Skip to main content
Log in

Effect of Cysteamine on Mutant ASL Proteins with Cysteine for Arginine Substitutions

  • Short Communication
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Introduction

Cysteamine is used to treat cystinosis via the modification of cysteine residues substituting arginine in mutant proteins.

Objectives

We investigated the effect of cysteamine on mutant argininosuccinate lyase (ASL), the second most common defect in the urea cycle.

Methods

In an established mammalian expression system, 293T cell lysates were produced after transfection with all known cysteine for arginine mutations in the ASL gene (p.Arg94Cys, p.Arg95Cys, p.Arg168Cys, p.Arg379Cys, and p.Arg385Cys), allowing testing of the effect of cysteamine over 48 h in the culture medium as well as for 1 h immediately prior to the enzyme assay.

Results

Cysteamine at low concentrations showed no effect on 293T cell viability, ASL protein expression, or ASL activity when applied during cell culture. However, incubation of transfected cells with 0.05 mM cysteamine immediately before the enzyme assay resulted in increased ASL activity of p.Arg94Cys, p.Arg379Cys, and p.Arg385Cys by 64, 20, and 197 %, respectively, and this result was significant (p < 0.01). Cell lysates carrying p.Arg385Cys and treated with cysteamine recover enzyme activity that is similar to the untreated designed mutation p.Arg385Lys, providing circumstantial evidence for the assumed cysteamine-induced change of a cysteine to a lysine analogue.

Conclusion

Since 12 % of all known genotypes in ASL deficiency are affected by a cysteine for arginine mutation, we conclude that the potential of cysteamine or of related substances as remedy for this disease should be investigated further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Lilford RJ, Thornton JG, Braunholtz D. Clinical trials and rare diseases: a way out of a conundrum. BMJ. 1995;311(7020):1621–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Häberle J, Shahbeck N, Ibrahim K, Schmitt B, Scheer I, O’Gorman R, et al. Glutamine supplementation in a child with inherited GS deficiency improves the clinical status and partially corrects the peripheral and central amino acid imbalance. Orphanet J Rare Dis. 2012;7:48. doi:10.1186/1750-1172-7-48.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wood J, Sames L, Moore A, Ekins S. Multifaceted roles of ultra-rare and rare disease patients/parents in drug discovery. Drug Discov Today. 2013;18(21–22):1043–51. doi:10.1016/j.drudis.2013.08.006.

    Article  PubMed  Google Scholar 

  4. Gahl WA, Gregg RE, Hoeg JM, Fisher E. In vivo alteration of a mutant human protein using the free thiol cysteamine. Am J Med Genet. 1985;20(2):409–17. doi:10.1002/ajmg.1320200226.

    Article  CAS  PubMed  Google Scholar 

  5. Weisgraber KH, Innerarity TL, Mahley RW. Abnormal lipoprotein receptor-binding activity of the human E apoprotein due to cysteine-arginine interchange at a single site. J Biol Chem. 1982;257(5):2518–21.

    CAS  PubMed  Google Scholar 

  6. Aly AM, Arai M, Hoyer LW. Cysteamine enhances the procoagulant activity of Factor VIII-East Hartford, a dysfunctional protein due to a light chain thrombin cleavage site mutation (arginine-1689 to cysteine). J Clin Invest. 1992;89(5):1375–81. doi:10.1172/JCI115725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hoagland MB, Novelli GD. Biosynthesis of coenzyme A from phospho-pantetheine and of pantetheine from pantothenate. J Biol Chem. 1954;207(2):767–73.

    CAS  PubMed  Google Scholar 

  8. Besouw M, Masereeuw R, van den Heuvel L, Levtchenko E. Cysteamine: an old drug with new potential. Drug Discov Today. 2013;18(15–16):785–92. doi:10.1016/j.drudis.2013.02.003.

    Article  CAS  PubMed  Google Scholar 

  9. Thoene JG, Oshima RG, Crawhall JC, Olson DL, Schneider JA. Cystinosis. Intracellular cystine depletion by aminothiols in vitro and in vivo. J Clin Invest. 1976;58(1):180–9. doi:10.1172/JCI108448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gahl WA, Thoene JG, Schneider JA. Cystinosis. N Engl J Med. 2002;347(2):111–21. doi:10.1056/NEJMra020552.

    Article  PubMed  Google Scholar 

  11. Pisoni RL, Thoene JG, Christensen HN. Detection and characterization of carrier-mediated cationic amino acid transport in lysosomes of normal and cystinotic human fibroblasts. Role in therapeutic cystine removal? J Biol Chem. 1985;260(8):4791–8.

    CAS  PubMed  Google Scholar 

  12. Summar ML, Koelker S, Freedenberg D, Le Mons C, Häberle J, Lee HS, et al. The incidence of urea cycle disorders. Mol Genet Metab. 2013;110(1–2):179–80. doi:10.1016/j.ymgme.2013.07.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Balmer C, Pandey AV, Rüfenacht V, Nuoffer JM, Fang P, Wong LJ, et al. Mutations and polymorphisms in the human argininosuccinate lyase (ASL) gene. Hum Mutat. 2014;35(1):27–35. doi:10.1002/humu.22469.

    Article  CAS  PubMed  Google Scholar 

  14. Hu L, Pandey AV, Balmer C, Eggimann S, Rüfenacht V, Nuoffer JM, et al. Unstable argininosuccinate lyase in variant forms of the urea cycle disorder argininosuccinic aciduria. J Inherit Metab Dis. 2015;38(5):815–27. doi:10.1007/s10545-014-9807-3.

    Article  CAS  PubMed  Google Scholar 

  15. Hu L, Pandey AV, Eggimann S, Rüfenacht V, Moslinger D, Nuoffer JM, et al. Understanding the role of argininosuccinate lyase transcript variants in the clinical and biochemical variability of the urea cycle disorder argininosuccinic aciduria. J Biol Chem. 2013;288(48):34599–611. doi:10.1074/jbc.M113.503128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Engel K, Vuissoz JM, Eggimann S, Groux M, Berning C, Hu L, et al. Bacterial expression of mutant argininosuccinate lyase reveals imperfect correlation of in-vitro enzyme activity with clinical phenotype in argininosuccinic aciduria. J Inherit Metab Dis. 2012;35(1):133–40. doi:10.1007/s10545-011-9357-x.

    Article  CAS  PubMed  Google Scholar 

  17. Sampaleanu LM, Vallee F, Thompson GD, Howell PL. Three-dimensional structure of the argininosuccinate lyase frequently complementing allele Q286R. Biochemistry. 2001;40(51):15570–80.

    Article  CAS  PubMed  Google Scholar 

  18. Turner MA, Simpson A, McInnes RR, Howell PL. Human argininosuccinate lyase: a structural basis for intragenic complementation. Proc Natl Acad Sci USA. 1997;94(17):9063–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krieger E, Darden T, Nabuurs SB, Finkelstein A, Vriend G. Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins. 2004;57(4):678–83.

    Article  CAS  PubMed  Google Scholar 

  20. Vriend G. WHAT IF: a molecular modeling and drug design program. J Mol Graph. 1990;8(1):52–6, 29.

  21. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–61. doi:10.1002/jcc.21334.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Laskowski RA, Swindells MB. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model. 2011;51(10):2778–86. doi:10.1021/ci200227u.

    Article  CAS  PubMed  Google Scholar 

  23. Linnebank M, Tschiedel E, Häberle J, Linnebank A, Willenbring H, Kleijer WJ, et al. Argininosuccinate lyase (ASL) deficiency: mutation analysis in 27 patients and a completed structure of the human ASL gene. Hum Genet. 2002;111(4–5):350–9. doi:10.1007/s00439-002-0793-4.

    Article  CAS  PubMed  Google Scholar 

  24. Kleijer WJ, Garritsen VH, Linnebank M, Mooyer P, Huijmans JG, Mustonen A, et al. Clinical, enzymatic, and molecular genetic characterization of a biochemical variant type of argininosuccinic aciduria: prenatal and postnatal diagnosis in five unrelated families. J Inherit Metab Dis. 2002;25(5):399–410.

    Article  CAS  PubMed  Google Scholar 

  25. Cooper DN, Youssoufian H. The CpG dinucleotide and human genetic disease. Hum Genet. 1988;78(2):151–5.

    Article  CAS  PubMed  Google Scholar 

  26. Mancini D, Singh S, Ainsworth P, Rodenhiser D. Constitutively methylated CpG dinucleotides as mutation hot spots in the retinoblastoma gene (RB1). Am J Hum Genet. 1997;61(1):80–7. doi:10.1086/513898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brawer JR, Reichard G, Small L, Schipper HM. The origin and composition of peroxidase-positive granules in cysteamine-treated astrocytes in culture. Brain Res. 1994;633(1–2):9–20 (pii:0006-8993(94)91516-4).

    Article  CAS  PubMed  Google Scholar 

  28. Jezegou A, Llinares E, Anne C, Kieffer-Jaquinod S, O’Regan S, Aupetit J, et al. Heptahelical protein PQLC2 is a lysosomal cationic amino acid exporter underlying the action of cysteamine in cystinosis therapy. Proc Natl Acad Sci USA. 2012;109(50):E3434–43. doi:10.1073/pnas.1211198109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wan XM, Zheng F, Zhang L, Miao YY, Man N, Wen LP. Autophagy-mediated chemosensitization by cysteamine in cancer cells. Int J Cancer. 2011;129(5):1087–95. doi:10.1002/ijc.25771.

    Article  CAS  PubMed  Google Scholar 

  30. Smolin LA, Clark KF, Thoene JG, Gahl WA, Schneider JA. A comparison of the effectiveness of cysteamine and phosphocysteamine in elevating plasma cysteamine concentration and decreasing leukocyte free cystine in nephropathic cystinosis. Pediatr Res. 1988;23(6):616–20. doi:10.1203/00006450-198806000-00018.

    Article  CAS  PubMed  Google Scholar 

  31. Hua Long L, Halliwell B. Oxidation and generation of hydrogen peroxide by thiol compounds in commonly used cell culture media. Biochem Biophys Res Commun. 2001;286(5):991–4. doi:10.1006/bbrc.2001.5514.

  32. Yudkoff M, Daikhin Y, Ye X, Wilson JM, Batshaw ML. In vivo measurement of ureagenesis with stable isotopes. J Inherit Metab Dis. 1998;21(Suppl 1):21–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Häberle.

Ethics declarations

Conflict of interest

The authors CI, VR, AVP, LH, HB, JMN, and JH declare that they have no conflicts of interest.

Funding

This work was supported by the Swiss National Science Foundation (Grants 310030_153196/1 to JH and 310031_134926 to AVP) and a grant from Schweizerische Mobiliar Genossenschaft Jubiläumsstiftung to AVP.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 50 kb)

Supplementary material 2 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inauen, C., Rüfenacht, V., Pandey, A.V. et al. Effect of Cysteamine on Mutant ASL Proteins with Cysteine for Arginine Substitutions. Mol Diagn Ther 20, 125–133 (2016). https://doi.org/10.1007/s40291-015-0182-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-015-0182-z

Keywords

Navigation