Molecular Diagnosis & Therapy

, Volume 20, Issue 2, pp 161–173 | Cite as

Structural and Functional Insights on an Uncharacterized Aγ-Globin-Gene Polymorphism Present in Four β0-Thalassemia Families with High Fetal Hemoglobin Levels

  • Nicoletta Bianchi
  • Lucia Carmela Cosenza
  • Ilaria Lampronti
  • Alessia Finotti
  • Giulia Breveglieri
  • Cristina Zuccato
  • Enrica Fabbri
  • Giovanni Marzaro
  • Adriana Chilin
  • Gioia De Angelis
  • Monica Borgatti
  • Cristiano Gallucci
  • Cecilia Alfieri
  • Michela Ribersani
  • Antonella Isgrò
  • Marco Marziali
  • Javid Gaziev
  • Aldo Morrone
  • Pietro Sodani
  • Guido Lucarelli
  • Roberto Gambari
  • Katia Paciaroni
Original Research Article

Abstract

Introduction

Several DNA polymorphisms have been associated with high production of fetal hemoglobin (HbF), although the molecular basis is not completely understood. In order to identify and characterize novel HbF-associated elements, we focused on five probands and their four families (from Egypt, Iraq and Iran) with thalassemia major (either β0-IVSII-1 or β0-IVSI-1) and unusual HbF elevation (>98 %), congenital or acquired after rejection of bone marrow transplantation, suggesting an anticipated favorable genetic background to high HbF expression.

Methods

Patient recruitment, genomic DNA sequencing, western blotting, electrophoretic mobility shift assays, surface plasmon resonance (SPR) biospecific interaction analysis, bioinformatics analyses based on docking experiments.

Results

A polymorphism of the Aγ-globin gene is here studied in four families with β0-thalassemia (β0-IVSII-1 and β0-IVSI-1) and expressing unusual high HbF levels, congenital or acquired after rejection of bone marrow transplantation. This (G→A) polymorphism is present at position +25 of the Aγ-globin genes, corresponding to a 5′-UTR region of the Aγ-globin mRNA and, when present, is physically linked in chromosomes 11 of all the familiar members studied to the XmnI polymorphism and to the β0-thalassemia mutations. The region corresponding to the +25(G→A) polymorphism of the Aγ-globin gene belongs to a sequence recognized by DNA-binding protein complexes, including LYAR (Ly-1 antibody reactive clone), a zinc-finger transcription factor previously proposed to be involved in down-regulation of the expression of γ-globin genes in erythroid cells.

Conclusion

We found a novel polymorphism of the Aγ-globin gene in four families with β0-thalassemia and high levels of HbF expression. Additionally, we report evidence suggesting that the Aγ-globin gene +25(G→A) polymorphism decreases the efficiency of the interaction between this sequence and specific DNA binding protein complexes.

Supplementary material

40291_2016_187_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1384 kb)

References

  1. 1.
    Cao A, Galanello R. Beta-thalassemia. Genet Med. 2010;12:61–76. doi:10.1097/GIM.0b013e3181cd68ed.CrossRefPubMedGoogle Scholar
  2. 2.
    Giardine B, Borg J, Viennas E, Pavlidis C, Moradkhani K, Joly P, et al. Updates of the HbVar database of human hemoglobin variants and thalassemia mutations. Nucleic Acids Res. 2014;42 (Database issue):D1063–D1069. doi: 10.1093/nar/gkt911.
  3. 3.
    Old JM. Screening and genetic diagnosis of haemoglobin disorders. Blood Rev. 2003;17:43–53.CrossRefPubMedGoogle Scholar
  4. 4.
    Weatherall DJ. Pathophysiology of thalassaemia. Bailliere’s Clin Haematol. 1998;11:127–46.CrossRefGoogle Scholar
  5. 5.
    Weatherall DJ. Phenotype-genotype relationships in monogenic disease: lessons from the thalassaemias. Nat Rev Genet. 2001;2:245–55.CrossRefPubMedGoogle Scholar
  6. 6.
    El-Beshlawy A, Hamdy M, El Ghamrawy M. Fetal globin induction in beta-thalassemia. Hemoglobin. 2009;33:S197–203. doi:10.3109/03630260903351882.CrossRefPubMedGoogle Scholar
  7. 7.
    Thein SL. The emerging role of fetal hemoglobin induction in non-transfusion-dependent thalassemia. Blood Rev. 2012;26:S35–9. doi:10.1016/S0268-960X(12)70011-5.CrossRefPubMedGoogle Scholar
  8. 8.
    Atweh G, Fathallah HV. Pharmacologic induction of fetal haemoglobin production. Hematol Oncol Clin N. 2010;24:1131–44. doi:10.1016/j.hoc.2010.08.001.CrossRefGoogle Scholar
  9. 9.
    Fibach E, Bianchi N, Borgatti M, Zuccato C, Finotti A, Lampronti I, et al. Effects of rapamycin on accumulation of alpha-, beta- and gamma-globin mRNAs in erythroid precursor cells from beta-thalassaemia patients. Eur J Haematol. 2006;77:437–41.CrossRefPubMedGoogle Scholar
  10. 10.
    Fibach E, Prus E, Bianchi N, Zuccato C, Breveglieri G, Salvatori F, et al. Resveratrol: antioxidant activity and induction of fetal hemoglobin in erythroid cells from normal donors and β-thalassemia patients. Int J Mol Med. 2012;29:974–82. doi:10.3892/ijmm.2012.928.PubMedGoogle Scholar
  11. 11.
    Finotti A, Gambari R. Recent trends for novel options in experimental biological therapy of β-thalassemia. Expert Opin Biol Ther. 2014;14:1443–54. doi:10.1517/14712598.2014.927434.CrossRefPubMedGoogle Scholar
  12. 12.
    Gambari R. Alternative options for DNA-based experimental therapy of β-thalassemia. Expert Opin Biol Ther. 2012;12:443–62. doi:10.1517/14712598.2012.665047.CrossRefPubMedGoogle Scholar
  13. 13.
    Gambari R, Fibach E. Medicinal chemistry of fetal hemoglobin inducers for treatment of beta-thalassemia. Curr Med Chem. 2007;14:199–212.CrossRefPubMedGoogle Scholar
  14. 14.
    Sankaran VG. Targeted therapeutic strategies for fetal hemoglobin induction. Hematol Am Soc Hematol Educ Program. 2011;459–65. doi:10.1182/asheducation-2011.1.459.
  15. 15.
    Perrine SP, Pace BS, Faller DV. Targeted fetal hemoglobin induction for treatment of beta hemoglobinopathies. Hematol Oncol Clin N. 2014;28:233–48. doi:10.1016/j.hoc.2013.11.009.CrossRefGoogle Scholar
  16. 16.
    Quek L, Thein SL. Molecular therapies in beta-thalassaemia. Br J Haematol. 2007;136:353–65.CrossRefPubMedGoogle Scholar
  17. 17.
    Badens C, Joly P, Agouti I, Thuret I, Gonnet K, Fattoum S, et al. Variants in genetic modifiers of β-thalassemia can help to predict the major or intermedia type of the disease. Haematologica. 2011;96:1712–4. doi:10.3324/haematol.2011.046748.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Banan M, Bayat H, Azarkeivan A, Mohammadparast S, Kamali K, Farashi S. The XmnI and BCL11A single nucleotide polymorphisms may help predict hydroxyurea response in Iranian β-thalassemia patients. Hemoglobin. 2012;36:371–80. doi:10.3109/03630269.2012.691147.CrossRefPubMedGoogle Scholar
  19. 19.
    Danjou F, Francavilla M, Anni F, Satta S, Demartis FR, Perseu L, et al. A genetic score for the prediction of beta-thalassemia severity. Haematologica. 2015;100:452–7. doi:10.3324/haematol.2014.113886.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Thein SL, Menzel S. Discovering the genetics underlying foetal haemoglobin production in adults. Br J Haematol. 2009;145:455–67. doi:10.1111/j.1365-2141.2009.07650.x.CrossRefPubMedGoogle Scholar
  21. 21.
    Jiang J, Best S, Menzel S, Silver N, Lai MI, Surdulescu GL, et al. cMYB is involved in the regulation of fetal hemoglobin production in adults. Blood. 2006;108:1077–83.CrossRefPubMedGoogle Scholar
  22. 22.
    Sankaran VG, Menne TF, Xu J, Akie TE, Lettre G, Van Handel B, et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science. 2008;322:1839–42. doi:10.1126/science.1165409.CrossRefPubMedGoogle Scholar
  23. 23.
    Thein SL, Menzel S, Lathrop M, Garner C. Control of fetal hemoglobin: new insights emerging from genomics and clinical implications. Hum Mol Genet. 2009;18(R2):R216–23. doi:10.1093/hmg/ddp401.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Trakarnsanga K, Wilson MC, Lau W, Singleton BK, Parsons SF, Sakuntanaga P, et al. Induction of adult levels of β-globin in human erythroid cells that intrinsically express embryonic or fetal globin by transduction with KLF1 and BCL11A-XL. Haematologica. 2014;99:1677–85. doi:10.3324/haematol.2014.110155.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Paciaroni K, Gallucci C, De Angelis G, Alfieri C, Roveda A, Lucarelli G. Sustained and full fetal hemoglobin production after failure of bone marrow transplant in a patient homozygous for beta 0-thalassemia: a clinical remission despite genetic disease and transplant rejection. Am J Hematol. 2009;84:372–3. doi:10.1002/ajh.21392.CrossRefPubMedGoogle Scholar
  26. 26.
    Paciaroni K, Lucarelli G. Hemopoietic stem cell transplantation failure followed by switch to stable production of fetal hemoglobin. Blood. 2012;119:1091–2. doi:10.1182/blood-2011-10-388678.CrossRefPubMedGoogle Scholar
  27. 27.
    Paciaroni K, Lucarelli G, Martelli F, Migliaccio AR, von Lindern M, Borg J, Gillemans N, van Dijk TB, Philipsen S. Transfusion-independent β(0)-thalassemia after bone marrow transplantation failure: proposed involvement of high parental HbF and an epigenetic mechanism. Am J Blood Res. 2014;4:27–32.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Fibach E, Bianchi N, Borgatti M, Prus E, Gambari R. Mithramycin induces fetal hemoglobin production in normal and thalassemic human erythroid precursor cells. Blood. 2003;102:1276–81.CrossRefPubMedGoogle Scholar
  29. 29.
    Lampronti I, Bianchi N, Zuccato C, Dall’acqua F, Vedaldi D, Viola G, et al. Increase in gamma-globin mRNA content in human erythroid cells treated with angelicin analogs. Int J Hematol. 2009;90:318–27. doi:10.1007/s12185-009-0422-2.CrossRefPubMedGoogle Scholar
  30. 30.
    Lozzio CB, Lozzio BB, Machado EA, Fuhr JE, Lair SV, Bamberger EG. Effects of sodium butyrate on human chronic myelogenous leukaemia cell line K562. Nature. 1979;281:709–10.CrossRefPubMedGoogle Scholar
  31. 31.
    Bianchi N, Finotti A, Ferracin M, Zuccato C, Breveglieri G, Brognara E, et al. Increase of microRNA-210, decrease of raptor gene expression and alteration of mammalian target of rapamycin regulated proteins following mithramycin treatment of human erythroid cells. PLoS One. 2015;10:1–33. doi:10.1371/journal.pone.0121567.Google Scholar
  32. 32.
    Finotti A, Treves S, Zorzato F, Gambari R, Feriotto G. Upstream stimulatory factors are involved in the P1 promoter directed transcription of the A β H-J-J locus. BMC Mol Biol. 2008;9:110–25. doi:10.1186/1471-2199-9-110.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Andrews NC, Faller DV. A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res. 1991;19:2499. doi:10.1093/nar/19.9.2499.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Borgatti M, Lampronti I, Romanelli A, Pedone C, Saviano M, Bianchi N, et al. Transcription factor decoy molecules based on a peptide nucleic acid (PNA)-DNA chimera mimicking Sp1 binding sites. J Biol Chem. 2002;278:7500–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Romanelli A, Pedone C, Saviano M, Bianchi N, Borgatti M, Mischiati C, et al. Molecular interactions with nuclear factor kappaB (NF-kappaB) transcription factors of a PNA-DNA chimera mimicking NF-kappaB binding sites. Eur J Biochem. 2001;268:6066–75.CrossRefPubMedGoogle Scholar
  36. 36.
    Finotti A, Bianchi N, Fabbri E, Borgatti M, Breveglieri G, Gasparello J, et al. Erythroid induction of K562 cells treated with mithramycin is associated with inhibition of raptor gene transcription and mammalian target of rapamycin complex 1 (mTORC1) functions. Pharmacol Res. 2015;91:57–68. doi:10.1016/j.phrs.2014.11.005.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ju J, Wang Y, Liu R, Zhang Y, Xu Z, Wang Y, et al. Human fetal globin gene expression is regulated by LYAR. Nucleic Acids Res. 2014;42:9740–52.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Stockley PG, Persson B. Surface plasmon resonance assays of DNA-protein interactions. Method Mol Cell Biol. 2009;543:653–69. doi:10.1007/978-1-60327-015-1_38.Google Scholar
  39. 39.
    Li ZL, Abe H, Ueki K, Kumagai K, Araki R, Otsuki Y, et al. Identification of c-Jun as bcl-2 transcription factor in human uterine endometrium. J Histochem Cytochem. 2003;51:1601–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Marzaro G, Guiotto A, Borgatti M, Finotti A, Gambari R, Breveglieri G, et al. Psoralen derivatives as inhibitors of NF-κB/DNA interaction: synthesis, molecular modeling, 3D-QSAR, and biological evaluation. J Med Chem. 2013;56:1830–42. doi:10.1021/jm3009647.CrossRefPubMedGoogle Scholar
  41. 41.
    van Dijk M, Bonvin AM. 3D-DART: a DNA structure modeling server. Nucleic Acids Res. 2009;37(Web Server Issue):W235–W239.Google Scholar
  42. 42.
    Hess B, Kutzner C, van der Spoel D, Lindahl E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput. 2008;4:435–47. doi:10.1021/ct700301q.CrossRefPubMedGoogle Scholar
  43. 43.
    Dominguez C, Boelens R, Bonvin AM. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc. 2003;125:1731–7.CrossRefPubMedGoogle Scholar
  44. 44.
    de Vries SJ, van Dijk M, Bonvin AM. The HADDOCK web server for data-driven biomolecular docking. Nat Protocol. 2010;5:883–97. doi:10.1038/nprot.2010.32.CrossRefGoogle Scholar
  45. 45.
    DeLano WL. The PyMOL molecular graphics system. San Carlos: DeLano Scientific; 2002.Google Scholar
  46. 46.
    Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA. PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 2004;32:W665–7.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Sankaran VG, Xu J, Orkin SH. Transcriptional silencing of fetal hemoglobin by BCL11A. Ann NY Acad Sci. 2010;1202:64–8. doi:10.1111/j.1749-6632.2010.05574.x.CrossRefPubMedGoogle Scholar
  48. 48.
    Nguyen TK, Joly P, Bardel C, Moulsma M, Bonello-Palot N, Francina A. The XmnI (G)gamma polymorphism influences hemoglobin F synthesis contrary to BCL11A and HBS1L-MYB SNPs in a cohort of 57 beta-thalassemia intermedia patients. Blood Cel Mol Dis. 2010;45:124–7.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Nicoletta Bianchi
    • 1
  • Lucia Carmela Cosenza
    • 1
  • Ilaria Lampronti
    • 1
  • Alessia Finotti
    • 1
  • Giulia Breveglieri
    • 1
  • Cristina Zuccato
    • 1
  • Enrica Fabbri
    • 1
  • Giovanni Marzaro
    • 2
  • Adriana Chilin
    • 2
  • Gioia De Angelis
    • 3
  • Monica Borgatti
    • 1
  • Cristiano Gallucci
    • 3
  • Cecilia Alfieri
    • 3
  • Michela Ribersani
    • 3
  • Antonella Isgrò
    • 3
  • Marco Marziali
    • 3
  • Javid Gaziev
    • 3
  • Aldo Morrone
    • 3
  • Pietro Sodani
    • 3
  • Guido Lucarelli
    • 3
  • Roberto Gambari
    • 1
    • 4
  • Katia Paciaroni
    • 3
  1. 1.Department of Life Sciences and BiotechnologyFerrara UniversityFerraraItaly
  2. 2.Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPaduaItaly
  3. 3.International Centre for Transplantation in Thalassemia and Sickle Cell AnaemiaMediterranean Institute of Haematology, Policlinic of “Tor Vergata” UniversityRomeItaly
  4. 4.Biotechnology CenterFerrara UniversityFerraraItaly

Personalised recommendations