Molecular Diagnosis & Therapy

, Volume 18, Issue 2, pp 175–183

Circulating Melanoma Cells in the Diagnosis and Monitoring of Melanoma: An Appraisal of Clinical Potential

Review Article


Circulating melanoma cells (CMCs) are thought to be the foundation for metastatic disease, which makes this cancer especially lethal. Cancer cells contained in the primary tumor undergo genotypic and phenotypic changes leading to an epithelial-to-mesenchymal transition, during which numerous changes occur in signaling pathways and proteins in the cells. CMCs are then shed off or migrate from the primary tumor and intravasate the vasculature system. A few CMCs are able to survive in the circulation through expression of a variety of genes and also by evading immune system recognition to establish metastases at distant sites after extravasating from the vessels. The presence of CMCs in the blood of a melanoma patient can be used for disease staging, predicting metastasis development, and evaluating the efficacy of therapeutic agents. Overall survival and disease-free duration can also be correlated with the presence of CMCs. Finally, analysis of CMCs for druggable therapeutic gene targets could lead to the development of personalized treatment regimens to prevent metastasis. Thus, the study of CMCs shows promise for the detection, staging, and monitoring of disease treatment, as well as for determination of prognosis and predicting overall disease-free survival. These are the areas reviewed in this article.


  1. 1.
    Paterlini-Brechot P, Benali NL. Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett. 2007;253(2):180–204.PubMedCrossRefGoogle Scholar
  2. 2.
    Seiter S, Rappl G, Tilgen W, Ugurel S, Reinhold U. Facts and pitfalls in the detection of tyrosinase mRNA in the blood of melanoma patients by RT-PCR. Recent Results Cancer Res. 2001;158:105–12.PubMedCrossRefGoogle Scholar
  3. 3.
    Chiang AC, Massague J. Molecular basis of metastasis. N Engl J Med. 2008;359(26):2814–23.PubMedCrossRefGoogle Scholar
  4. 4.
    Huh SJ, Liang S, Sharma A, Dong C, Robertson GP. Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Res. 2010;70(14):6071–82.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Nezos A, Msaouel P, Pissimissis N, Lembessis P, Sourla A, Armakolas A, et al. Methods of detection of circulating melanoma cells: a comparative overview. Cancer Treat Rev. 2011;37(4):284–90.PubMedCrossRefGoogle Scholar
  6. 6.
    Thompson EW, Newgreen DF, Tarin D. Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition? Cancer Res. 2005;65(14):5991–5 discussion 5.PubMedCrossRefGoogle Scholar
  7. 7.
    Xu J, Wang R, Xie ZH, Odero-Marah V, Pathak S, Multani A, et al. Prostate cancer metastasis: role of the host microenvironment in promoting epithelial to mesenchymal transition and increased bone and adrenal gland metastasis. Prostate. 2006;66(15):1664–73.PubMedCrossRefGoogle Scholar
  8. 8.
    Rodriguez MI, Peralta-Leal A, O’Valle F, Rodriguez-Vargas JM, Gonzalez-Flores A, Majuelos-Melguizo J, et al. PARP-1 regulates metastatic melanoma through modulation of vimentin-induced malignant transformation. PLoS Genet. 2013;9(6):e1003531.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Vogelmann R, Nguyen-Tat MD, Giehl K, Adler G, Wedlich D, Menke A. TGFbeta-induced downregulation of E-cadherin-based cell-cell adhesion depends on PI3-kinase and PTEN. J Cell Sci. 2005;118(Pt 20):4901–12.PubMedCrossRefGoogle Scholar
  10. 10.
    Van Den Bossche K, Naeyaert JM, Lambert J. The quest for the mechanism of melanin transfer. Traffic. 2006;7(7):769–78.CrossRefGoogle Scholar
  11. 11.
    Moustakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 2007;98(10):1512–20.PubMedCrossRefGoogle Scholar
  12. 12.
    Larue L, Bellacosa A. Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene. 2005;24(50):7443–54.PubMedCrossRefGoogle Scholar
  13. 13.
    Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol. 2006;172(7):973–81.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7(2):131–42.PubMedCrossRefGoogle Scholar
  15. 15.
    Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005;17(5):548–58.PubMedCrossRefGoogle Scholar
  16. 16.
    Concepcion Garrido M, Requena L, Kutzner H, Ortiz P, Perez-Gomez B, Rodriguez-Peralto JL. Desmoplastic melanoma: expression of epithelial-mesenchymal transition-related proteins. Am J Dermatopathol. 2013. PubMed PMID: 23974224.Google Scholar
  17. 17.
    Hsu MY, Meier FE, Nesbit M, Hsu JY, Van Belle P, Elder DE, et al. E-cadherin expression in melanoma cells restores keratinocyte-mediated growth control and down-regulates expression of invasion-related adhesion receptors. Am J Pathol. 2000;156(5):1515–25.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Peinado H, Portillo F, Cano A. Transcriptional regulation of cadherins during development and carcinogenesis. Int J Dev Biol. 2004;48(5–6):365–75.PubMedCrossRefGoogle Scholar
  19. 19.
    Mazzocca A, Carloni V. The metastatic process: methodological advances and pharmacological challenges. Curr Med Chem. 2009;16(14):1704–17.PubMedCrossRefGoogle Scholar
  20. 20.
    Lade-Keller J, Riber-Hansen R, Guldberg P, Schmidt H, Hamilton-Dutoit SJ, Steiniche T. E- to N-cadherin switch in melanoma is associated with decreased expression of phosphatase and tensin homolog and cancer progression. Br J Dermatol. 2013;169(3):618–28.PubMedCrossRefGoogle Scholar
  21. 21.
    Weeraratna AT, Jiang Y, Hostetter G, Rosenblatt K, Duray P, Bittner M, et al. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell. 2002;1(3):279–88.PubMedCrossRefGoogle Scholar
  22. 22.
    Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006;66(2):605–12.PubMedCrossRefGoogle Scholar
  23. 23.
    Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, Pinner S, et al. Rac activation and inactivation control plasticity of tumor cell movement. Cell. 2008;135(3):510–23.PubMedCrossRefGoogle Scholar
  24. 24.
    Wong CW, Lee A, Shientag L, Yu J, Dong Y, Kao G, et al. Apoptosis: an early event in metastatic inefficiency. Cancer Res. 2001;61(1):333–8.PubMedGoogle Scholar
  25. 25.
    Fidler IJ. Metastasis: quantitative analysis of distribution and fate of tumor embolilabeled with 125 I-5-iodo-2′-deoxyuridine. J Natl Cancer Inst. 1970;45(4):773–82.PubMedGoogle Scholar
  26. 26.
    Nguyen DX, Bos PD, Massague J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009;9(4):274–84.PubMedCrossRefGoogle Scholar
  27. 27.
    Holmgren L, O’Reilly MS, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med. 1995;1(2):149–53.PubMedCrossRefGoogle Scholar
  28. 28.
    Liotta LA, Kohn E. Anoikis: cancer and the homeless cell. Nature. 2004;430(7003):973–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Robertson GP. Functional and therapeutic significance of Akt deregulation in malignant melanoma. Cancer Metastasis Rev. 2005;24(2):273–85.PubMedCrossRefGoogle Scholar
  30. 30.
    Madhunapantula SV, Sharma A, Robertson GP. PRAS40 deregulates apoptosis in malignant melanoma. Cancer Res. 2007;67(8):3626–36.PubMedCrossRefGoogle Scholar
  31. 31.
    Stahl JM, Cheung M, Sharma A, Trivedi NR, Shanmugam S, Robertson GP. Loss of PTEN promotes tumor development in malignant melanoma. Cancer Res. 2003;63(11):2881–90.PubMedGoogle Scholar
  32. 32.
    Mehlen P, Puisieux A. Metastasis: a question of life or death. Nat Rev Cancer. 2006;6(6):449–58.PubMedCrossRefGoogle Scholar
  33. 33.
    Townson JL, Naumov GN, Chambers AF. The role of apoptosis in tumor progression and metastasis. Curr Mol Med. 2003;3(7):631–42.PubMedCrossRefGoogle Scholar
  34. 34.
    Ireland A, Millward M, Pearce R, Lee M, Ziman M. Genetic factors in metastatic progression of cutaneous melanoma: the future role of circulating melanoma cells in prognosis and management. Clin Exp Metastasis. 2011;28(4):327–36.PubMedCrossRefGoogle Scholar
  35. 35.
    Welch DR, Tomasovic SP. Implications of tumor progression on clinical oncology. Clin Exp Metastasis. 1985;3(3):151–88.PubMedCrossRefGoogle Scholar
  36. 36.
    Borsig L, Wong R, Hynes RO, Varki NM, Varki A. Synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proc Natl Acad Sci USA. 2002;99(4):2193–8.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Laubli H, Stevenson JL, Varki A, Varki NM, Borsig L. L-selectin facilitation of metastasis involves temporal induction of Fut7-dependent ligands at sites of tumor cell arrest. Cancer Res. 2006;66(3):1536–42.PubMedCrossRefGoogle Scholar
  38. 38.
    Langley RR, Fidler IJ. The seed and soil hypothesis revisited—the role of tumor-stroma interactions in metastasis to different organs. Int J Cancer. 2011;128(11):2527–35.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Nakamura K, Martin KC, Jackson JK, Beppu K, Woo CW, Thiele CJ. Brain-derived neurotrophic factor activation of TrkB induces vascular endothelial growth factor expression via hypoxia-inducible factor-1alpha in neuroblastoma cells. Cancer Res. 2006;66(8):4249–55.PubMedCrossRefGoogle Scholar
  40. 40.
    Ulmer A, Schmidt-Kittler O, Fischer J, Ellwanger U, Rassner G, Riethmuller G, et al. Immunomagnetic enrichment, genomic characterization, and prognostic impact of circulating melanoma cells. Clin Cancer Res. 2004;10(2):531–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Ulmer A, Fierlbeck G. Circulating tumor cells and detection of the melanoma-associated antigen HMW-MAA in the serum of melanoma patients. J Invest Dermatol. 2006;126(4):914–5 (author reply 5–6).PubMedCrossRefGoogle Scholar
  42. 42.
    Eccles SA, Welch DR. Metastasis: recent discoveries and novel treatment strategies. Lancet. 2007;369(9574):1742–57.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Riethdorf S, Pantel K. Advancing personalized cancer therapy by detection and characterization of circulating carcinoma cells. Ann N Y Acad Sci. 2010;1210:66–77.PubMedCrossRefGoogle Scholar
  44. 44.
    Klein CA, Blankenstein TJ, Schmidt-Kittler O, Petronio M, Polzer B, Stoecklein NH, et al. Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet. 2002;360(9334):683–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Heppner GH, Miller FR. The cellular basis of tumor progression. Int Rev Cytol. 1998;177:1–56.PubMedCrossRefGoogle Scholar
  46. 46.
    Strauss BS. Hypermutability and silent mutations in human carcinogenesis. Semin Cancer Biol. 1998;8(6):431–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Hoshimoto S, Faries MB, Morton DL, Shingai T, Kuo C, Wang HJ, et al. Assessment of prognostic circulating tumor cells in a phase III trial of adjuvant immunotherapy after complete resection of stage IV melanoma. Ann Surg. 2012;255(2):357–62.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Yang L, Lang JC, Balasubramanian P, Jatana KR, Schuller D, Agrawal A, et al. Optimization of an enrichment process for circulating tumor cells from the blood of head and neck cancer patients through depletion of normal cells. Biotechnol Bioeng. 2009;102(2):521–34.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Vona G, Sabile A, Louha M, Sitruk V, Romana S, Schutze K, et al. Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulating tumor cells. Am J Pathol. 2000;156(1):57–63.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Mocellin S, Keilholz U, Rossi CR, Nitti D. Circulating tumor cells: the ‘leukemic phase’ of solid cancers. Trends Mol Med. 2006;12(3):130–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Smith B, Selby P, Southgate J, Pittman K, Bradley C, Blair GE. Detection of melanoma cells in peripheral blood by means of reverse transcriptase and polymerase chain reaction. Lancet. 1991;338(8777):1227–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Rao C, Bui T, Connelly M, Doyle G, Karydis I, Middleton MR, et al. Circulating melanoma cells and survival in metastatic melanoma. Int J Oncol. 2011;38(3):755–60.PubMedGoogle Scholar
  53. 53.
    de Bono JS, Scher HI, Montgomery RB, Parker C, Miller MC, Tissing H, et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res. 2008;14(19):6302–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Mitsiades CS, Lembessis P, Sourla A, Milathianakis C, Tsintavis A, Koutsilieris M. Molecular staging by RT-pCR analysis for PSA and PSMA in peripheral blood and bone marrow samples is an independent predictor of time to biochemical failure following radical prostatectomy for clinically localized prostate cancer. Clin Exp Metastasis. 2004;21(6):495–505.PubMedCrossRefGoogle Scholar
  55. 55.
    Fusi A, Collette S, Busse A, Suciu S, Rietz A, Santinami M, et al. Circulating melanoma cells and distant metastasis-free survival in stage III melanoma patients with or without adjuvant interferon treatment (EORTC 18991 side study). Eur J Cancer. 2009;45(18):3189–97.PubMedCrossRefGoogle Scholar
  56. 56.
    Lugo TG, Braun S, Cote RJ, Pantel K, Rusch V. Detection and measurement of occult disease for the prognosis of solid tumors. J Clin Oncol. 2003;21(13):2609–15.Google Scholar
  57. 57.
    Clawson GA, Kimchi E, Patrick SD, Xin P, Harouaka R, Zheng S, et al. Circulating tumor cells in melanoma patients. PLoS One. 2012;7(7):e41052.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Carlson JA, Ross JS, Slominski A, Linette G, Mysliborski J, Hill J, et al. Molecular diagnostics in melanoma. J Am Acad Dermatol. 2005;52(5):743–75 (quiz 75–8).PubMedCrossRefGoogle Scholar
  59. 59.
    Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007;450(7173):1235–9.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Palmieri G, Casula M, Sini MC, Ascierto PA, Cossu A. Issues affecting molecular staging in the management of patients with melanoma. J Cell Mol Med. 2007;11(5):1052–68.PubMedCrossRefGoogle Scholar
  61. 61.
    Mocellin S, Del Fiore P, Guarnieri L, Scalerta R, Foletto M, Chiarion V, et al. Molecular detection of circulating tumor cells is an independent prognostic factor in patients with high-risk cutaneous melanoma. Int J Cancer. 2004;111(5):741–5.PubMedCrossRefGoogle Scholar
  62. 62.
    Eton O, Legha SS, Bedikian AY, Lee JJ, Buzaid AC, Hodges C, et al. Sequential biochemotherapy versus chemotherapy for metastatic melanoma: results from a phase III randomized trial. J Clin Oncol. 2002;20(8):2045–52.PubMedCrossRefGoogle Scholar
  63. 63.
    Eton O, Rosenblum MG, Legha SS, Zhang W, Jo East M, Bedikian A, et al. Phase I trial of subcutaneous recombinant human interleukin-2 in patients with metastatic melanoma. Cancer. 2002;95(1):127–34.PubMedCrossRefGoogle Scholar
  64. 64.
    Khayat D, Bernard-Marty C, Meric JB, Rixe O. Biochemotherapy for advanced melanoma: maybe it is real. J Clin Oncol. 2002;20(10):2411–4.PubMedGoogle Scholar
  65. 65.
    Ma J, Lin JY, Alloo A, Wilson BJ, Schatton T, Zhan Q, et al. Isolation of tumorigenic circulating melanoma cells. Biochem Biophys Res Commun. 2010;402(4):711–7.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Dowsett M, Dunbier AK. Emerging biomarkers and new understanding of traditional markers in personalized therapy for breast cancer. Clin Cancer Res. 2008;14(24):8019–26.PubMedCrossRefGoogle Scholar
  67. 67.
    Romano E, Schwartz GK, Chapman PB, Wolchock JD, Carvajal RD. Treatment implications of the emerging molecular classification system for melanoma. Lancet Oncol. 2011;12(9):913–22.PubMedCrossRefGoogle Scholar
  68. 68.
    Sakaizawa K, Goto Y, Kiniwa Y, Uchiyama A, Harada K, Shimada S, et al. Mutation analysis of BRAF and KIT in circulating melanoma cells at the single cell level. Br J Cancer. 2012;106(5):939–46.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Koyanagi K, Kuo C, Nakagawa T, Mori T, Ueno H, Lorico AR Jr, et al. Multimarker quantitative real-time PCR detection of circulating melanoma cells in peripheral blood: relation to disease stage in melanoma patients. Clin Chem. 2005;51(6):981–8.PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Koyanagi K, O’Day SJ, Gonzalez R, Lewis K, Robinson WA, Amatruda TT, et al. Serial monitoring of circulating melanoma cells during neoadjuvant biochemotherapy for stage III melanoma: outcome prediction in a multicenter trial. J Clin Oncol. 2005;23(31):8057–64.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Maheswaran S, Sequist LV, Nagrath S, Ulkus L, Brannigan B, Collura CV, et al. Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med. 2008;359(4):366–77.PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Kitago M, Koyanagi K, Nakamura T, Goto Y, Faries M, O’Day SJ, et al. mRNA expression and BRAF mutation in circulating melanoma cells isolated from peripheral blood with high molecular weight melanoma-associated antigen-specific monoclonal antibody beads. Clin Chem. 2009;55(4):757–64.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Capper D, Preusser M, Habel A, Sahm F, Ackermann U, Schindler G, et al. Assessment of BRAF V600E mutation status by immunohistochemistry with a mutation-specific monoclonal antibody. Acta Neuropathol. 2011;122(1):11–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Hofman V, Ilie M, Long-Mira E, Giacchero D, Butori C, Dadone B, et al. Usefulness of immunocytochemistry for the detection of the BRAF(V600E) mutation in circulating tumor cells from metastatic melanoma patients. J Invest Dermatol. 2013;133(5):1378–81.PubMedCrossRefGoogle Scholar
  75. 75.
    Keilholz U, Goldin-Lang P, Bechrakis NE, Max N, Letsch A, Schmittel A, et al. Quantitative detection of circulating tumor cells in cutaneous and ocular melanoma and quality assessment by real-time reverse transcriptase-polymerase chain reaction. Clin Cancer Res. 2004;10(5):1605–12.PubMedCrossRefGoogle Scholar
  76. 76.
    Mostert B, Sleijfer S, Foekens JA, Gratama JW. Circulating tumor cells (CTCs): detection methods and their clinical relevance in breast cancer. Cancer Treat Rev. 2009;35(5):463–74.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Department of PharmacologyPenn State College of Medicine, Penn State Milton S. Hershey Medical CenterHersheyUSA

Personalised recommendations