Molecular Diagnosis & Therapy

, Volume 20, Issue 5, pp 449–455 | Cite as

Pivotal MicroRNAs in Melanoma: A Mini-Review

  • Zhenjun Deng
  • Jingang Hao
  • Dongyun Lei
  • Yongjing He
  • Lechun Lu
  • Li He
Review Article


Melanoma is a common skin cancer associated with ultraviolet light exposure and genetic variance. However, the etiology and molecular mechanisms of melanoma remain unknown. Recent studies have shown that microRNAs (miRNAs) can play key roles in the development and prognosis of this disease. In this study, we reviewed several pivotal miRNAs that may contribute to melanoma by involvement in the processes of invasion, migration, and metastasis of melanoma cells.


Melanoma Melanoma Cell Papillary Thyroid Carcinoma Primary Cutaneous Malignant Melanoma Activate Leukocyte Cell Adhesion Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Author Contributions

Li He and Lechun Lu conceived and designed this work. Lechun Lu, Zhenjun Deng, Jingang Hao, Dongyun Lei, and Yongjing He screened and analyzed the data. Lechun Lu, Zhenjun Deng, Jingang Hao, Dongyun Lei, and Li He wrote the manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors have no conflict of interest that are directly relevant to the content of this article.


This work was supported by grants from the National Natural Science Foundation of China (NSFC; Grant Number 81560502), the National Natural Science Foundation of Yunnan Province (Grant Numbers 2013FB044 and 2014FB008), and the Education Department Fund of Yunnan Province (Grant Numbers 2014Y165, 2015Z082); and by a Doctoral Graduate Academic Newcomer Award of Yunnan Province (2014, 2015).


  1. 1.
    Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.PubMedCrossRefGoogle Scholar
  3. 3.
    Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.PubMedCrossRefGoogle Scholar
  4. 4.
    Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–66.PubMedCrossRefGoogle Scholar
  5. 5.
    Hughes AE, Bradley DT, Campbell M, et al. Mutation altering the miR-184 seed region causes familial keratoconus with cataract. Am J Hum Genet. 2011;89(5):628–33.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    de Pontual L, Yao E, Callier P, et al. Germline deletion of the miR-17 approximately 92 cluster causes skeletal and growth defects in humans. Nat Genet. 2011;43(10):1026–30.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Jones K, Nourse JP, Keane C, et al. Plasma microRNA are disease response biomarkers in classical Hodgkin lymphoma. Clin Cancer Res. 2014;20(1):253–64.PubMedCrossRefGoogle Scholar
  8. 8.
    Smith T, Rajakaruna C, Caputo M, et al. MicroRNAs in congenital heart disease. Ann Transl Med. 2015;3(21):333.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Skarn M, Namlos HM, Noordhuis P, et al. Adipocyte differentiation of human bone marrow-derived stromal cells is modulated by microRNA-155, microRNA-221, and microRNA-222. Stem Cells Dev. 2012;21:873–83.PubMedCrossRefGoogle Scholar
  10. 10.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30. doi: 10.3322/caac.21332.PubMedCrossRefGoogle Scholar
  11. 11.
    Guo J, Qin S, Liang J, et al. Chinese guidelines on the diagnosis and treatment of melanoma (2015 edition). Ann Transl Med. 2015;3:322.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Saldanha G, Potter L, Lee YS, et al. MicroRNA-21 expression and its pathogenetic significance in cutaneous melanoma. Melanoma Res. 2016;26(1):21–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Wang K, Zhang ZW. Expression of miR-203 is decreased and associated with the prognosis of melanoma patients. Int J Clin Exp Pathol. 2015;8(10):13249–54.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Segura MF, Greenwald HS, Hanniford D, Osman I, Hernando E. MicroRNA and cutaneous melanoma: from discovery to prognosis and therapy. Carcinogenesis. 2012;33:1823–32.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Levati L, Alvino E, Pagani E, et al. Altered expression of selected microRNAs in melanoma: antiproliferative and proapoptotic activity of miRNA-155. Int J Oncol. 2009;35:393–400.PubMedGoogle Scholar
  16. 16.
    Chen J, Zhang X, Lentz C, et al. MiR-193b regulates Mcl-1 in melanoma. Am J Pathol. 2011;179:2162–8.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Dar AA, Majid S, de Semir D, Nosrati M, Bezrookove V, Kashani-Sabet M. MiRNA-205 suppresses melanoma cell proliferation and induces senescence via regulation of E2F1 protein. J Biol Chem. 2011;286:16606–14.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Xu Y, Brenn T, Brown ER, Doherty V, Melton DW. Differential expression of microRNAs during melanoma progression: miR-200c, miR-205 and miR-211 are downregulated in melanoma and act as tumour suppressors. Br J Cancer. 2012;106:553–61.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Muller DW, Bosserhoff AK. Integrin beta 3 expression is regulated by let-7a miRNA in malignant melanoma. Oncogene. 2008;27:6698–706.PubMedCrossRefGoogle Scholar
  20. 20.
    Fu TY, Chang CC, Lin CT, et al. Let-7b-mediated suppression of basigin expression and metastasis in mouse melanoma cells. Exp Cell Res. 2011;317:445–51.PubMedCrossRefGoogle Scholar
  21. 21.
    Noguchi S, Mori T, Hoshino Y, et al. Comparative study of anti-oncogenic microRNA-145 in canine and human malignant melanoma. J Vet Med Sci. 2012;74:1–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Segura MF, Hanniford D, Menendez S, et al. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci USA. 2009;106:1814–9.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Tembe V, Schramm SJ, Stark MS, et al. MicroRNA and mRNA expression profiling in metastatic melanoma reveal associations with BRAF mutation and patient prognosis. Pigment Cell Melanoma Res. 2015;28:254–66.PubMedCrossRefGoogle Scholar
  24. 24.
    Jayawardana K, Schramm SJ, Tembe V, et al. Identification, review, and systematic cross-validation of microrna prognostic signatures in metastatic melanoma. J Invest Dermatol. 2016;136:245–54.PubMedCrossRefGoogle Scholar
  25. 25.
    Musilova K, Mraz M. MicroRNAs in B-cell lymphomas: how a complex biology gets more complex. Leukemia. 2015;29:1004–17.PubMedCrossRefGoogle Scholar
  26. 26.
    Asangani IA, Rasheed SA, Nikolova DA, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008;27:2128–36.PubMedCrossRefGoogle Scholar
  27. 27.
    Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133:647.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Patrick DM, Montgomery RL, Qi X, et al. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J Clin Investig. 2010;120:3912–6.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kumarswamy R, Volkmann I, Thum T. Regulation and function of miRNA-21 in health and disease. RNA Biol. 2011;8:70.CrossRefGoogle Scholar
  30. 30.
    Iorio MV, Visone R, Di Leva G, et al. MicroRNA signatures in human ovarian cancer. Cancer Res. 2007;67:8699–707.PubMedCrossRefGoogle Scholar
  31. 31.
    Hu Y, Correa AM, Hoque A, et al. Prognostic significance of differentially expressed miRNAs in esophageal cancer. Int J Cancer. 2011;128:132–43.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Yang CH, Yue J, Pfeffer SR, et al. MicroRNA miR-21 regulates the metastatic behavior of B16 melanoma cells. J Biol Chem. 2011;286:39172–8.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Satzger I, Mattern A, Kuettler U, et al. MicroRNA-21 is upregulated in malignant melanoma and influences apoptosis of melanocytic cells. Exp Dermatol. 2012;21:509–14.PubMedCrossRefGoogle Scholar
  34. 34.
    Jiang L, Lv X, Li J, et al. The status of microRNA-21 expression and its clinical significance in human cutaneous malignant melanoma. Acta Histochem. 2012;114:582–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Saldanha G, Potter L, Lee YS, et al. MicroRNA-21 expression and its pathogenetic significance in cutaneous melanoma. Melanoma Res. 2016;26:21–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Yang CH, Pfeffer SR, Sims M, et al. The oncogenic microRNA-21 inhibits the tumor suppressive activity of FBXO11 to promote tumorigenesis. J Biol Chem. 2015;290:6037–46.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Sonkoly E, Wei T, Janson PC, et al. MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS One. 2007;2:e610.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Yi R, Poy MN, Stoffel M, Fuchs E. A skin microRNA promotes differentiation by repressing ‘stemness’. Nature. 2008;452:225–9.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Stanczyk J, Ospelt C, Karouzakis E, et al. Altered expression of microRNA-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation. Arthritis Rheum. 2011;63:373–81.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Ikenaga N, Ohuchida K, Mizumoto K, et al. MicroRNA-203 expression as a new prognostic marker of pancreatic adenocarcinoma. Ann Surg Oncol. 2010;17:3120–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Furuta M, Kozaki KI, Tanaka S, et al. MiR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis. 2010;31:766–76.PubMedCrossRefGoogle Scholar
  42. 42.
    Yu X, Jiang X, Li H, et al. MiR-203 inhibits the proliferation and self-renewal of esophageal cancer stem-like cells by suppressing stem renewal factor Bmi-1. Stem Cells Dev. 2014;23:576–85.PubMedCrossRefGoogle Scholar
  43. 43.
    Wang C, Wang X, Liang H, et al. MiR-203 inhibits cell proliferation and migration of lung cancer cells by targeting PKCalpha. PLoS One. 2013;8:e73985.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Bu P, Yang P. MicroRNA-203 inhibits malignant melanoma cell migration by targeting versican. Exp Ther Med. 2014;8:309–15.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Wang K, Zhang ZW. Expression of miR-203 is decreased and associated with the prognosis of melanoma patients. Int J Clin Exp Pathol. 2015;8:13249–54.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Noguchi S, Kumazaki M, Mori T, et al. Analysis of microRNA-203 function in CREB/MITF/RAB27a pathway: comparison between canine and human melanoma cells. Vet Comp Oncol. doi: 10.1111/vco.12118 (Epub 2014 Oct 3).
  47. 47.
    Noguchi S, Kumazaki M, Yasui Y, et al. MicroRNA-203 regulates melanosome transport and tyrosinase expression in melanoma cells by targeting kinesin superfamily protein 5b. J Invest Dermatol. 2014;134:461–9.PubMedCrossRefGoogle Scholar
  48. 48.
    van Kempen LC, van den Hurk K, Lazar V, et al. Loss of microRNA-200a and c, and microRNA-203 expression at the invasive front of primary cutaneous melanoma is associated with increased thickness and disease progression. Virchows Arch. 2012;461:441–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Noguchi S, Mori T, Hoshino Y, et al. MicroRNAs as tumour suppressors in canine and human melanoma cells and as a prognostic factor in canine melanomas. Vet Comp Oncol. 2013;11:113–23.PubMedCrossRefGoogle Scholar
  50. 50.
    Bar-Eli M. Searching for the ‘melano-miRs’: miR-214 drives melanoma metastasis. EMBO J. 2011;30:1880–1.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Maubach G, Lim MC, Chen J, et al. MiRNA studies in in vitro and in vivo activated hepatic stellate cells. World J Gastroenterol. 2011;17:2748–73.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Yang H, Kong W, He L, et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 2008;68:425–33.PubMedCrossRefGoogle Scholar
  53. 53.
    Peng RQ, Wan HY, Li HF, et al. MicroRNA-214 suppresses growth and invasiveness of cervical cancer cells by targeting UDP-N-acetyl-alpha-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase 7. J Biol Chem. 2012;287:14301–9.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Zhang XJ, Ye H, Zeng CW, et al. Dysregulation of miR-15a and miR-214 in human pancreatic cancer. J Hematol Oncol. 2010;3:46.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Deng M, Ye Q, Qin Z, et al. MiR-214 promotes tumorigenesis by targeting lactotransferrin in nasopharyngeal carcinoma. Tumour Biol. 2013;34:1793–800.PubMedCrossRefGoogle Scholar
  56. 56.
    Penna E, Orso F, Cimino D, et al. MicroRNA-214 contributes to melanoma tumour progression through suppression of TFAP2C. EMBO J. 2011;30:1990–2007.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Mishra RR, Kneitz S, Schartl M. Comparative analysis of melanoma deregulated miRNAs in the medaka and Xiphophorus pigment cell cancer models. Comp Biochem Physiol Toxicol Pharmacol. 2014;163:64–76.CrossRefGoogle Scholar
  58. 58.
    Penna E, Orso F, Cimino D, et al. MiR-214 coordinates melanoma progression by upregulating ALCAM through TFAP2 and miR-148b downmodulation. Cancer Res. 2013;73:4098–111.PubMedCrossRefGoogle Scholar
  59. 59.
    Smith AR, Marquez RT, Tsao WC, et al. Tumor suppressive microRNA-137 negatively regulates Musashi-1 and colorectal cancer progression. Oncotarget. 2015;6:12558–73.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Dong S, Jin M, Li Y, et al. MiR-137 acts as a tumor suppressor in papillary thyroid carcinoma by targeting CXCL12. Oncol Rep. 2016;35(4):2151–8. doi: 10.3892/or.2016.4604.PubMedGoogle Scholar
  61. 61.
    Shen H, Wang L, Ge X, et al. MicroRNA-137 inhibits tumor growth and sensitizes chemosensitivity to paclitaxel and cisplatin in lung cancer. Oncotarget. doi: 10.18632/oncotarget.8011. [Epub 2016 Mar 9].
  62. 62.
    Bemis LT, Chen R, Amato CM, et al. MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines. Cancer Res. 2008;68:1362–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Chen X, Wang J, Shen H, et al. Epigenetics, microRNAs, and carcinogenesis: functional role of microRNA-137 in uveal melanoma. Invest Ophthalmol Vis Sci. 2011;52:1193–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Deng Y, Deng H, Bi F, et al. MicroRNA-137 targets carboxyl-terminal binding protein 1 in melanoma cell lines. Int J Biol Sci. 2011;7:133–7.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Hao S, Luo C, Abukiwan A, et al. MiR-137 inhibits proliferation of melanoma cells by targeting PAK2. Exp Dermatol. 2015;24:947–52.PubMedCrossRefGoogle Scholar
  66. 66.
    Luo C, Tetteh PW, Merz PR, et al. MiR-137 inhibits the invasion of melanoma cells through downregulation of multiple oncogenic target genes. J Invest Dermatol. 2013;133:768–75.PubMedCrossRefGoogle Scholar
  67. 67.
    Li N. Low expression of mir-137 predicts poor prognosis in cutaneous melanoma patients. Med Sci Monit. 2016;22:140–4.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Kim KH, Bin BH, Kim J, et al. Novel inhibitory function of miR-125b in melanogenesis. Pigment Cell Melanoma Res. 2014;27:140–4.PubMedCrossRefGoogle Scholar
  69. 69.
    Guan Y, Yao H, Zheng Z, Qiu G, Sun K. MiR-125b targets BCL3 and suppresses ovarian cancer proliferation. Int J Cancer. 2011;128:2274–83.PubMedCrossRefGoogle Scholar
  70. 70.
    Huang L, Luo J, Cai Q, et al. MicroRNA-125b suppresses the development of bladder cancer by targeting E2F3. Int J Cancer. 2011;128:1758–69.PubMedCrossRefGoogle Scholar
  71. 71.
    Nakanishi H, Taccioli C, Palatini J, et al. Loss of miR-125b-1 contributes to head and neck cancer development by dysregulating TACSTD2 and MAPK pathway. Oncogene. 2014;33:702–12.PubMedCrossRefGoogle Scholar
  72. 72.
    Schaefer A, Jung M, Mollenkopf HJ, et al. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer. 2010;126:1166–76.PubMedGoogle Scholar
  73. 73.
    Veerla S, Lindgren D, Kvist A, et al. MiRNA expression in urothelial carcinomas: important roles of miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and metastasis, and frequent homozygous losses of miR-31. Int J Cancer. 2009;124:2236–42.PubMedCrossRefGoogle Scholar
  74. 74.
    Glud M, Rossing M, Hother C, et al. Downregulation of miR-125b in metastatic cutaneous malignant melanoma. Melanoma Res. 2010;20:479–84.PubMedCrossRefGoogle Scholar
  75. 75.
    Glud M, Manfe V, Biskup E, et al. MicroRNA miR-125b induces senescence in human melanoma cells. Melanoma Res. 2011;21:253–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Nyholm AM, Lerche CM, Manfe V, et al. MiR-125b induces cellular senescence in malignant melanoma. BMC Dermatol. 2014;14:8.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Kappelmann M, Kuphal S, Meister G, et al. MicroRNA miR-125b controls melanoma progression by direct regulation of c-Jun protein expression. Oncogene. 2013;32:2984–91.PubMedCrossRefGoogle Scholar
  78. 78.
    Zhang J, Lu L, Xiong Y, et al. MLK3 promotes melanoma proliferation and invasion and is a target of microRNA-125b. Clin Exp Dermatol. 2014;39:376–84.PubMedCrossRefGoogle Scholar
  79. 79.
    Zhang J, Na S, Liu C, et al. MicroRNA-125b suppresses the epithelial–mesenchymal transition and cell invasion by targeting ITGA9 in melanoma. Tumour Biol. 2016;37(5):5941–9. doi: 10.1007/s13277-015-4409-8.PubMedCrossRefGoogle Scholar
  80. 80.
    Schultz J, Lorenz P, Gross G, Ibrahim S, Kunz M. MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res. 2008;18:549–57.PubMedCrossRefGoogle Scholar
  81. 81.
    Noguchi S, Mori T, Otsuka Y, et al. Anti-oncogenic microRNA-203 induces senescence by targeting E2F3 protein in human melanoma cells. J Biol Chem. 2012;287(15):11769–77.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Di Cristofano A, Pandolfi PP. The multiple roles of PTEN in tumor suppression. Cell. 2000;100:387–90.PubMedCrossRefGoogle Scholar
  83. 83.
    Martin del Campo SE, Latchana N, Levine KM, et al. MiR-21 enhances melanoma invasiveness via inhibition of tissue inhibitor of metalloproteinases 3 expression: in vivo effects of MiR-21 inhibitor. PLoS One. 2015;10:e0115919.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Garofalo M, Di Leva G, Romano G, et al. MiR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell. 2009;16:498–509.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Igoucheva O, Alexeev V. MicroRNA-dependent regulation of cc in cutaneous melanoma. Biochem Biophys Res Commun. 2009;379:790–4.PubMedCrossRefGoogle Scholar
  86. 86.
    Li M, Long C, Yang G, Luo Y, Du H. MiR-26b inhibits melanoma cell proliferation and enhances apoptosis by suppressing TRAF5-mediated MAPK activation. Biochem Biophys Res Commun. 2016;471:361–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Greenberg E, Hershkovitz L, Itzhaki O, et al. Regulation of cancer aggressive features in melanoma cells by microRNAs. PLoS One. 2011;6:e18936.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Liu S, Kumar SM, Lu H, et al. MicroRNA-9 up-regulates E-cadherin through inhibition of NF-kappaB1-Snail1 pathway in melanoma. J Pathol. 2012;226:61–72.PubMedCrossRefGoogle Scholar
  89. 89.
    Mueller DW, Bosserhoff AK. MicroRNA miR-196a controls melanoma-associated genes by regulating HOX-C8 expression. Int J Cancer. 2011;129:1064–74.PubMedCrossRefGoogle Scholar
  90. 90.
    Braig S, Mueller DW, Rothhammer T, Bosserhoff AK. MicroRNA miR-196a is a central regulator of HOX-B7 and BMP4 expression in malignant melanoma. Cell Mol Life Sci. 2010;67:3535–48.PubMedCrossRefGoogle Scholar
  91. 91.
    Migliore C, Petrelli A, Ghiso E, et al. MicroRNAs impair MET-mediated invasive growth. Cancer Res. 2008;68:10128–36.PubMedCrossRefGoogle Scholar
  92. 92.
    Elson-Schwab I, Lorentzen A, Marshall CJ. MicroRNA-200 family members differentially regulate morphological plasticity and mode of melanoma cell invasion. PloS One. 2010;5(10):e13176. PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Mazar J, DeYoung K, Khaitan D, et al. The regulation of miRNA-211 expression and its role in melanoma cell invasiveness. PLoS One. 2010;5:e13779.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Levy C, Khaled M, Iliopoulos D, et al. Intronic miR-211 assumes the tumor suppressive function of its host gene in melanoma. Mol Cell. 2010;40:841–9.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Boyle GM, Woods SL, Bonazzi VF, et al. Melanoma cell invasiveness is regulated by miR-211 suppression of the BRN2 transcription factor. Pigment Cell Melanoma Res. 2011;24:525–37.PubMedCrossRefGoogle Scholar
  96. 96.
    Gaziel-Sovran A, Segura MF, Di Micco R, et al. MiR-30b/30d regulation of GalNAc transferases enhances invasion and immunosuppression during metastasis. Cancer Cell. 2011;20:104–18.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Weber CE, Luo C, Hotz-Wagenblatt A, et al. MiR-339-3p is a tumor suppressor in melanoma. Cancer Res. doi: 10.1158/0008-5472.CAN-15-2932 (Epub 2016 April 15).
  98. 98.
    Bai J, Zhang Z, Li X, Liu H. MicroRNA-365 inhibits growth, invasion and metastasis of malignant melanoma by targeting NRP1 expression. Int J Clin Exp Pathol. 2015;8:4913–22.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Li F, Li XJ, Qiao L, et al. MiR-98 suppresses melanoma metastasis through a negative feedback loop with its target gene IL-6. Exp Mol Med. 2014;46:e116.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Cohen R, Greenberg E, Nemlich Y, Schachter J, Markel G. MiR-17 regulates melanoma cell motility by inhibiting the translation of ETV1. Oncotarget. 2015;6:19006–16.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Chen Y, Zhang Z, Luo C, Chen Z, Zhou J. MicroRNA-18b inhibits the growth of malignant melanoma via inhibition of HIF-1alpha-mediated glycolysis. Oncol Rep. doi: 10.3892/or.2016.4824 (Epub 2016 May 20).
  102. 102.
    Fu X, Meng Z, Liang W, et al. MiR-26a enhances miRNA biogenesis by targeting Lin28B and Zcchc11 to suppress tumor growth and metastasis. Oncogene. 2014;33:4296–306.PubMedCrossRefGoogle Scholar
  103. 103.
    Zhou J, Xu D, Xie H, et al. MiR-33a functions as a tumor suppressor in melanoma by targeting HIF-1alpha. Cancer Biol Ther. 2015;16:846–55.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Zhang P, Bai H, Liu G, et al. MicroRNA-33b, upregulated by EF24, a curcumin analog, suppresses the epithelial-to-mesenchymal transition (EMT) and migratory potential of melanoma cells by targeting HMGA2. Toxicol Lett. 2015;234:151–61.PubMedCrossRefGoogle Scholar
  105. 105.
    Giles KM, Brown RA, Ganda C, et al. MicroRNA-7-5p inhibits melanoma cell proliferation and metastasis by suppressing RelA/NF-kappaB. Oncotarget. doi: 10.18632/oncotarget.9421. (Epub 2016 May 17).
  106. 106.
    Liu R, Xie H, Luo C, et al. Identification of FLOT2 as a novel target for microRNA-34a in melanoma. J Cancer Res Clin Oncol. 2015;141:993–1006.PubMedCrossRefGoogle Scholar
  107. 107.
    Jin L, Hu WL, Jiang CC, et al. MicroRNA-149*, a p53-responsive microRNA, functions as an oncogenic regulator in human melanoma. Proc Natl Acad Sci USA. 2011;108:15840–5.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of DermatologyFirst Affiliated Hospital of Kunming Medical UniversityKunmingChina
  2. 2.Department of Medicine ImageSecond Affiliated Hospital of Kunming Medical UniversityKunmingChina
  3. 3.Department of Plastic SurgerySecond Affiliated Hospital of Kunming Medical UniversityKunmingChina
  4. 4.Department of PhysiologyKunming Medical UniversityKunmingChina

Personalised recommendations