Molecular Diagnosis & Therapy

, Volume 17, Issue 5, pp 287–297 | Cite as

Pancreatic Cancer Genomes: Toward Molecular Subtyping and Novel Approaches to Diagnosis and Therapy

Review Article

Abstract

Pancreatic neoplasms represent a broad range of clinical entities, many of which have drastic effects on the lives of patients. Recently, high-throughput sequencing analyses have been performed in many pancreatic neoplasms, providing deep insights into the underlying biology of these neoplasms as well as novel approaches to diagnosis and treatment. This review discusses the molecular alterations underlying pancreatic neoplasms as well as the clinical impact of these alterations for diagnosis and treatment.

References

  1. 1.
    Bosman FT, Carneiro F, Hruban RH, Theise ND. WHO Classification of Tumours of the Digestive System. 4th ed. World Health Organization Classification of Tumours. Lyon: International Agency for Research on Cancer; 2010.Google Scholar
  2. 2.
    Hruban RH, Pitman MB, Klimstra DS. Tumors of the pancreas. Fourth Series, Fascicle 6 ed. AFIP Atlas of Tumor Pathology. Washington, D.C.: American Registry of Pathology; 2007.Google Scholar
  3. 3.
    Smit VT, Boot AJ, Smits AM, Fleuren GJ, Cornelisse CJ, Bos JL. KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas. Nucleic Acids Res. 1988;16(16):7773–82.PubMedCrossRefGoogle Scholar
  4. 4.
    Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell. 1988;53(4):549–54.PubMedCrossRefGoogle Scholar
  5. 5.
    Caldas C, Kern SE. K-ras mutation and pancreatic adenocarcinoma. Int J Pancreatol. 1995;18(1):1–6.PubMedGoogle Scholar
  6. 6.
    Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321(5897):1801–6. doi:10.1126/science.1164368.PubMedCrossRefGoogle Scholar
  7. 7.
    Pellegata NS, Sessa F, Renault B, Bonato M, Leone BE, Solcia E, et al. K-ras and p53 gene mutations in pancreatic cancer: ductal and nonductal tumors progress through different genetic lesions. Cancer Res. 1994;54(6):1556–60.PubMedGoogle Scholar
  8. 8.
    Hruban RH, van Mansfeld AD, Offerhaus GJ, van Weering DH, Allison DC, Goodman SN, et al. K-ras oncogene activation in adenocarcinoma of the human pancreas. A study of 82 carcinomas using a combination of mutant-enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization. Am J Pathol. 1993;143(2):545–54.PubMedGoogle Scholar
  9. 9.
    Maitra A, Hruban RH. Pancreatic cancer. Annu Rev Pathol. 2008;3:157–88. doi:10.1146/annurev.pathmechdis.3.121806.154305.PubMedCrossRefGoogle Scholar
  10. 10.
    Attri J, Srinivasan R, Majumdar S, Radotra BD, Wig J. Alterations of tumor suppressor gene p16INK4a in pancreatic ductal carcinoma. BMC Gastroenterol. 2005;5:22. doi:10.1186/1471-230x-5-22.PubMedCrossRefGoogle Scholar
  11. 11.
    Caldas C, Hahn SA, da Costa LT, Redston MS, Schutte M, Seymour AB, et al. Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet. 1994;8(1):27–32. doi:10.1038/ng0994-27.PubMedCrossRefGoogle Scholar
  12. 12.
    Schutte M, Hruban RH, Geradts J, Maynard R, Hilgers W, Rabindran SK, et al. Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Res. 1997;57(15):3126–30.PubMedGoogle Scholar
  13. 13.
    Hahn SA, Hoque AT, Moskaluk CA, da Costa LT, Schutte M, Rozenblum E, et al. Homozygous deletion map at 18q21.1 in pancreatic cancer. Cancer Res. 1996;56(3):490–4.PubMedGoogle Scholar
  14. 14.
    Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science. 1996;271(5247):350–3.PubMedCrossRefGoogle Scholar
  15. 15.
    Lohr M, Kloppel G, Maisonneuve P, Lowenfels AB, Luttges J. Frequency of K-ras mutations in pancreatic intraductal neoplasias associated with pancreatic ductal adenocarcinoma and chronic pancreatitis: a meta-analysis. Neoplasia. 2005;7(1):17–23. doi:10.1593/neo.04445.PubMedCrossRefGoogle Scholar
  16. 16.
    Goggins M, Hruban RH, Kern SE. BRCA2 is inactivated late in the development of pancreatic intraepithelial neoplasia: evidence and implications. Am J Pathol. 2000;156(5):1767–71. doi:10.1016/s0002-9440(10)65047-x.PubMedCrossRefGoogle Scholar
  17. 17.
    Moskaluk CA, Hruban RH, Kern SE. p16 and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma. Cancer Res. 1997;57(11):2140–3.PubMedGoogle Scholar
  18. 18.
    Shi C, Hong SM, Lim P, Kamiyama H, Khan M, Anders RA, et al. KRAS2 mutations in human pancreatic acinar-ductal metaplastic lesions are limited to those with PanIN: implications for the human pancreatic cancer cell of origin. Mol Cancer Res. 2009;7(2):230–6. doi:10.1158/1541-7786.mcr-08-0206.PubMedCrossRefGoogle Scholar
  19. 19.
    Maitra A, Adsay NV, Argani P, Iacobuzio-Donahue C, De Marzo A, Cameron JL, et al. Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray. Mod Pathol. 2003;16(9):902–12. doi:10.1097/01.mp.0000086072.56290.fb.PubMedCrossRefGoogle Scholar
  20. 20.
    Wilentz RE, Geradts J, Maynard R, Offerhaus GJ, Kang M, Goggins M, et al. Inactivation of the p16 (INK4A) tumor-suppressor gene in pancreatic duct lesions: loss of intranuclear expression. Cancer Res. 1998;58(20):4740–4.PubMedGoogle Scholar
  21. 21.
    Kanda M, Matthaei H, Wu J, Hong SM, Yu J, Borges M, et al. Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology. 2012;142(4):730–3 e9. doi:10.1053/j.gastro.2011.12.042.Google Scholar
  22. 22.
    Wilentz RE, Iacobuzio-Donahue CA, Argani P, McCarthy DM, Parsons JL, Yeo CJ, et al. Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res. 2000;60(7):2002–6.PubMedGoogle Scholar
  23. 23.
    van Heek NT, Meeker AK, Kern SE, Yeo CJ, Lillemoe KD, Cameron JL, et al. Telomere shortening is nearly universal in pancreatic intraepithelial neoplasia. Am J Pathol. 2002;161(5):1541–7. doi:10.1016/s0002-9440(10)64432-x.PubMedCrossRefGoogle Scholar
  24. 24.
    Liang WS, Craig DW, Carpten J, Borad MJ, Demeure MJ, Weiss GJ, et al. Genome-wide characterization of pancreatic adenocarcinoma patients using next generation sequencing. PloS ONE. 2012;7(10):e43192. doi:10.1371/journal.pone.0043192.PubMedCrossRefGoogle Scholar
  25. 25.
    Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012;491(7424):399–405. doi:10.1038/nature11547.PubMedCrossRefGoogle Scholar
  26. 26.
    Shi C, Fukushima N, Abe T, Bian Y, Hua L, Wendelburg BJ, et al. Sensitive and quantitative detection of KRAS2 gene mutations in pancreatic duct juice differentiates patients with pancreatic cancer from chronic pancreatitis, potential for early detection. Cancer Biol Therapy. 2008;7(3):353–60.CrossRefGoogle Scholar
  27. 27.
    van Heek T, Rader AE, Offerhaus GJ, McCarthy DM, Goggins M, Hruban RH, et al. K-ras, p53, and DPC4 (MAD4) alterations in fine-needle aspirates of the pancreas: a molecular panel correlates with and supplements cytologic diagnosis. Am J Clin Pathol. 2002;117(5):755–65. doi:10.1309/5rq0-jcqu-5xf2-51lq.PubMedCrossRefGoogle Scholar
  28. 28.
    Tascilar M, Offerhaus GJ, Altink R, Argani P, Sohn TA, Yeo CJ, et al. Immunohistochemical labeling for the Dpc4 gene product is a specific marker for adenocarcinoma in biopsy specimens of the pancreas and bile duct. Am J Clin Pathol. 2001;116(6):831–7. doi:10.1309/wf03-nfce-7brh-7c26.PubMedCrossRefGoogle Scholar
  29. 29.
    Wilentz RE, Su GH, Dai JL, Sparks AB, Argani P, Sohn TA, et al. Immunohistochemical labeling for dpc4 mirrors genetic status in pancreatic adenocarcinomas: a new marker of DPC4 inactivation. Am J Pathol. 2000;156(1):37–43. doi:10.1016/s0002-9440(10)64703-7.PubMedCrossRefGoogle Scholar
  30. 30.
    Blackford A, Serrano OK, Wolfgang CL, Parmigiani G, Jones S, Zhang X, et al. SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clin Cancer Res. 2009;15(14):4674–9. doi:10.1158/1078-0432.ccr-09-0227.PubMedCrossRefGoogle Scholar
  31. 31.
    Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010;467(7319):1114–7. doi:10.1038/nature09515.PubMedCrossRefGoogle Scholar
  32. 32.
    Hruban RH, Canto MI, Goggins M, Schulick R, Klein AP. Update on familial pancreatic cancer. Adv Surg. 2010;44:293–311.PubMedCrossRefGoogle Scholar
  33. 33.
    Klein AP, Brune KA, Petersen GM, Goggins M, Tersmette AC, Offerhaus GJ, et al. Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Res. 2004;64(7):2634–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Hahn SA, Greenhalf B, Ellis I, Sina-Frey M, Rieder H, Korte B, et al. BRCA2 germline mutations in familial pancreatic carcinoma. J Natl Cancer Inst. 2003;95(3):214–21.PubMedCrossRefGoogle Scholar
  35. 35.
    Couch FJ, Johnson MR, Rabe KG, Brune K, de Andrade M, Goggins M, et al. The prevalence of BRCA2 mutations in familial pancreatic cancer. Cancer Epidemiol Biomarkers Prev. 2007;16(2):342–6. doi:10.1158/1055-9965.epi-06-0783.PubMedCrossRefGoogle Scholar
  36. 36.
    Jones S, Hruban RH, Kamiyama M, Borges M, Zhang X, Parsons DW, et al. Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science. 2009;324(5924):217. doi:10.1126/science.1171202.PubMedCrossRefGoogle Scholar
  37. 37.
    Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361(2):123–34. doi:10.1056/NEJMoa0900212.PubMedCrossRefGoogle Scholar
  38. 38.
    Whelan AJ, Bartsch D, Goodfellow PJ. Brief report: a familial syndrome of pancreatic cancer and melanoma with a mutation in the CDKN2 tumor-suppressor gene. N Engl J Med. 1995;333(15):975–7. doi:10.1056/nejm199510123331505.PubMedCrossRefGoogle Scholar
  39. 39.
    Goldstein AM, Fraser MC, Struewing JP, Hussussian CJ, Ranade K, Zametkin DP, et al. Increased risk of pancreatic cancer in melanoma-prone kindreds with p16INK4 mutations. N Engl J Med. 1995;333(15):970–4. doi:10.1056/nejm199510123331504.PubMedCrossRefGoogle Scholar
  40. 40.
    de Snoo FA, Bishop DT, Bergman W, van Leeuwen I, van der Drift C, van Nieuwpoort FA, et al. Increased risk of cancer other than melanoma in CDKN2A founder mutation (p16-Leiden)-positive melanoma families. Clin Cancer Res. 2008;14(21):7151–7. doi:10.1158/1078-0432.ccr-08-0403.PubMedCrossRefGoogle Scholar
  41. 41.
    McWilliams RR, Wieben ED, Rabe KG, Pedersen KS, Wu Y, Sicotte H, et al. Prevalence of CDKN2A mutations in pancreatic cancer patients: implications for genetic counseling. Eur J Hum Genet. 2011;19(4):472–8. doi:10.1038/ejhg.2010.198.PubMedCrossRefGoogle Scholar
  42. 42.
    Bartsch DK, Sina-Frey M, Lang S, Wild A, Gerdes B, Barth P, et al. CDKN2A germline mutations in familial pancreatic cancer. Ann Surg. 2002;236(6):730–7. doi:10.1097/01.sla.0000036393.89509.4e.PubMedCrossRefGoogle Scholar
  43. 43.
    Giardiello FM, Welsh SB, Hamilton SR, Offerhaus GJ, Gittelsohn AM, Booker SV, et al. Increased risk of cancer in the Peutz–Jeghers syndrome. N Engl J Med. 1987;316(24):1511–4. doi:10.1056/nejm198706113162404.PubMedCrossRefGoogle Scholar
  44. 44.
    Su GH, Hruban RH, Bansal RK, Bova GS, Tang DJ, Shekher MC, et al. Germline and somatic mutations of the STK11/LKB1 Peutz–Jeghers gene in pancreatic and biliary cancers. Am J Pathol. 1999;154(6):1835–40. doi:10.1016/s0002-9440(10)65440-5.PubMedCrossRefGoogle Scholar
  45. 45.
    Whitcomb DC, Gorry MC, Preston RA, Furey W, Sossenheimer MJ, Ulrich CD, et al. Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat Genet. 1996;14(2):141–5. doi:10.1038/ng1096-141.PubMedCrossRefGoogle Scholar
  46. 46.
    Witt H, Luck W, Hennies HC, Classen M, Kage A, Lass U, et al. Mutations in the gene encoding the serine protease inhibitor, Kazal type 1 are associated with chronic pancreatitis. Nat Genet. 2000;25(2):213–6. doi:10.1038/76088.PubMedCrossRefGoogle Scholar
  47. 47.
    de las Heras-Castano G, Castro-Senosiain B, Fontalba A, Lopez-Hoyos M, Sanchez-Juan P. Hereditary pancreatitis: clinical features and inheritance characteristics of the R122C mutation in the cationic trypsinogen gene (PRSS1) in six Spanish families. JOP. 2009;10(3):249–55.PubMedGoogle Scholar
  48. 48.
    Lowenfels AB, Maisonneuve P, Cavallini G, Ammann RW, Lankisch PG, Andersen JR, et al. Pancreatitis and the risk of pancreatic cancer. International Pancreatitis Study Group. N Engl J Med. 1993;328(20):1433–7. doi:10.1056/nejm199305203282001.PubMedCrossRefGoogle Scholar
  49. 49.
    Lowenfels AB, Maisonneuve P, DiMagno EP, Elitsur Y, Gates LK Jr, Perrault J, et al. Hereditary pancreatitis and the risk of pancreatic cancer. International Hereditary Pancreatitis Study Group. J Natl Cancer Inst. 1997;89(6):442–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Roberts NJ, Jiao Y, Yu J, Kopelovich L, Petersen GM, Bondy ML, et al. ATM mutations in patients with hereditary pancreatic cancer. Cancer Discov. 2012;2(1):41–6. doi:10.1158/2159-8290.cd-11-0194.PubMedCrossRefGoogle Scholar
  51. 51.
    Wu J, Matthaei H, Maitra A, Dal Molin M, Wood LD, Eshleman JR, et al. Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Sci Transl Med. 2011;3(92):92ra66. doi:10.1126/scitranslmed.3002543.
  52. 52.
    Biankin AV, Biankin SA, Kench JG, Morey AL, Lee CS, Head DR, et al. Aberrant p16(INK4A) and DPC4/Smad4 expression in intraductal papillary mucinous tumours of the pancreas is associated with invasive ductal adenocarcinoma. Gut. 2002;50(6):861–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Kawahira H, Kobayashi S, Kaneko K, Asano T, Ochiai T. p53 protein expression in intraductal papillary mucinous tumors (IPMT) of the pancreas as an indicator of tumor malignancy. Hepatogastroenterology. 2000;47(34):973–7.PubMedGoogle Scholar
  54. 54.
    Satoh K, Shimosegawa T, Moriizumi S, Koizumi M, Toyota T. K-ras mutation and p53 protein accumulation in intraductal mucin-hypersecreting neoplasms of the pancreas. Pancreas. 1996;12(4):362–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Chadwick B, Willmore-Payne C, Tripp S, Layfield LJ, Hirschowitz S, Holden J. Histologic, immunohistochemical, and molecular classification of 52 IPMNs of the pancreas. Appl Immunohistochem Mol Morphol. 2009;17(1):31–9. doi:10.1097/PAI.0b013e31817c02c6.PubMedCrossRefGoogle Scholar
  56. 56.
    Lubezky N, Ben-Haim M, Marmor S, Brazowsky E, Rechavi G, Klausner JM, et al. High-throughput mutation profiling in intraductal papillary mucinous neoplasm (IPMN). J Gastrointest Surg. 2011;15(3):503–11. doi:10.1007/s11605-010-1411-8.PubMedCrossRefGoogle Scholar
  57. 57.
    Iacobuzio-Donahue CA, Klimstra DS, Adsay NV, Wilentz RE, Argani P, Sohn TA, et al. Dpc-4 protein is expressed in virtually all human intraductal papillary mucinous neoplasms of the pancreas: comparison with conventional ductal adenocarcinomas. Am J Pathol. 2000;157(3):755–61. doi:10.1016/s0002-9440(10)64589-0.PubMedCrossRefGoogle Scholar
  58. 58.
    Furukawa T, Kuboki Y, Tanji E, Yoshida S, Hatori T, Yamamoto M, et al. Whole-exome sequencing uncovers frequent GNAS mutations in intraductal papillary mucinous neoplasms of the pancreas. Sci Rep. 2011;1:161. doi:10.1038/srep00161.PubMedCrossRefGoogle Scholar
  59. 59.
    Wu J, Jiao Y, Dal Molin M, Maitra A, de Wilde RF, Wood LD, et al. Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proc Natl Acad Sci USA. 2011;108(52):21188–93. doi:10.1073/pnas.1118046108.PubMedCrossRefGoogle Scholar
  60. 60.
    Schonleben F, Allendorf JD, Qiu W, Li X, Ho DJ, Ciau NT, et al. Mutational analyses of multiple oncogenic pathways in intraductal papillary mucinous neoplasms of the pancreas. Pancreas. 2008;36(2):168–72. doi:10.1097/MPA.0b013e318158a4d2.PubMedCrossRefGoogle Scholar
  61. 61.
    Schonleben F, Qiu W, Remotti HE, Hohenberger W, Su GH. PIK3CA, KRAS, and BRAF mutations in intraductal papillary mucinous neoplasm/carcinoma (IPMN/C) of the pancreas. Langenbecks Arch Surg. 2008;393(3):289–96. doi:10.1007/s00423-008-0285-7.PubMedCrossRefGoogle Scholar
  62. 62.
    Sato N, Rosty C, Jansen M, Fukushima N, Ueki T, Yeo CJ, et al. STK11/LKB1 Peutz–Jeghers gene inactivation in intraductal papillary-mucinous neoplasms of the pancreas. Am J Pathol. 2001;159(6):2017–22. doi:10.1016/s0002-9440(10)63053-2.PubMedCrossRefGoogle Scholar
  63. 63.
    Yanagisawa A, Kato Y, Ohtake K, Kitagawa T, Ohashi K, Hori M, et al. c-Ki-ras point mutations in ductectatic-type mucinous cystic neoplasms of the pancreas. Jpn J Cancer Res. 1991;82(10):1057–60.PubMedCrossRefGoogle Scholar
  64. 64.
    Jimenez RE, Warshaw AL, Z’Graggen K, Hartwig W, Taylor DZ, Compton CC, et al. Sequential accumulation of K-ras mutations and p53 overexpression in the progression of pancreatic mucinous cystic neoplasms to malignancy. Ann Surg. 1999;230(4):501–9 (discussion 9–11).Google Scholar
  65. 65.
    Kim SG, Wu TT, Lee JH, Yun YK, Issa JP, Hamilton SR, et al. Comparison of epigenetic and genetic alterations in mucinous cystic neoplasm and serous microcystic adenoma of pancreas. Mod Pathol. 2003;16(11):1086–94. doi:10.1097/01.mp.0000094088.37888.a6.PubMedCrossRefGoogle Scholar
  66. 66.
    Yoshizawa K, Nagai H, Sakurai S, Hironaka M, Morinaga S, Saitoh K, et al. Clonality and K-ras mutation analyses of epithelia in intraductal papillary mucinous tumor and mucinous cystic tumor of the pancreas. Virchows Arch. 2002;441(5):437–43. doi:10.1007/s00428-002-0645-6.PubMedCrossRefGoogle Scholar
  67. 67.
    Sorio C, Capelli P, Lissandrini D, Moore PS, Balzarini P, Falconi M, et al. Mucinous cystic carcinoma of the pancreas: a unique cell line and xenograft model of a preinvasive lesion. Virchows Arch. 2005;446(3):239–45. doi:10.1007/s00428-004-1167-1.PubMedCrossRefGoogle Scholar
  68. 68.
    Luttges J, Feyerabend B, Buchelt T, Pacena M, Kloppel G. The mucin profile of noninvasive and invasive mucinous cystic neoplasms of the pancreas. Am J Surg Pathol. 2002;26(4):466–71.PubMedCrossRefGoogle Scholar
  69. 69.
    Iacobuzio-Donahue CA, Wilentz RE, Argani P, Yeo CJ, Cameron JL, Kern SE, et al. Dpc4 protein in mucinous cystic neoplasms of the pancreas: frequent loss of expression in invasive carcinomas suggests a role in genetic progression. Am J Surg Pathol. 2000;24(11):1544–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Moore PS, Zamboni G, Brighenti A, Lissandrini D, Antonello D, Capelli P, et al. Molecular characterization of pancreatic serous microcystic adenomas: evidence for a tumor suppressor gene on chromosome 10q. Am J Pathol. 2001;158(1):317–21. doi:10.1016/s0002-9440(10)63971-5.PubMedCrossRefGoogle Scholar
  71. 71.
    Ishikawa T, Nakao A, Nomoto S, Hosono J, Harada A, Nonami T, et al. Immunohistochemical and molecular biological studies of serous cystadenoma of the pancreas. Pancreas. 1998;16(1):40–4.PubMedCrossRefGoogle Scholar
  72. 72.
    Vortmeyer AO, Lubensky IA, Fogt F, Linehan WM, Khettry U, Zhuang Z. Allelic deletion and mutation of the von Hippel–Lindau (VHL) tumor suppressor gene in pancreatic microcystic adenomas. Am J Pathol. 1997;151(4):951–6.PubMedGoogle Scholar
  73. 73.
    Abraham SC, Klimstra DS, Wilentz RE, Yeo CJ, Conlon K, Brennan M, et al. Solid-pseudopapillary tumors of the pancreas are genetically distinct from pancreatic ductal adenocarcinomas and almost always harbor beta-catenin mutations. Am J Pathol. 2002;160(4):1361–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Moore PS, Orlandini S, Zamboni G, Capelli P, Rigaud G, Falconi M, et al. Pancreatic tumours: molecular pathways implicated in ductal cancer are involved in ampullary but not in exocrine nonductal or endocrine tumorigenesis. Br J Cancer. 2001;84(2):253–62. doi:10.1054/bjoc.2000.1567.PubMedCrossRefGoogle Scholar
  75. 75.
    Min Kim S, Sun CD, Park KC, Kim HG, Lee WJ, Choi SH. Accumulation of beta-catenin protein, mutations in exon-3 of the beta-catenin gene and a loss of heterozygosity of 5q22 in solid pseudopapillary tumor of the pancreas. J Surg Oncol. 2006;94(5):418–25. doi:10.1002/jso.20509.Google Scholar
  76. 76.
    Tanaka Y, Kato K, Notohara K, Hojo H, Ijiri R, Miyake T, et al. Frequent beta-catenin mutation and cytoplasmic/nuclear accumulation in pancreatic solid-pseudopapillary neoplasm. Cancer Res. 2001;61(23):8401–4.PubMedGoogle Scholar
  77. 77.
    Audard V, Cavard C, Richa H, Infante M, Couvelard A, Sauvanet A, et al. Impaired E-cadherin expression and glutamine synthetase overexpression in solid pseudopapillary neoplasm of the pancreas. Pancreas. 2008;36(1):80–3. doi:10.1097/mpa.0b013e318137a9da.PubMedCrossRefGoogle Scholar
  78. 78.
    Laffan TA, Horton KM, Klein AP, Berlanstein B, Siegelman SS, Kawamoto S, et al. Prevalence of unsuspected pancreatic cysts on MDCT. Am J Roentgenol. 2008;191(3):802–7. doi:10.2214/ajr.07.3340.CrossRefGoogle Scholar
  79. 79.
    Brugge WR, Lewandrowski K, Lee-Lewandrowski E, Centeno BA, Szydlo T, Regan S, et al. Diagnosis of pancreatic cystic neoplasms: a report of the cooperative pancreatic cyst study. Gastroenterology. 2004;126(5):1330–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Schoedel KE, Finkelstein SD, Ohori NP. K-Ras and microsatellite marker analysis of fine-needle aspirates from intraductal papillary mucinous neoplasms of the pancreas. Diagn Cytopathol. 2006;34(9):605–8. doi:10.1002/dc.20511.PubMedCrossRefGoogle Scholar
  81. 81.
    Khalid A, McGrath KM, Zahid M, Wilson M, Brody D, Swalsky P, et al. The role of pancreatic cyst fluid molecular analysis in predicting cyst pathology. Clin Gastroenterol Hepatol. 2005;3(10):967–73.PubMedCrossRefGoogle Scholar
  82. 82.
    Khalid A, Zahid M, Finkelstein SD, LeBlanc JK, Kaushik N, Ahmad N, et al. Pancreatic cyst fluid DNA analysis in evaluating pancreatic cysts: a report of the PANDA study. Gastrointest Endosc. 2009;69(6):1095–102. doi:10.1016/j.gie.2008.07.033.PubMedCrossRefGoogle Scholar
  83. 83.
    Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331(6021):1199–203. doi:10.1126/science.1200609.PubMedCrossRefGoogle Scholar
  84. 84.
    Hessman O, Lindberg D, Skogseid B, Carling T, Hellman P, Rastad J, et al. Mutation of the multiple endocrine neoplasia type 1 gene in nonfamilial, malignant tumors of the endocrine pancreas. Cancer Res. 1998;58(3):377–9.PubMedGoogle Scholar
  85. 85.
    Gortz B, Roth J, Krahenmann A, de Krijger RR, Muletta-Feurer S, Rutimann K, et al. Mutations and allelic deletions of the MEN1 gene are associated with a subset of sporadic endocrine pancreatic and neuroendocrine tumors and not restricted to foregut neoplasms. Am J Pathol. 1999;154(2):429–36. doi:10.1016/s0002-9440(10)65289-3.PubMedCrossRefGoogle Scholar
  86. 86.
    Zhuang Z, Vortmeyer AO, Pack S, Huang S, Pham TA, Wang C, et al. Somatic mutations of the MEN1 tumor suppressor gene in sporadic gastrinomas and insulinomas. Cancer Res. 1997;57(21):4682–6.PubMedGoogle Scholar
  87. 87.
    Toliat MR, Berger W, Ropers HH, Neuhaus P, Wiedenmann B. Mutations in the MEN I gene in sporadic neuroendocrine tumours of gastroenteropancreatic system. Lancet. 1997;350(9086):1223. doi:10.1016/s0140-6736(05)63453-8.PubMedCrossRefGoogle Scholar
  88. 88.
    Wang EH, Ebrahimi SA, Wu AY, Kashefi C, Passaro E Jr, Sawicki MP. Mutation of the MENIN gene in sporadic pancreatic endocrine tumors. Cancer Res. 1998;58(19):4417–20.PubMedGoogle Scholar
  89. 89.
    Bassett JH, Forbes SA, Pannett AA, Lloyd SE, Christie PT, Wooding C, et al. Characterization of mutations in patients with multiple endocrine neoplasia type 1. Am J Hum Genet. 1998;62(2):232–44. doi:10.1086/301729.PubMedCrossRefGoogle Scholar
  90. 90.
    Heaphy CM, de Wilde RF, Jiao Y, Klein AP, Edil BH, Shi C, et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science. 2011;333(6041):425. doi:10.1126/science.1207313.PubMedCrossRefGoogle Scholar
  91. 91.
    Hiyama E, Kodama T, Shinbara K, Iwao T, Itoh M, Hiyama K, et al. Telomerase activity is detected in pancreatic cancer but not in benign tumors. Cancer Res. 1997;57(2):326–31.PubMedGoogle Scholar
  92. 92.
    de Wilde RF, Heaphy CM, Maitra A, Meeker AK, Edil BH, Wolfgang CL, et al. Loss of ATRX or DAXX expression and concomitant acquisition of the alternative lengthening of telomeres phenotype are late events in a small subset of MEN-1 syndrome pancreatic neuroendocrine tumors. Mod Pathol. 2012;. doi:10.1038/modpathol.2012.53.PubMedGoogle Scholar
  93. 93.
    Chung DC, Brown SB, Graeme-Cook F, Tillotson LG, Warshaw AL, Jensen RT, et al. Localization of putative tumor suppressor loci by genome-wide allelotyping in human pancreatic endocrine tumors. Cancer Res. 1998;58(16):3706–11.PubMedGoogle Scholar
  94. 94.
    Tannapfel A, Vomschloss S, Karhoff D, Markwarth A, Hengge UR, Wittekind C, et al. BRAF gene mutations are rare events in gastroenteropancreatic neuroendocrine tumors. Am J Clin Pathol. 2005;123(2):256–60.PubMedCrossRefGoogle Scholar
  95. 95.
    Schmitt AM, Schmid S, Rudolph T, Anlauf M, Prinz C, Kloppel G, et al. VHL inactivation is an important pathway for the development of malignant sporadic pancreatic endocrine tumors. Endocr Relat Cancer. 2009;16(4):1219–27. doi:10.1677/erc-08-0297.PubMedCrossRefGoogle Scholar
  96. 96.
    Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011;364(6):514–23. doi:10.1056/NEJMoa1009290.PubMedCrossRefGoogle Scholar
  97. 97.
    Klimstra DS, Wenig BM, Adair CF, Heffess CS. Pancreatoblastoma. A clinicopathologic study and review of the literature. Am J Surg Pathol. 1995;19(12):1371–89.PubMedCrossRefGoogle Scholar
  98. 98.
    Abraham SC, Wu TT, Hruban RH, Lee JH, Yeo CJ, Conlon K, et al. Genetic and immunohistochemical analysis of pancreatic acinar cell carcinoma: frequent allelic loss on chromosome 11p and alterations in the APC/beta-catenin pathway. Am J Pathol. 2002;160(3):953–62.PubMedCrossRefGoogle Scholar
  99. 99.
    Taruscio D, Paradisi S, Zamboni G, Rigaud G, Falconi M, Scarpa A. Pancreatic acinar carcinoma shows a distinct pattern of chromosomal imbalances by comparative genomic hybridization. Genes Chromosomes Cancer. 2000;28(3):294–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Rigaud G, Moore PS, Zamboni G, Orlandini S, Taruscio D, Paradisi S, et al. Allelotype of pancreatic acinar cell carcinoma. Int J Cancer. 2000;88(5):772–7.PubMedCrossRefGoogle Scholar
  101. 101.
    Dewald GW, Smyrk TC, Thorland EC, McWilliams RR, Van Dyke DL, Keefe JG, et al. Fluorescence in situ hybridization to visualize genetic abnormalities in interphase cells of acinar cell carcinoma, ductal adenocarcinoma, and islet cell carcinoma of the pancreas. Mayo Clin Proc. 2009;84(9):801–10. doi:10.4065/84.9.801.PubMedCrossRefGoogle Scholar
  102. 102.
    Hoorens A, Lemoine NR, McLellan E, Morohoshi T, Kamisawa T, Heitz PU, et al. Pancreatic acinar cell carcinoma. An analysis of cell lineage markers, p53 expression, and Ki-ras mutation. Am J Pathol. 1993;143(3):685–98.PubMedGoogle Scholar
  103. 103.
    de Wilde RF, Ottenhof NA, Jansen M, Morsink FH, de Leng WW, Offerhaus GJ, et al. Analysis of LKB1 mutations and other molecular alterations in pancreatic acinar cell carcinoma. Mod Pathol. 2011;24(9):1229–36. doi:10.1038/modpathol.2011.83.PubMedCrossRefGoogle Scholar
  104. 104.
    Terhune PG, Memoli VA, Longnecker DS. Evaluation of p53 mutation in pancreatic acinar cell carcinomas of humans and transgenic mice. Pancreas. 1998;16(1):6–12.PubMedCrossRefGoogle Scholar
  105. 105.
    Abraham SC, Wu TT, Klimstra DS, Finn LS, Lee JH, Yeo CJ, et al. Distinctive molecular genetic alterations in sporadic and familial adenomatous polyposis-associated pancreatoblastomas: frequent alterations in the APC/beta-catenin pathway and chromosome 11p. Am J Pathol. 2001;159(5):1619–27.PubMedCrossRefGoogle Scholar
  106. 106.
    Kerr NJ, Fukuzawa R, Reeve AE, Sullivan MJ. Beckwith–Wiedemann syndrome, pancreatoblastoma, and the wnt signaling pathway. Am J Pathol. 2002;160(4):1541–2 (author reply 2).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Department of Pathology, The Sol Goldman Pancreatic Cancer Research CenterJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations