Rybakowski JK, Dmitrzak-Weglar M, Kliwicki S, Hauser J. Polymorphism of circadian clock genes and prophylactic lithium response. Bipolar Disord. 2014;16(2):151–8.PubMedGoogle Scholar
  106. 106.
    Benedetti F, Serretti A, Pontiggia A, Bernasconi A, Lorenzi C, Colombo C, et al. Long-term response to lithium salts in bipolar illness is influenced by the glycogen synthase kinase 3-beta -50 T/C SNP. Neurosci Lett. 2005;376(1):51–5.PubMedGoogle Scholar
  107. 107.
    Lin YF, Huang MC, Liu HC. Glycogen synthase kinase 3beta gene polymorphisms may be associated with bipolar I disorder and the therapeutic response to lithium. J Affect Disord. 2013;147(1–3):401–6.PubMedGoogle Scholar
  108. 108.
    Iwahashi K, Nishizawa D, Narita S, Numajiri M, Murayama O, Yoshihara E, et al. Haplotype analysis of GSK-3beta gene polymorphisms in bipolar disorder lithium responders and nonresponders. Clin Neuropharmacol. 2014;37(4):108–10.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Campos-de-Sousa S, Guindalini C, Tondo L, Munro J, Osborne S, Floris G, et al. Nuclear receptor rev-erb-{alpha} circadian gene variants and lithium carbonate prophylaxis in bipolar affective disorder. J Biol Rhythms. 2010;25(2):132–7.PubMedGoogle Scholar
  110. 110.
    Szczepankiewicz A, Leszczynska-Rodziewicz A, Pawlak J, Rajewska-Rager A, Dmitrzak-Weglarz M, Wilkosc M, et al. Glucocorticoid receptor polymorphism is associated with major depression and predominance of depression in the course of bipolar disorder. J Affect Disord. 2011;134(1–3):138–44.PubMedGoogle Scholar
  111. 111.
    Pisanu C, Congiu D, Costa M, Sestu M, Chillotti C, Ardau R, et al. No association of endocannabinoid genes with bipolar disorder or lithium response in a Sardinian sample. Psychiatry Res. 2013;210(3):887–90.PubMedGoogle Scholar
  112. 112.
    Cruceanu C, Alda M, Turecki G. Lithium: a key to the genetics of bipolar disorder. Genome Med. 2009;1(8):79.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Rybakowski JK, Skibinska M, Suwalska A, Leszczynska-Rodziewicz A, Kaczmarek L, Hauser J. Functional polymorphism of matrix metalloproteinase-9 (MMP-9) gene and response to lithium prophylaxis in bipolar patients. Hum Psychopharmacol. 2011;26(2):168–71.PubMedGoogle Scholar
  114. 114.
    Mamdani F, Sequeira A, Alda M, Grof P, Rouleau G, Turecki G. No association between the PREP gene and lithium responsive bipolar disorder. BMC Psychiatry. 2007;7:9.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biomedical Sciences, Section of Neuroscience and Clinical PharmacologyUniversity of CagliariCagliariItaly
  2. 2.Department of Neuroscience, Unit of Functional PharmacologyUppsala UniversityUppsalaSweden
  3. 3.Institute of Psychiatric Phenomics and Genomics (IPPG)University Hospital, LMU MunichMunichGermany
  4. 4.Department of PsychiatryDalhousie UniversityHalifaxCanada

Personalised recommendations