Advertisement

Molecular Diagnosis & Therapy

, Volume 20, Issue 1, pp 27–32 | Cite as

Clinical Evaluation of a Novel Nine-Gene Panel for Ion Torrent PGM Sequencing of Myeloid Malignancies

  • Milena IvanovaEmail author
  • Velizar ShivarovEmail author
  • Ivan Pavlov
  • Konstantinos Lilakos
  • Elissaveta Naumova
Short Communication

Abstract

Background and Objective

In the last decade, a number of genes have been reported to be recurrently associated with myeloid malignancies. While some mutations are easily detectable by conventional molecular genetics methods, other mutations are more difficult to screen because of lower frequency and being scattered along large genomic ranges. However, newly developed approaches for next-generation sequencing provide an affordable solution for targeted multiplex resequencing of up to several hundreds of amplicons. Here, we aimed to develop and validate a novel custom panel for targeted resequencing of myeloid malignancy samples using the Ion PGM™ System (Ion Torrent, Paisley, UK).

Methods

We designed a pool of 424 primers for the amplification of 212 amplicons covering 99.46 % of the exonic regions of nine human genes as follows: ASXL1, EZH2, CALR, RUNX1, SETBP1, SF3B1, SRSF2, TET2, and U2AF1. Initial testing of the panel performance was performed on an Ion PGM™ machine using PGM™ 316 v2 chips on 16 DNA samples from patients with myeloid malignancies. Sequence alignment, variant calling, and annotation were performed using Ion Reporter software.

Results

We identified a total of 14 nonsynonymous somatic coding variants in seven samples affecting six of the genes in the panel (ASXL1, CALR, RUNX1, SRSF2, TET2, and U2AF1). Notably, three of the identified mutations were not present in the Cosmic v.67 release.

Conclusion

This proof-of-concept study confirms the feasibility of Ion Torrent systems for resequencing of clinically relevant mutations in myeloid malignancies. It can be particularly useful in cases without the most frequent clonal markers.

Keywords

Acute Myeloid Leukemia Polycythemia Vera Myeloid Malignancy Minimal Residual Disease Monitoring Custom Panel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank the Department of Hematology at Alexandrovska University Hospital for providing the clinical samples for the study.

Compliance with Ethical Standards

Conflict of interest

MI, VS, IP, KL, and EN report no conflict of interest.

Funding

MI, VS, IP, KL, and EN received no specific funding for this research.

Ethical approval and informed consent

Patients provided informed consent for molecular genetic testing and this study complied with the principles of the Declaration of Helsinki.

References

  1. 1.
    Murati A, Brecqueville M, Devillier R, Mozziconacci MJ, Gelsi-Boyer V, Birnbaum D. Myeloid malignancies: mutations, models and management. BMC Cancer. 2012;12:304. doi: 10.1186/1471-2407-12-304.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Patel JP, Gonen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med. 2012;366(12):1079–89. doi: 10.1056/NEJMoa1112304.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G, et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med. 2011;364(26):2496–506. doi: 10.1056/NEJMoa1013343.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, et al. Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol. 2012;30(5):434–9. doi: 10.1038/nbt.2198.PubMedCrossRefGoogle Scholar
  5. 5.
    Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics. 2012;13:341. doi: 10.1186/1471-2164-13-341.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Luthra R, Patel KP, Reddy NG, Haghshenas V, Routbort MJ, Harmon MA, et al. Next-generation sequencing-based multigene mutational screening for acute myeloid leukemia using MiSeq: applicability for diagnostics and disease monitoring. Haematologica. 2014;99(3):465–73. doi: 10.3324/haematol.2013.093765.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Ok CY, Patel KP, Garcia-Manero G, Routbort MJ, Fu B, Tang G, et al. Mutational profiling of therapy-related myelodysplastic syndromes and acute myeloid leukemia by next generation sequencing, a comparison with de novo diseases. Leuk Res. 2015;39(3):348–54. doi: 10.1016/j.leukres.2014.12.006.PubMedCrossRefGoogle Scholar
  8. 8.
    Conte N, Varela I, Grove C, Manes N, Yusa K, Moreno T, et al. Detailed molecular characterisation of acute myeloid leukaemia with a normal karyotype using targeted DNA capture. Leukemia. 2013;27(9):1820–5. doi: 10.1038/leu.2013.117.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Kihara R, Nagata Y, Kiyoi H, Kato T, Yamamoto E, Suzuki K, et al. Comprehensive analysis of genetic alterations and their prognostic impacts in adult acute myeloid leukemia patients. Leukemia. 2014;28(8):1586–95. doi: 10.1038/leu.2014.55.PubMedCrossRefGoogle Scholar
  10. 10.
    Lundberg P, Karow A, Nienhold R, Looser R, Hao-Shen H, Nissen I, et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014;123(14):2220–8. doi: 10.1182/blood-2013-11-537167.PubMedCrossRefGoogle Scholar
  11. 11.
    Ohgami RS, Ma L, Merker JD, Gotlib JR, Schrijver I, Zehnder JL, et al. Next-generation sequencing of acute myeloid leukemia identifies the significance of TP53, U2AF1, ASXL1, and TET2 mutations. Mod Pathol. 2015;28(5):706–14. doi: 10.1038/modpathol.2014.160.PubMedCrossRefGoogle Scholar
  12. 12.
    Shivarov V, Ivanova M, Naumova E. Rapid detection of DNMT3A R882 mutations in hematologic malignancies using a novel bead-based suspension assay with BNA(NC) probes. PLoS One. 2014;9(6):e99769. doi: 10.1371/journal.pone.0099769.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Shivarov V, Ivanova M, Hadjiev E, Naumova E. Novel multiplex bead-based assay for detection of IDH1 and IDH2 mutations in myeloid malignancies. PLoS One. 2013;8(9):e76944. doi: 10.1371/journal.pone.0076944.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Shivarov V, Ivanova M, Yaneva S, Petkova N, Hadjiev E, Naumova E. Quantitative bead-based assay for detection of JAK2 exon 12 mutations. Leuk Lymphoma. 2013;54(6):1343–4. doi: 10.3109/10428194.2012.745526.PubMedCrossRefGoogle Scholar
  15. 15.
    Shivarov V, Ivanova M, Hadjiev E, Naumova E. Rapid quantification of JAK2 V617F allele burden using a bead-based liquid assay with locked nucleic acid-modified oligonucleotide probes. Leuk Lymphoma. 2011;52(10):2023–6. doi: 10.3109/10428194.2011.584995.PubMedCrossRefGoogle Scholar
  16. 16.
    Ivanova MI, Shivarov VS, Hadjiev EA, Naumova EJ. Novel multiplex bead-based assay with LNA-modified probes for detection of MPL exon 10 mutations. Leuk Res. 2011;35(8):1120–3. doi: 10.1016/j.leukres.2011.04.012.PubMedCrossRefGoogle Scholar
  17. 17.
    Meggendorfer M, Roller A, Haferlach T, Eder C, Dicker F, Grossmann V, et al. SRSF2 mutations in 275 cases with chronic myelomonocytic leukemia (CMML). Blood. 2012;120(15):3080–8. doi: 10.1182/blood-2012-01-404863.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Kuo FC, Dong F. Next-generation sequencing-based panel testing for myeloid neoplasms. Curr Hematol Malig Rep. 2015;10(2):104–11. doi: 10.1007/s11899-015-0256-3.PubMedCrossRefGoogle Scholar
  19. 19.
    Black JS, Salto-Tellez M, Mills KI, Catherwood MA. The impact of next generation sequencing technologies on haematological research: a review. Pathogenesis. 2015;2(1–2):9–16. doi: 10.1016/j.pathog.2015.05.004.CrossRefGoogle Scholar
  20. 20.
    Kohlmann A, Nadarajah N, Alpermann T, Grossmann V, Schindela S, Dicker F, et al. Monitoring of residual disease by next-generation deep-sequencing of RUNX1 mutations can identify acute myeloid leukemia patients with resistant disease. Leukemia. 2014;28(1):129–37. doi: 10.1038/leu.2013.239.PubMedCrossRefGoogle Scholar
  21. 21.
    Gaidzik VI, Paschka P, Spath D, Habdank M, Kohne CH, Germing U, et al. TET2 mutations in acute myeloid leukemia (AML): results from a comprehensive genetic and clinical analysis of the AML study group. J Clin Oncol. 2012;30(12):1350–7. doi: 10.1200/JCO.2011.39.2886.PubMedCrossRefGoogle Scholar
  22. 22.
    Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012;150(2):264–78. doi: 10.1016/j.cell.2012.06.023.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Ortmann CA, Kent DG, Nangalia J, Silber Y, Wedge DC, Grinfeld J, et al. Effect of mutation order on myeloproliferative neoplasms. N Engl J Med. 2015;372(7):601–12. doi: 10.1056/NEJMoa1412098.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Chou WC, Chou SC, Liu CY, Chen CY, Hou HA, Kuo YY, et al. TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics. Blood. 2011;118(14):3803–10. doi: 10.1182/blood-2011-02-339747.PubMedCrossRefGoogle Scholar
  25. 25.
    Bartels S, Schipper E, Kreipe HH, Lehmann U. Comprehensive molecular profiling of archival bone marrow trephines using a commercially available leukemia panel and semiconductor-based targeted resequencing. PLoS One. 2015;10(7):e0133930. doi: 10.1371/journal.pone.0133930.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    McCourt CM, McArt DG, Mills K, Catherwood MA, Maxwell P, Waugh DJ, et al. Validation of next generation sequencing technologies in comparison to current diagnostic gold standards for BRAF, EGFR and KRAS mutational analysis. PLoS One. 2013;8(7):e69604. doi: 10.1371/journal.pone.0069604.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Clinical Immunology, Alexandrovska University HospitalMedical UniversitySofiaBulgaria
  2. 2.Laboratory of Clinical Immunology and Department of HematologySofiamed University HospitalSofiaBulgaria
  3. 3.Department of HematologyNational and Kapodistrian University of Athens, Laikon General HospitalAthensGreece

Personalised recommendations