Molecular Diagnosis & Therapy

, Volume 18, Issue 4, pp 381–388 | Cite as

Defining Phenotypes in COPD: An Aid to Personalized Healthcare

  • Andrea Segreti
  • Emanuele Stirpe
  • Paola Rogliani
  • Mario Cazzola
Review Article


The diagnosis of chronic obstructive pulmonary disease (COPD) is based on a post-bronchodilator fixed forced expiratory volume in 1 second (FEV1)/forced vital capacity (FVC) <70 % ratio and the presence of symptoms such as shortness of breath and productive cough. Despite the simplicity in making a diagnosis of COPD, this morbid condition is very heterogeneous, and at least three different phenotypes can be recognized: the exacerbator, the emphysema–hyperinflation and the overlap COPD–asthma. These subgroups show different clinical and radiological features. It has been speculated that there is an enormous variability in the response to drugs among the COPD phenotypes, and it is expected that subjects with the same phenotype will have a similar response to each specific treatment. We believe that phenotyping COPD patients would be very useful to predict the response to a treatment and the progression of the disease. This personalized approach allows identification of the right treatment for each COPD patient, and at the same time, leads to improvement in the effectiveness of therapies, avoidance of treatments not indicated, and reduction in the onset of adverse effects. The objective of the present review is to report the current knowledge about different COPD phenotypes, focusing on specific treatments for each subgroup. However, at present, COPD phenotypes have not been studied by randomized clinical trials and therefore we hope that well designed studies will focus on this topic.


Chronic Obstructive Pulmonary Disease Chronic Obstructive Pulmonary Disease Patient Tiotropium Chronic Obstructive Pulmonary Disease Exacerbation Roflumilast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Acknowledgements and Disclosures



  1. 1.
    Miravitlles M, Calle M, Soler-Cataluna JJ. Clinical phenotypes of COPD: identification, definition and implications for guidelines. Arch Bronconeumol. 2012;48(3):86–98. doi: 10.1016/j.arbres.2011.10.007.PubMedCrossRefGoogle Scholar
  2. 2.
    Global Initiative for Chronic Obstructive Pulmonary Disease.
  3. 3.
    Celli BR, Cote CG, Marin JM, Casanova C, Montes de Oca M, Mendez RA, et al. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med. 2004;350(10):1005–12. doi: 10.1056/NEJMoa021322.PubMedCrossRefGoogle Scholar
  4. 4.
    Hurst JR, Vestbo J, Anzueto A, Locantore N, Mullerova H, Tal-Singer R, et al. Susceptibility to exacerbation in chronic obstructive pulmonary disease. N Engl J Med. 2010;363(12):1128–38. doi: 10.1056/NEJMoa0909883.PubMedCrossRefGoogle Scholar
  5. 5.
    American Thoracic Society. Chronic bronchitis, asthma and pulmonary emphysema: a statement by the Committee on Diagnostic Standards for Nontuberculous Respiratory Diseases. Am Rev Respir Dis. 1962;85:762–8.Google Scholar
  6. 6.
    The definition of emphysema. Report of a National Heart, Lung, and Blood Institute, Division of Lung Diseases workshop. Am Rev Respir Dis. 1985;132(1):182–5.Google Scholar
  7. 7.
    Gibson PG, Simpson JL. The overlap syndrome of asthma and COPD: what are its features and how important is it? Thorax. 2009;64(8):728–35. doi: 10.1136/thx.2008.108027.PubMedCrossRefGoogle Scholar
  8. 8.
    Fujimoto K, Kitaguchi Y, Kubo K, Honda T. Clinical analysis of chronic obstructive pulmonary disease phenotypes classified using high-resolution computed tomography. Respirology. 2006;11(6):731–40. doi: 10.1111/j.1440-1843.2006.00930.x.PubMedCrossRefGoogle Scholar
  9. 9.
    Kitaguchi Y, Fujimoto K, Kubo K, Honda T. Characteristics of COPD phenotypes classified according to the findings of HRCT. Respir Med. 2006;100(10):1742–52. doi: 10.1016/j.rmed.2006.02.003.PubMedCrossRefGoogle Scholar
  10. 10.
    Rodriguez-Roisin R. Toward a consensus definition for COPD exacerbations. Chest. 2000;117(5 Suppl 2):398S–401S.PubMedCrossRefGoogle Scholar
  11. 11.
    Sapey E, Stockley RA. COPD exacerbations. 2: aetiology. Thorax. 2006;61(3):250–8. doi: 10.1136/thx.2005.041822.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Wedzicha JA, Brill SE, Allinson JP, Donaldson GC. Mechanisms and impact of the frequent exacerbator phenotype in chronic obstructive pulmonary disease. BMC Med. 2013;11:181. doi: 10.1186/1741-7015-11-181.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Beeh KM, Glaab T, Stowasser S, Schmidt H, Fabbri LM, Rabe KF, et al. Characterisation of exacerbation risk and exacerbator phenotypes in the POET-COPD trial. Respir Res. 2013;14:116. doi: 10.1186/1465-9921-14-116.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Falk JA, Minai OA, Mosenifar Z. Inhaled and systemic corticosteroids in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2008;5(4):506–12. doi: 10.1513/pats.200707-096ET.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Wedzicha JA, Decramer M, Seemungal TA. The role of bronchodilator treatment in the prevention of exacerbations of COPD. Eur Respir J. 2012;40(6):1545–54. doi: 10.1183/09031936.00048912.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Rabe KF. Update on roflumilast, a phosphodiesterase 4 inhibitor for the treatment of chronic obstructive pulmonary disease. Brit J Pharmacol. 2011;163(1):53–67. doi: 10.1111/j.1476-5381.2011.01218.x.CrossRefGoogle Scholar
  17. 17.
    Calverley PM, Rabe KF, Goehring UM, Kristiansen S, Fabbri LM, Martinez FJ. Roflumilast in symptomatic chronic obstructive pulmonary disease: two randomised clinical trials. Lancet. 2009;374(9691):685–94. doi: 10.1016/S0140-6736(09)61255-1.PubMedCrossRefGoogle Scholar
  18. 18.
    Wedzicha JA, Rabe KF, Martinez FJ, Bredenbroker D, Brose M, Goehring UM, et al. Efficacy of roflumilast in the COPD frequent exacerbator phenotype. Chest. 2013;143(5):1302–11. doi: 10.1378/chest.12-1489.PubMedCrossRefGoogle Scholar
  19. 19.
    Patel IS, Seemungal TA, Wilks M, Lloyd-Owen SJ, Donaldson GC, Wedzicha JA. Relationship between bacterial colonisation and the frequency, character, and severity of COPD exacerbations. Thorax. 2002;57(9):759–64.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Miravitlles M, Marin A, Monso E, Vila S, de la Roza C, Hervas R, et al. Efficacy of moxifloxacin in the treatment of bronchial colonisation in COPD. Eur Respir J. 2009;34(5):1066–71. doi: 10.1183/09031936.00195608.PubMedCrossRefGoogle Scholar
  21. 21.
    Seemungal TA, Wilkinson TM, Hurst JR, Perera WR, Sapsford RJ, Wedzicha JA. Long-term erythromycin therapy is associated with decreased chronic obstructive pulmonary disease exacerbations. Am J Respir Crit Care Med. 2008;178(11):1139–47. doi: 10.1164/rccm.200801-145OC.PubMedCrossRefGoogle Scholar
  22. 22.
    Albert RK, Connett J, Bailey WC, Casaburi R, Cooper JA Jr, Criner GJ, et al. Azithromycin for prevention of exacerbations of COPD. N Engl J Med. 2011;365(8):689–98. doi: 10.1056/NEJMoa1104623.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Sethi S, Jones PW, Theron MS, Miravitlles M, Rubinstein E, Wedzicha JA, et al. Pulsed moxifloxacin for the prevention of exacerbations of chronic obstructive pulmonary disease: a randomized controlled trial. Respir Res. 2010;11:10. doi: 10.1186/1465-9921-11-10.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Dal Negro R, Micheletto C, Tognella S, Visconti M, Turati C. Tobramycin Nebulizer Solution in severe COPD patients colonized with Pseudomonas aeruginosa: effects on bronchial inflammation. Adv Therapy. 2008;25(10):1019–30. doi: 10.1007/s12325-008-0105-2.
  25. 25.
    Mackay AJ, Hurst JR. COPD exacerbations: causes, prevention, and treatment. Immunol Allergy Clin N Am. 2013;33(1):95–115. doi: 10.1016/j.iac.2012.10.006.CrossRefGoogle Scholar
  26. 26.
    Cazzola M, Capuano A, Rogliani P, Matera MG. Bacterial lysates as a potentially effective approach in preventing acute exacerbation of COPD. Current Opin Pharmacol. 2012;12(3):300–8. doi: 10.1016/j.coph.2012.01.019.CrossRefGoogle Scholar
  27. 27.
    Boschetto P, Miniati M, Miotto D, Braccioni F, De Rosa E, Bononi I, et al. Predominant emphysema phenotype in chronic obstructive pulmonary. Eur Respir J. 2003;21(3):450–4.PubMedGoogle Scholar
  28. 28.
    Ferguson GT. Why does the lung hyperinflate? Proc Am Thorac Soc. 2006;3(2):176–9. doi: 10.1513/pats.200508-094DO.PubMedCrossRefGoogle Scholar
  29. 29.
    Gatta D, Aliprandi G, Pini L, Zanardini A, Fredi M, Tantucci C. Dynamic pulmonary hyperinflation and low grade systemic inflammation in stable COPD patients. Eur Rev Med Pharmacol Sci. 2011;15(9):1068–73.PubMedGoogle Scholar
  30. 30.
    Thomas M, Decramer M, O’Donnell DE. No room to breathe: the importance of lung hyperinflation in COPD. Primary Care Respir J J General Pract Airways Group. 2013;22(1):101–11. doi: 10.4104/pcrj.2013.00025.CrossRefGoogle Scholar
  31. 31.
    Tashkin DP, Cooper CB. The role of long-acting bronchodilators in the management of stable COPD. Chest. 2004;125(1):249–59.PubMedCrossRefGoogle Scholar
  32. 32.
    Crisafulli E, Venturelli E, Biscione G, Vagheggini G, Iattoni A, Lucic S, et al. Exercise performance after standard rehabilitation in COPD patients with lung hyperinflation. Intern Emerg Med. 2011;. doi: 10.1007/s11739-011-0727-z.Google Scholar
  33. 33.
    Rabe KF, Timmer W, Sagkriotis A, Viel K. Comparison of a combination of tiotropium plus formoterol to salmeterol plus fluticasone in moderate COPD. Chest. 2008;134(2):255–62. doi: 10.1378/chest.07-2138.PubMedCrossRefGoogle Scholar
  34. 34.
    Rennard SI, Calverley PM, Goehring UM, Bredenbroker D, Martinez FJ. Reduction of exacerbations by the PDE4 inhibitor roflumilast—the importance of defining different subsets of patients with COPD. Respir Res. 2011;12:18. doi: 10.1186/1465-9921-12-18.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Lee JH, Lee YK, Kim EK, Kim TH, Huh JW, Kim WJ, et al. Responses to inhaled long-acting beta-agonist and corticosteroid according to COPD subtype. Respir Med. 2010;104(4):542–9. doi: 10.1016/j.rmed.2009.10.024.PubMedCrossRefGoogle Scholar
  36. 36.
    Criner GJ, Cordova F, Sternberg AL, Martinez FJ. The National Emphysema Treatment Trial (NETT) Part II: Lessons learned about lung volume reduction surgery. Am J Respir Crit Care Med. 2011;184(8):881–93. doi: 10.1164/rccm.201103-0455CI.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Ries AL, Make BJ, Reilly JJ. Pulmonary rehabilitation in emphysema. Proc Am Thorac Soc. 2008;5(4):524–9. doi: 10.1513/pats.200707-093ET.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Zeki AA, Schivo M, Chan A, Albertson TE, Louie S. The asthma-COPD overlap syndrome: a common clinical problem in the elderly. J Allergy. 2011;2011:861926. doi: 10.1155/2011/861926.CrossRefGoogle Scholar
  39. 39.
    Beeh KM, Kornmann O, Beier J, Ksoll M, Buhl R. Clinical application of a simple questionnaire for the differentiation of asthma and chronic obstructive pulmonary disease. Respir Med. 2004;98(7):591–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Hardin M, Silverman EK, Barr RG, Hansel NN, Schroeder JD, Make BJ, et al. The clinical features of the overlap between COPD and asthma. Respir Res. 2011;12:127. doi: 10.1186/1465-9921-12-127.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Kitaguchi Y, Komatsu Y, Fujimoto K, Hanaoka M, Kubo K. Sputum eosinophilia can predict responsiveness to inhaled corticosteroid treatment in patients with overlap syndrome of COPD and asthma. Int J Chron Obstr Pulm Dis. 2012;7:283–9. doi: 10.2147/COPD.S30651.Google Scholar
  42. 42.
    Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol. 2008;8(3):183–92. doi: 10.1038/nri2254.PubMedCrossRefGoogle Scholar
  43. 43.
    Brightling CE, Monteiro W, Ward R, Parker D, Morgan MD, Wardlaw AJ, et al. Sputum eosinophilia and short-term response to prednisolone in chronic obstructive pulmonary disease: a randomised controlled trial. Lancet. 2000;356(9240):1480–5. doi: 10.1016/S0140-6736(00)02872-5.PubMedCrossRefGoogle Scholar
  44. 44.
    Siva R, Green RH, Brightling CE, Shelley M, Hargadon B, McKenna S, et al. Eosinophilic airway inflammation and exacerbations of COPD: a randomised controlled trial. Eur Respir J. 2007;29(5):906–13. doi: 10.1183/09031936.00146306.PubMedCrossRefGoogle Scholar
  45. 45.
    Cazzola M, MacNee W, Martinez FJ, Rabe KF, Franciosi LG, Barnes PJ, et al. Outcomes for COPD pharmacological trials: from lung function to biomarkers. Eur Respir J. 2008;31(2):416–69. doi: 10.1183/09031936.00099306.PubMedCrossRefGoogle Scholar
  46. 46.
    Stockley RA. Biomarkers in COPD: time for a deep breath. Thorax. 2007;62(8):657–60. doi: 10.1136/thx.2007.084228.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Kostikas K, Bakakos P, Papiris S, Stolz D, Celli BR. Systemic biomarkers in the evaluation and management of COPD patients: are we getting closer to clinical application? Current Drug Targets. 2013;14(2):177–91.PubMedCrossRefGoogle Scholar
  48. 48.
    Cazzola M, Novelli G. Biomarkers in COPD. Pulm Pharmacol Ther. 2010;23(6):493–500. doi: 10.1016/j.pupt.2010.05.001.PubMedCrossRefGoogle Scholar
  49. 49.
    Urbani A, De Canio M, Palmieri F, Sechi S, Bini L, Castagnola M, et al. The mitochondrial Italian Human Proteome Project initiative (mt-HPP). Mol Biosystems. 2013;9(8):1984–92. doi: 10.1039/c3mb70065h.Google Scholar
  50. 50.
    Snowden S, Dahlen SE, Wheelock CE. Application of metabolomics approaches to the study of respiratory diseases. Bioanalysis. 2012;4(18):2265–90. doi: 10.4155/bio.12.218.PubMedCrossRefGoogle Scholar
  51. 51.
    Neofytou E, Tzortzaki EG, Chatziantoniou A, Siafakas NM. DNA damage due to oxidative stress in chronic obstructive pulmonary disease (COPD). Int J Mol Sci. 2012;13(12):16853–64. doi: 10.3390/ijms131216853.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Fens N, van der Schee MP, Brinkman P, Sterk PJ. Exhaled breath analysis by electronic nose in airways disease. Established issues and key questions. Clin Exp Allergy J Brit Soc Allergy Clin Immunol. 2013;43(7):705–15. doi: 10.1111/cea.12052.CrossRefGoogle Scholar
  53. 53.
    Paige M, Burdick MD, Kim S, Xu J, Lee JK, Michael Shim Y. Pilot analysis of the plasma metabolite profiles associated with emphysematous chronic obstructive pulmonary disease phenotype. Biochem Biophys Res Commun. 2011;413(4):588–93. doi: 10.1016/j.bbrc.2011.09.006.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Bon JM, Leader JK, Weissfeld JL, Coxson HO, Zheng B, Branch RA, et al. The influence of radiographic phenotype and smoking status on peripheral blood biomarker patterns in chronic obstructive pulmonary disease. PloS one. 2009;4(8):e6865. doi: 10.1371/journal.pone.0006865.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Boschetto P, Quintavalle S, Zeni E, Leprotti S, Potena A, Ballerin L, et al. Association between markers of emphysema and more severe chronic obstructive pulmonary disease. Thorax. 2006;61(12):1037–42. doi: 10.1136/thx.2006.058321.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Papaioannou AI, Mazioti A, Kiropoulos T, Tsilioni I, Koutsokera A, Tanou K, et al. Systemic and airway inflammation and the presence of emphysema in patients with COPD. Respir Med. 2010;104(2):275–82. doi: 10.1016/j.rmed.2009.09.016.PubMedCrossRefGoogle Scholar
  57. 57.
    Celli BR, Locantore N, Yates J, Tal-Singer R, Miller BE, Bakke P, et al. Inflammatory biomarkers improve clinical prediction of mortality in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;185(10):1065–72. doi: 10.1164/rccm.201110-1792OC.PubMedCrossRefGoogle Scholar
  58. 58.
    Miravitlles M, Soriano JB, Ancochea J, Munoz L, Duran-Tauleria E, Sanchez G, et al. Characterisation of the overlap COPD-asthma phenotype. Focus on physical activity and health status. Respir Med. 2013;107(7):1053–60. doi: 10.1016/j.rmed.2013.03.007.PubMedCrossRefGoogle Scholar
  59. 59.
    Bafadhel M, Saha S, Siva R, McCormick M, Monteiro W, Rugman P, et al. Sputum IL-5 concentration is associated with a sputum eosinophilia and attenuated by corticosteroid therapy in COPD. Respir Int Rev Thorac Dis. 2009;78(3):256–62. doi: 10.1159/000221902.Google Scholar
  60. 60.
    Niewoehner DE. TORCH and UPLIFT: what has been learned from the COPD “mega-trials”? Copd. 2009;6(1):1–3. doi: 10.1080/15412550902723984.PubMedCrossRefGoogle Scholar
  61. 61.
    National Institute for Health and Care Excellence.
  62. 62.
    Anderson D, Macnee W. Targeted treatment in COPD: a multi-system approach for a multi-system disease. Int J Chron Obstr Pulmon Dis. 2009;4:321–35.CrossRefGoogle Scholar
  63. 63.
    Han MK, Kazerooni EA, Lynch DA, Liu LX, Murray S, Curtis JL, et al. Chronic obstructive pulmonary disease exacerbations in the COPDGene study: associated radiologic phenotypes. Radiology. 2011;261(1):274–82. doi: 10.1148/radiol.11110173.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Cazzola M, Segreti A, Rogliani P. Comparative effectiveness of drugs for chronic obstructive pulmonary disease. Drugs Today (Barc). 2012;48(12):785–94. doi: 10.1358/dot.2012.48.12.1860770.Google Scholar
  65. 65.
    Agusti A, Sobradillo P, Celli B. Addressing the complexity of chronic obstructive pulmonary disease: from phenotypes and biomarkers to scale-free networks, systems biology, and P4 medicine. Am J Respir Crit Care Med. 2011;183(9):1129–37. doi: 10.1164/rccm.201009-1414PP.PubMedCrossRefGoogle Scholar
  66. 66.
    Carolan BJ, Sutherland ER. Clinical phenotypes of chronic obstructive pulmonary disease and asthma: recent advances. J Allergy Clin Immunol. 2013;131(3):627–34; quiz 35. doi: 10.1016/j.jaci.2013.01.010.
  67. 67.
    Miravitlles M, Soler-Cataluña JJ, Calle M, Molina J, Almagro P, Quintano JA et al. A new approach to grading and treating COPD based on clinical phenotypes: summary of the Spanish COPD guidelines (GesEPOC). Primary Care Respiratory Journal: Journal of the General Practice Airways Group. 2013;22(1):117–21, 1471–4418.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Andrea Segreti
    • 1
  • Emanuele Stirpe
    • 1
  • Paola Rogliani
    • 1
  • Mario Cazzola
    • 1
  1. 1.Unit of Respiratory Medicine, Department of System MedicineUniversity of Rome Tor VergataRomeItaly

Personalised recommendations