Advertisement

Molecular Diagnosis & Therapy

, Volume 20, Issue 4, pp 335–345 | Cite as

Role of microRNAs in the Therapeutic Effects of Curcumin in Non-Cancer Diseases

  • Amir Abbas Momtazi
  • Giuseppe Derosa
  • Pamela Maffioli
  • Maciej Banach
  • Amirhossein Sahebkar
Review Article

Abstract

Curcumin is a bioactive polyphenol occurring in the rhizomes of Curcuma longa. It is well-reputed for its chemopreventive and anticancer properties; however, recent evidence has revealed numerous biological and pharmacological effects of curcumin that are relevant to the treatment of non-cancer diseases. Mechanistically, curcumin exerts its pharmacological effects through anti-inflammatory and antioxidant mechanisms via interaction with different signaling molecules and transcription factors. In addition, epigenetic modulators such as microRNAs (miRs) have emerged as novel targets of curcumin. Curcumin was found to modulate the expression of several pathogenic miRs in brain, ocular, renal, and liver diseases. The present systematic review was conducted to identify miRs that are regulated by curcumin in non-cancer diseases.

Keywords

Curcumin Diabetic Nephropathy Curcuma Longa APOE Knockout Mouse PTP1B Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The support provided by the Iran National Science Foundation (Tehran, Iran) is gratefully acknowledged.

Compliance with Ethical Standards

Conflict of interest

Amir Abbas Momtazi, Giuseppe Derosa, Pamela Maffioli, Maciej Banach, and Amirhossein Sahebkar declare that they have no conflicts of interest.

Funding

No funding was received for this study.

References

  1. 1.
    Strimpakos AS, Sharma RA. Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid Redox Signal. 2008;10(3):511–46.PubMedCrossRefGoogle Scholar
  2. 2.
    Akram M, Shahab-Uddin AA, Usmanghani K, Hannan A, Mohiuddin E, Asif M. Curcuma longa and curcumin: a review article. Rom J Biol Plant Biol. 2010;55:65–70.Google Scholar
  3. 3.
    Clinical development plan. curcumin. J Cell Biochem Suppl. 1996;26:72–85.Google Scholar
  4. 4.
    Mahady G, Pendland S, Yun G, Lu Z. Turmeric (Curcuma longa) and curcumin inhibit the growth of Helicobacter pylori, a group 1 carcinogen. Anticancer Res. 2001;22(6C):4179–81.Google Scholar
  5. 5.
    Kuttan R, Bhanumathy P, Nirmala K, George M. Potential anticancer activity of turmeric (Curcuma longa). Cancer Lett. 1985;29(2):197–202.PubMedCrossRefGoogle Scholar
  6. 6.
    Valiahdi SM, Iranshahi M, Sahebkar A. Cytotoxic activities of phytochemicals from Ferula species. DARU. 2013;21(1):39–45.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Iranshahi M, Sahebkar A, Hosseini S, Takasaki M, Konoshima T, Tokuda H. Cancer chemopreventive activity of diversin from Ferula diversivittata in vitro and in vivo. Phytomedicine. 2010;17(3):269–73.PubMedCrossRefGoogle Scholar
  8. 8.
    Gupta SC, Kim JH, Prasad S, Aggarwal BB. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev. 2010;29(3):405–34.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Esmaily H, Sahebkar A, Iranshahi M, Ganjali S, Mohammadi A, Ferns G, et al. An investigation of the effects of curcumin on anxiety and depression in obese individuals: a randomized controlled trial. Chin J Integr Med. 2015;21(5):332–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Chen FY, Zhou J, Guo N, Ma WG, Huang X, Wang H, Yuan ZY. Curcumin retunes cholesterol transport homeostasis and inflammation response in M1 macrophage to prevent atherosclerosis. Biochem Biophys Res Commun. 2015;467(4):872–8. PubMedCrossRefGoogle Scholar
  11. 11.
    Sahebkar A, Mohammadi A, Atabati A, Rahiman S, Tavallaie S, Iranshahi M, et al. Curcuminoids modulate pro-oxidant–antioxidant balance but not the immune response to heat shock protein 27 and oxidized LDL in obese individuals. Phytother Res. 2013;27(12):1883–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Panahi Y, Alishiri GH, Parvin S, Sahebkar A. Mitigation of systemic oxidative stress by curcuminoids in osteoarthritis: results of a randomized controlled trial. J Diet Suppl. 2016;13(2):209–20.PubMedCrossRefGoogle Scholar
  13. 13.
    Panahi Y, Rahimnia AR, Sharafi M, Alishiri G, Saburi A, Sahebkar A. Curcuminoid Treatment for knee osteoarthritis: a randomized double-blind placebo-controlled trial. Phytother Res. 2014;28(11):1625–31.PubMedCrossRefGoogle Scholar
  14. 14.
    Ganjali S, Sahebkar A, Mahdipour E, Jamialahmadi K, Torabi S, Akhlaghi S, et al. Investigation of the effects of curcumin on serum cytokines in obese individuals: a randomized controlled trial. SciWorldJ. 2014;2014:898361.Google Scholar
  15. 15.
    Panahi Y, Saadat A, Beiraghdar F, Sahebkar A. Adjuvant therapy with bioavailability-boosted curcuminoids suppresses systemic inflammation and improves quality of life in patients with solid tumors: a randomized double-blind placebo-controlled trial. Phytother Res. 2014;28(10):1461–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Panahi Y, Sahebkar A, Parvin S, Saadat A. A randomized controlled trial on the anti-inflammatory effects of curcumin in patients with chronic sulphur mustard-induced cutaneous complications. Ann Clin Biochem. 2012;49(6):580–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Panahi Y, Ghanei M, Bashiri S, Hajihashemi A, Sahebkar A. Short-term curcuminoid supplementation for chronic pulmonary complications due to sulfur mustard intoxication: positive results of a randomized double-blind placebo-controlled trial. Drug Res. 2015;65(11):567–73.Google Scholar
  18. 18.
    Mohammadi A, Sahebkar A, Iranshahi M, Amini M, Khojasteh R, Ghayour-Mobarhan M, et al. Effects of supplementation with curcuminoids on dyslipidemia in obese patients: a randomized crossover trial. Phytother Res. 2013;27(3):374–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Um MY, Hwang KH, Choi WH, Ahn J, Jung CH, Ha TY. Curcumin attenuates adhesion molecules and matrix metalloproteinase expression in hypercholesterolemic rabbits. Nutr Res. 2014;34(10):886–93.PubMedCrossRefGoogle Scholar
  20. 20.
    Yang YS, Su YF, Yang HW, Lee YH, Chou JI, Ueng KC. Lipid-lowering effects of curcumin in patients with metabolic syndrome: a randomized, double-blind, placebo-controlled trial. Phytother Res. 2014;28(12):1770–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Sahebkar A. Are curcuminoids effective C-reactive protein-lowering agents in clinical practice? Evidence from a meta-analysis. Phytother Res. 2014;28(5):633–42.PubMedCrossRefGoogle Scholar
  22. 22.
    Fan C, Wo X, Qian Y, Yin J, Gao L. Effect of curcumin on the expression of LDL receptor in mouse macrophages. J Ethnopharmacol. 2006;105(1–2):251–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Arafa HM. Curcumin attenuates diet-induced hypercholesterolemia in rats. Med Sci Mon. 2005;11(7):BR228–34.Google Scholar
  24. 24.
    Asai A, Miyazawa T. Dietary curcuminoids prevent high-fat diet-induced lipid accumulation in rat liver and epididymal adipose tissue. J Nutr. 2001;131(11):2932–5.PubMedGoogle Scholar
  25. 25.
    Sahebkar A. Curcuminoids for the management of hypertriglyceridaemia. Nat Rev Cardiol. 2014;11(2):123.PubMedCrossRefGoogle Scholar
  26. 26.
    Sahebkar A. Low-density lipoprotein is a potential target for curcumin: novel mechanistic insights. Basic Clin Pharmacol Toxicol. 2014;114(6):437–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Seyedzadeh MH, Safari Z, Zare A, Gholizadeh Navashenaq J, Razavi SA, Kardar GA, et al. Study of curcumin immunomodulatory effects on reactive astrocyte cell function. Int Immunopharmacol. 2014;22(1):230–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Sankar P, Telang AG, Suresh S, Kesavan M, Kannan K, Kalaivanan R, et al. Immunomodulatory effects of nanocurcumin in arsenic-exposed rats. Int Immunopharmacol. 2013;17(1):65–70.PubMedCrossRefGoogle Scholar
  29. 29.
    Sahebkar A, Cicero AF, Simental-Mendia LE, Aggarwal BB, Gupta SC. Curcumin downregulates human tumor necrosis factor-alpha levels: a systematic review and meta-analysis ofrandomized controlled trials. Pharmacol Res. 2016;107:234–42.PubMedCrossRefGoogle Scholar
  30. 30.
    Sharma O. Antioxidant activity of curcumin and related compounds. Biochem Pharmacol. 1976;25(15):1811–2.PubMedCrossRefGoogle Scholar
  31. 31.
    Panahi Y, Sahebkar A, Amiri M, Davoudi SM, Beiraghdar F, Hoseininejad SL, et al. Improvement of sulphur mustard-induced chronic pruritus, quality of life and antioxidant status by curcumin: results of a randomised, double-blind, placebo-controlled trial. Br J Nutr. 2012;108(7):1272–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Sahebkar A. Why it is necessary to translate curcumin into clinical practice for the prevention and treatment of metabolic syndrome? Biofactors. 2013;39(2):197–208.PubMedCrossRefGoogle Scholar
  33. 33.
    Shen LL, Jiang ML, Liu SS, Cai MC, Hong ZQ, Lin LQ, et al. Curcumin improves synaptic plasticity impairment induced by HIV-1gp120 V3 loop. Neural Regen Res. 2015;10(6):925–31.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Chen K, An Y, Tie L, Pan Y, Li X. Curcumin protects neurons from glutamate-induced excitotoxicity by membrane anchored AKAP79-PKA interaction network. Evid Based Complement Alternat Med. 2015;2015:706207.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Wang BF, Cui ZW, Zhong ZH, Sun YH, Sun QF, Yang GY, et al. Curcumin attenuates brain edema in mice with intracerebral hemorrhage through inhibition of AQP4 and AQP9 expression. Acta Pharmacol Sin. 2015;36(8):939–48.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Yang Y, Wu X, Wei Z, Dou Y, Zhao D, Wang T, et al. Oral curcumin has anti-arthritic efficacy through somatostatin generation via cAMP/PKA and Ca(2 +)/CaMKII signaling pathways in the small intestine. Pharmacol Res. 2015;95–96:71–81.PubMedCrossRefGoogle Scholar
  37. 37.
    Kuncha M, Naidu VG, Sahu BD, Gadepalli SG, Sistla R. Curcumin potentiates the anti-arthritic effect of prednisolone in Freund’s complete adjuvant-induced arthritic rats. J Pharm Pharmacol. 2014;66(1):133–44.PubMedCrossRefGoogle Scholar
  38. 38.
    Kumar K, Rai AK. Proniosomal formulation of curcumin having anti-inflammatory and anti-arthritic activity in different experimental animal models. Die Pharmazie. 2012;67(10):852–7.PubMedGoogle Scholar
  39. 39.
    Panahi Y, Badeli R, Karami GR, Sahebkar A. Investigation of the efficacy of adjunctive therapy with bioavailability-boosted curcuminoids in major depressive disorder. Phytother Res. 2015;29(1):17–21.PubMedCrossRefGoogle Scholar
  40. 40.
    Sahebkar A, Henrotin Y. Analgesic efficacy and safety of curcuminoids in clinical practice: a systematic review and meta-analysis of randomized controlled trials. Pain Med. 2015. doi: 10.1093/pm/pnv024 PubMedGoogle Scholar
  41. 41.
    Sharma S, Kulkarni SK, Chopra K. Curcumin, the active principle of turmeric (Curcuma longa), ameliorates diabetic nephropathy in rats. Clin Exp Pharmacol Physiol. 2006;33(10):940–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Nishiyama T, Mae T, Kishida H, Tsukagawa M, Mimaki Y, Kuroda M, et al. Curcuminoids and sesquiterpenoids in turmeric (Curcuma longa L.) suppress an increase in blood glucose level in type 2 diabetic KK-Ay mice. J Agric Food Chem. 2005;53(4):959–63.PubMedCrossRefGoogle Scholar
  43. 43.
    Sahebkar A. Molecular mechanisms for curcumin benefits against ischemic injury. Fertil Steril. 2010;94(5):e75–6 (author reply e7).Google Scholar
  44. 44.
    Hasan ST, Zingg JM, Kwan P, Noble T, Smith D, Meydani M. Curcumin modulation of high fat diet-induced atherosclerosis and steatohepatosis in LDL receptor deficient mice. Atherosclerosis. 2014;232(1):40–51.PubMedCrossRefGoogle Scholar
  45. 45.
    Sidhu GS, Singh AK, Thaloor D, Banaudha KK, Patnaik GK, Srimal RC, et al. Enhancement of wound healing by curcumin in animals. Wound Repair Regen. 1998;6(2):167–77.PubMedCrossRefGoogle Scholar
  46. 46.
    Negi P, Jayaprakasha G, Jagan Mohan Rao L, Sakariah K. Antibacterial activity of turmeric oil: a byproduct from curcumin manufacture. J Agric Food Chem. 1999;47(10):4297–300.Google Scholar
  47. 47.
    Jordan W, Drew C. Curcumin: a natural herb with anti-HIV activity. J Natl Med Assoc. 1996;88(6):333.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Kim M-K, Choi G-J, Lee H-S. Fungicidal property of Curcuma longa L. rhizome-derived curcumin against phytopathogenic fungi in a greenhouse. J Agric Food Chem. 2003;51(6):1578–81.PubMedCrossRefGoogle Scholar
  49. 49.
    Reddy RC, Vatsala PG, Keshamouni VG, Padmanaban G, Rangarajan PN. Curcumin for malaria therapy. Biochem Biophys Res Comm. 2005;326(2):472–4.PubMedCrossRefGoogle Scholar
  50. 50.
    Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev. 2009;14(3):277.Google Scholar
  51. 51.
    Teiten MH, Dicato M, Diederich M. Curcumin as a regulator of epigenetic events. Mol Nutr Food Res. 2013;57(9):1619–29.PubMedCrossRefGoogle Scholar
  52. 52.
    Li Y, Kong D, Wang Z, Sarkar FH. Regulation of microRNAs by natural agents: an emerging field in chemoprevention and chemotherapy research. Pharm Res. 2010;27(6):1027–41.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Sawan C, Vaissière T, Murr R, Herceg Z. Epigenetic drivers and genetic passengers on the road to cancer. Mutat Res. 2008;642(1):1–13.PubMedCrossRefGoogle Scholar
  54. 54.
    Chen B, Li H, Zeng X, Yang P, Liu X, Zhao X, et al. Roles of microRNA on cancer cell metabolism. J Transl Med. 2012;10:228.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Hutvágner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science. 2002;297(5589):2056–60.PubMedCrossRefGoogle Scholar
  56. 56.
    Williams RJ, Spencer JP. Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic Biol Med. 2012;52(1):35–45.PubMedCrossRefGoogle Scholar
  57. 57.
    Ng R, Song G, Roll GR, Frandsen NM, Willenbring H. A microRNA-21 surge facilitates rapid cyclin D1 translation and cell cycle progression in mouse liver regeneration. J Clin Invest. 2012;122(3):1097.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Rayner KJ, Esau CC, Hussain FN, McDaniel AL, Marshall SM, van Gils JM, et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature. 2011;478(7369):404–7.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Zhang P, Bill K, Liu J, Young E, Peng T, Bolshakov S, et al. MiR-155 is a liposarcoma oncogene that targets casein kinase-1α and enhances β-catenin signaling. Cancer Res. 2012;72(7):1751–62.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Taganov KD, Boldin MP, Chang K-J, Baltimore D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci. 2006;103(33):12481–6.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Png KJ, Halberg N, Yoshida M, Tavazoie SF. A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature. 2012;481(7380):190–4.CrossRefGoogle Scholar
  62. 62.
    Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433(7027):769–73.PubMedCrossRefGoogle Scholar
  63. 63.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Li Y, Kowdley KV. MicroRNAs in common human diseases. Genom Proteom Bioinform. 2012;10(5):246–53.CrossRefGoogle Scholar
  65. 65.
    Sayed D, Abdellatif M. MicroRNAs in development and disease. Physiol Rev. 2011;91(3):827–87.PubMedCrossRefGoogle Scholar
  66. 66.
    Erson A, Petty E. MicroRNAs in development and disease. Clin Genet. 2008;74(4):296–306.PubMedCrossRefGoogle Scholar
  67. 67.
    Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;115(2):209.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Wynn T. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199–210.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Zheng J, Wu C, Lin Z, Guo Y, Shi L, Dong P, et al. Curcumin up-regulates phosphatase and tensin homologue deleted on chromosome 10 through microRNA-mediated control of DNA methylation–a novel mechanism suppressing liver fibrosis. FEBS J. 2014;281(1):88–103.PubMedCrossRefGoogle Scholar
  70. 70.
    Hassan ZK, Al-Olayan EM. Curcumin reorganizes miRNA expression in a mouse model of liver fibrosis. Asian Pac J Cancer Prev. 2012;13:5405–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem. 2005;74:481–514.PubMedCrossRefGoogle Scholar
  72. 72.
    Yang N, Mahato RI. GFAP promoter-driven RNA interference on TGF-β1 to treat liver fibrosis. Pharm Res. 2011;28(4):752–61.PubMedCrossRefGoogle Scholar
  73. 73.
    Kulkarni SK, Bhutani MK, Bishnoi M. Antidepressant activity of curcumin: involvement of serotonin and dopamine system. Psychopharmacology (Berl). 2008;201(3):435–42.PubMedCrossRefGoogle Scholar
  74. 74.
    Wang R, Li Y-B, Li Y-H, Xu Y, Wu H-L, Li X-J. Curcumin protects against glutamate excitotoxicity in rat cerebral cortical neurons by increasing brain-derived neurotrophic factor level and activating TrkB. Brain Res. 2008;1210:84–91.Google Scholar
  75. 75.
    Bhutani MK, Bishnoi M, Kulkarni SK. Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes. Pharmacol Biochem Behav. 2009;92(1):39–43.PubMedCrossRefGoogle Scholar
  76. 76.
    Li Y-C, Wang F-M, Pan Y, Qiang L-Q, Cheng G, Zhang W-Y, et al. Antidepressant-like effects of curcumin on serotonergic receptor-coupled AC-cAMP pathway in chronic unpredictable mild stress of rats. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(3):435–49.PubMedCrossRefGoogle Scholar
  77. 77.
    Bishnoi M, Chopra K, Kulkarni SK. Protective effect of Curcumin, the active principle of turmeric (Curcuma longa) in haloperidol-induced orofacial dyskinesia and associated behavioural, biochemical and neurochemical changes in rat brain. Pharmacol Biochem Behav. 2008;88(4):511–22.PubMedCrossRefGoogle Scholar
  78. 78.
    Sharma S, Chopra K, Kulkarni SK. Effect of insulin and its combination with resveratrol or curcumin in attenuation of diabetic neuropathic pain: participation of nitric oxide and TNF-alpha. Phytother Res. 2007;21(3):278–83.PubMedCrossRefGoogle Scholar
  79. 79.
    Kulkarni S, Dhir A, Akula KK. Potentials of curcumin as an antidepressant. SciWorldJ. 2009;9:1233–41.Google Scholar
  80. 80.
    Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, et al. Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem. 2005;280(7):5892–901.PubMedCrossRefGoogle Scholar
  81. 81.
    Patil SP, Tran N, Geekiyanage H, Liu L, Chan C. Curcumin-induced upregulation of the anti-tau cochaperone BAG2 in primary rat cortical neurons. Neurosci Lett. 2013;554:121–5.PubMedCrossRefGoogle Scholar
  82. 82.
    Shakeri A, Sahebkar A. Optimized curcumin formulations for the treatment of Alzheimer’s disease: a patent evaluation. J Neurosci Res. 2016;94(2):111–3.PubMedCrossRefGoogle Scholar
  83. 83.
    Sahebkar A. Autophagic activation: a key piece of the puzzle for the curcumin-associated cognitive enhancement? J Psychopharmacol. 2016;30(1):93–4.PubMedCrossRefGoogle Scholar
  84. 84.
    Mattson MP. Pathways towards and away from Alzheimer’s disease. Nature. 2004;430(7000):631–9.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Lee M-S, Kwon YT, Li M, Peng J, Friedlander RM, Tsai L-H. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature. 2000;405(6784):360–4.PubMedCrossRefGoogle Scholar
  86. 86.
    Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology. 1992;42(3):631–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Barrachina M, Maes T, Buesa C, Ferrer I. Lysosome-associated membrane protein 1 (LAMP-1) in Alzheimer’s disease. Neuropathol Appl Neurobiol. 2006;32(5):505–16.PubMedCrossRefGoogle Scholar
  88. 88.
    Carrettiero DC, Hernandez I, Neveu P, Papagiannakopoulos T, Kosik KS. The cochaperone BAG2 sweeps paired helical filament-insoluble tau from the microtubule. J Neurosci. 2009;29(7):2151–61.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Sethi P, Lukiw WJ. Micro-RNA abundance and stability in human brain: specific alterations in Alzheimer’s disease temporal lobe neocortex. Neuroscience Lett. 2009;459(2):100–4.CrossRefGoogle Scholar
  90. 90.
    Lukiw WJ, Zhao Y, Cui JG. An NF-κB-sensitive micro RNA-146a-mediated inflammatory circuit in Alzheimer disease and in stressed human brain cells. J Biol Chem. 2008;283(46):31315–22.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Lukiw WJ, Pogue AI. Induction of specific micro RNA (miRNA) species by ROS-generating metal sulfates in primary human brain cells. J Inorg Biochem. 2007;101(9):1265–9.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Cui JG, Li YY, Zhao Y, Bhattacharjee S, Lukiw WJ. Differential regulation of interleukin-1 receptor-associated kinase-1 (IRAK-1) and IRAK-2 by microRNA-146a and NF-κB in stressed human astroglial cells and in Alzheimer disease. J Biol Chem. 2010;285(50):38951–60.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Pogue AI, Percy ME, Cui J-G, Li YY, Bhattacharjee S, Hill JM, et al. Up-regulation of NF-kB-sensitive miRNA-125b and miRNA-146a in metal sulfate-stressed human astroglial (HAG) primary cell cultures. J Inorg Biochem. 2011;105(11):1434–7.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Li Y, Cui J, Hill J, Bhattacharjee S, Zhao Y, Lukiw W. Increased expression of miRNA-146a in Alzheimer’s disease transgenic mouse models. Neurosci Lett. 2011;487(1):94–8.PubMedCrossRefGoogle Scholar
  95. 95.
    Angel-Morales G, Noratto G, Mertens-Talcott SU. Standardized curcuminoid extract (Curcuma longa l.) decreases gene expression related to inflammation and interacts with associated microRNAs in human umbilical vein endothelial cells (HUVEC). Food Funct. 2012;3(12):1286–93.Google Scholar
  96. 96.
    Zaky A, Mahmoud M, Awad D, El Sabaa BM, Kandeel KM, Bassiouny AR. Valproic acid potentiates curcumin-mediated neuroprotection in lipopolysaccharide induced rats. Front Cell Neurosci. 2014;8:337.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Howell JC, Chun E, Farrell AN, Hur EY, Caroti CM, Iuvone PM, et al. Global microRNA expression profiling: curcumin (diferuloylmethane) alters oxidative stress-responsive microRNAs in human ARPE-19 cells. Mol Vis. 2013;19:544.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Lukiw WJ, Surjyadipta B, Dua P, Alexandrov PN. Common micro RNAs (miRNAs) target complement factor H (CFH) regulation in Alzheimer’s disease (AD) and in age-related macular degeneration (AMD). Int J Biochem Mol Biol. 2012;3(1):105–16.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Hill JM, Dua P, Clement C, Lukiw WJ. An evaluation of progressive amyloidogenic and pro-inflammatory change in the primary visual cortex and retina in Alzheimer’s disease (AD). Front Neurosci. 2014;8:347.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Hu S, Maiti P, Ma Q, Zuo X, Jones MR, Cole GM, et al. Clinical development of curcumin in neurodegenerative disease. Expert Rev Neurother. 2015;15(6):629–37.PubMedCrossRefGoogle Scholar
  101. 101.
    Wang LL, Sun Y, Huang K, Zheng L. Curcumin, a potential therapeutic candidate for retinal diseases. Mol Nutr Food Res. 2013;57(9):1557–68.PubMedCrossRefGoogle Scholar
  102. 102.
    Gross JL, De Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care. 2005;28(1):164–76.PubMedCrossRefGoogle Scholar
  103. 103.
    Giunti S, Barit D, Cooper ME. Mechanisms of diabetic nephropathy role of hypertension. Hypertension. 2006;48(4):519–26.PubMedCrossRefGoogle Scholar
  104. 104.
    Hostetter TH, Rennke HG, Brenner BM. The case for intrarenal hypertension in the initiation and progression of diabetic and other glomerulopathies. Am J Med. 1982;72(3):375–80.PubMedCrossRefGoogle Scholar
  105. 105.
    Dessapt C, Baradez MO, Hayward A, Dei Cas A, Thomas SM, Viberti G, et al. Mechanical forces and TGFβ1 reduce podocyte adhesion through α3β1 integrin downregulation. Nephrol Dial Transplant. 2009;24(9):2645–55.PubMedCrossRefGoogle Scholar
  106. 106.
    Kriz W, Shirato I, Nagata M, LeHir M, Lemley KV. The podocyte’s response to stress: the enigma of foot process effacement. Am J Physiol Renal Physiol. 2013;304(4):F333–47.PubMedCrossRefGoogle Scholar
  107. 107.
    Hartner A, Cordasic N, Menendez-Castro C, Volkert G, Yabu JM, Kupraszewicz-Hutzler M, et al. Lack of α8-integrin aggravates podocyte injury in experimental diabetic nephropathy. Am J Physiol Renal Physiol. 2010;299(5):F1151–7.PubMedCrossRefGoogle Scholar
  108. 108.
    Valastyan S, Weinberg RA. Roles for microRNAs in the regulation of cell adhesion molecules. J Cell Sci. 2011;124(7):999–1006.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Li D, Lu Z, Jia J, Zheng Z, Lin S. Changes in microRNAs associated with podocytic adhesion damage under mechanical stress. J Renin Angiotensin Aldosterone Syst. 2013;14(2):97–102.PubMedCrossRefGoogle Scholar
  110. 110.
    Li D, Lu Z, Jia J, Zheng Z, Lin S. miR-124 is related to podocytic adhesive capacity damage in STZ-induced uninephrectomized diabetic rats. Kidney Blood Press Res. 2013;37(4–5):422–31.PubMedCrossRefGoogle Scholar
  111. 111.
    Moini Zanjani T, Ameli H, Labibi F, Sedaghat K, Sabetkasaei M. The attenuation of pain behavior and serum COX-2 concentration by curcumin in a rat model of neuropathic pain. Korean J Pain. 2014;27(3):246–52.Google Scholar
  112. 112.
    Wei C, Möller CC, Altintas MM, Li J, Schwarz K, Zacchigna S, et al. Modification of kidney barrier function by the urokinase receptor. Nat Med. 2008;14(1):55–63.PubMedCrossRefGoogle Scholar
  113. 113.
    Palanisamy N, Kannappan S, Anuradha CV. Genistein modulates NF-κB-associated renal inflammation, fibrosis and podocyte abnormalities in fructose-fed rats. Eur J Pharmacol. 2011;667(1):355–64.PubMedCrossRefGoogle Scholar
  114. 114.
    Wang W, Ding X-Q, Gu T-T, Song L, Li J-M, Xue Q-C, et al. Pterostilbene and allopurinol reduce fructose-induced podocyte oxidative stress and inflammation via microRNA-377. Free Radicl Biol Med. 2015;83:214–26.CrossRefGoogle Scholar
  115. 115.
    Harvey SJ, Jarad G, Cunningham J, Goldberg S, Schermer B, Harfe BD, et al. Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease. J Am Soc Nephrol. 2008;19(11):2150–8.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Zhdanova O, Srivastava S, Di L, Li Z, Tchelebi L, Dworkin S, et al. The inducible deletion of Drosha and microRNAs in mature podocytes results in a collapsing glomerulopathy. Kidney Int. 2011;80(7):719–30.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Ho J, Ng KH, Rosen S, Dostal A, Gregory RI, Kreidberg JA. Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury. J Am Soc Nephrol. 2008;19(11):2069–75.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Shi S, Yu L, Chiu C, Sun Y, Chen J, Khitrov G, et al. Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis. J Am Soc Nephrol. 2008;19(11):2159–69.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Ding XQ, Gu TT, Wang W, Song L, Chen TY, Xue QC, et al. Curcumin protects against fructose-induced podocyte insulin signaling impairment through upregulation of miR-206. Mol Nutr Food Res. 2015;59(12):2355–70.PubMedCrossRefGoogle Scholar
  120. 120.
    Huang GS, Yang S-M, Hong M-Y, Yang P-C, Liu Y-C. Differential gene expression of livers from ApoE deficient mice. Life Sci. 2000;68(1):19–28.PubMedCrossRefGoogle Scholar
  121. 121.
    Milenkovic D, Deval C, Gouranton E, Landrier J-F, Scalbert A, Morand C, et al. Modulation of miRNA expression by dietary polyphenols in apoE deficient mice: a new mechanism of the action of polyphenols. PLoS One. 2012;7(1):e29837.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Li D, Lu Z, Jia J, Zheng Z, Lin S. Curcumin ameliorates podocytic adhesive capacity damage under mechanical stress by inhibiting miR-124 expression. Kidney Blood Press Res. 2013;38(1):61–71.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Amir Abbas Momtazi
    • 1
  • Giuseppe Derosa
    • 2
    • 3
  • Pamela Maffioli
    • 3
  • Maciej Banach
    • 4
    • 5
  • Amirhossein Sahebkar
    • 6
    • 7
  1. 1.Student Research Committee, Department of Medical Biotechnology, Nanotechnology Research Center, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
  2. 2.Center for the Study of Endocrine-Metabolic Pathophysiology and Clinical ResearchUniversity of PaviaPaviaItaly
  3. 3.Department of Internal Medicine and TherapeuticsUniversity of Pavia and Fondazione IRCCS Policlinico S. MatteoPaviaItaly
  4. 4.Department of HypertensionMedical University of LodzLodzPoland
  5. 5.Healthy Aging Research Centre (HARC)Medical University of LodzLodzPoland
  6. 6.Biotechnology Research CenterMashhad University of Medical SciencesMashhadIran
  7. 7.Metabolic Research Centre, Royal Perth Hospital, School of Medicine and PharmacologyUniversity of Western AustraliaPerthAustralia

Personalised recommendations