Advertisement

Combined Liquid Chromatography-mass Spectrometry and Next-generation DNA Sequencing Detection of Adulterants and Contaminants in Analgesic and Anti-inflammatory Herbal Medicines

  • Claire L. HobanEmail author
  • Ian F. Musgrave
  • Roger W. Byard
  • Christine Nash
  • Rachael Farrington
  • Garth Maker
  • Elly Crighton
  • Michael Bunce
  • Megan Coghlan
Original Research Article
  • 15 Downloads

Abstract

Introduction

Methods for assessing the quality of herbal medicine preparations have advanced significantly in recent years in conjunction with increases in herbal medicine use and reports of adulteration and contamination.

Objective

This study examined the quality of analgesic and anti-inflammatory herbal medicine preparations available on the Australian market by detecting the presence of listed ingredients, adulterants and contaminants.

Methods

Forty-nine analgesic and anti-inflammatory herbal medicine preparations were randomly sourced from Australian capital cities. They were audited using a dual approach of liquid chromatography-mass spectrometry (LC–MS) combined with next-generation DNA sequencing. Once screened, a comparison of listed ingredients with verified ingredients was conducted to determine the accuracy of labelling, and the extent of adulteration and contamination.

Results

Twenty-six of 49 (53%) herbal medicines were adulterated or contaminated with undeclared ingredients. LC–MS revealed the presence of pharmaceutical adulterants including atropine and ephedrine. DNA sequencing uncovered concerning levels of herbal substitution, adulteration and contamination, including the use of fillers (alfalfa, wheat and soy), as well as pharmacologically relevant species (Centella asiatica, Panax ginseng, Bupleurum and Passiflora). Pig/boar and bird DNA was found in some preparations, inferring substandard manufacturing practices. Of the 26 contaminated samples, 19 (73%) were manufactured in Australia, and 7 (27%) were imported from other countries (6 from China, 1 from New Zealand). In 23 of 49 (47%) herbal medicine samples, no biological ingredients were detected at all. These were predominantly pain and anti-inflammatory preparations such as glucosamine and eicosapentaenoic and docosahexaenoic acids found in krill and fish oils, so DNA would not be expected to survive the manufacturing process.

Conclusion

The high level of contamination and substitution of herbal medicine preparations sourced from Australian dispensaries supports the need for more stringent pharmacovigilance measures in Australia and abroad.

Notes

Compliance with Ethical Standards

Funding

This study was funded by the Australian National Health and Medical Research Council (NHMRC) (grant #1061329).

Conflict of interest

Claire L. Hoban, Ian F. Musgrave, Roger W. Byard, Christine Nash, Rachael Farrington, Garth Maker, Elly Crighton, Michael Bunce, and Megan Coghlan report no known conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

40290_2019_314_MOESM1_ESM.pdf (45 kb)
Supplementary material 1 (PDF 45 kb)

References

  1. 1.
    Therapeutic Goods Administration 2013. An Overview of the Regulation of Complementary Medicines in Australia. https://www.tga.gov.au/overview-regulation-complementary-medicines-australia. Accessed 7 Oct 2019.
  2. 2.
    MacLennan AH, Myers SP, Taylor AW. The continuing use of complementary and alternative medicine in South Australia: costs and beliefs in 2004. Med J Aust. 2006;184(1):27–31.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Zhang AL, Story DF, Lin V, et al. A population survey on the use of 24 common medicinal herbs in Australia. Pharmacoepidemiol Drug Saf. 2008;17(10):1006–13.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    von Conrady DM, Bonney A. Patterns of complementary and alternative medicine use and health literacy in general practice patients in urban and regional Australia. Skin. 2017;46(5):316–20.Google Scholar
  5. 5.
    Reid R, Steel A, Wardle J, Trubody A, Adams J. Complementary medicine use by the Australian population: a critical mixed studies systematic review of utilisation, perceptions and factors associated with use. BMC Complement Altern Med. 2016;16:176.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Crighton E, Coghlan ML, Farrington R, Hoban CL, Power MWP, Nash C, Mullaney I, Byard RW, Trengove R, Musgrave IF, Bunce M, Maker G. Toxicological screening and DNA sequencing detects contamination and adulteration in regulated herbal medicines and supplements for diet, weight loss and cardiovascular health. J Pharm Biomed Anal. 2019;176:112834.PubMedCrossRefGoogle Scholar
  7. 7.
    Hoban CL, Musgrave IF, Coghlan ML, Power MW, Byard RW, Nash C, Farrington R, Maker G, Crighton E, Trengive R, Bunce M. Adulterants and contaminants in psychotropic herbal medicines detected with mass spectrometry and next-generation DNA sequencing. Pharm Med. 2018;32(6):429–44.CrossRefGoogle Scholar
  8. 8.
    Coghlan ML, Haile J, Houston J, Murray DC, White NE, Moolhuijzen P, Bellgard MI, Bunce M. Deep sequencing of plant and animal DNA contained within Traditional Chinese Medicines reveals legality issues and health safety concerns. PLoS Genet. 2012;8(4):e1002657.  https://doi.org/10.1371/journal.pgen.1002657.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Coghlan ML, Maker G, Crighton E, Haile J, Murray DC, White NE, Byard RW, Bellgard M, Mullaney I, Trengove R, Allcock RJ, Nash C, Hoban C, Jarrett K, Edwards R, Musgrave IF, Bunce M. Combined DNA, toxicological and heavy metal analyses provides an auditing toolkit to improve pharmacovigilance of traditional Chinese medicine (TCM). Sci Rep. 2015;10:17475.CrossRefGoogle Scholar
  10. 10.
    Blyth FM, March LM, Brnabic AJ, Jorm LR, Williamson M, Cousins MJ. Chronic pain in Australia: a prevalence study. Pain. 2001;89(2–3):127–34.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Hollingworth SA, Gray PD, Hall WD, Najman JM. Opioid analgesic prescribing in Australia: a focus on gender and age. Pharmacoepidemiol Drug Saf. 2015;24(6):628–36.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Wells RE, Bertisch SM, Buettner C, Phillips RS, McCarthy EP. Complementary and alternative medicine use among adults with migraines/severe headaches. Headache. 2011;51(7):1087–97.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Wallace LJ, Boilard SMAL, Eagle SHC, Spall JL, Shokralla S, Hajibabaei M. DNA barcodes for everyday life: Routine authentication of Natural Health Products. Food Res Int. 2012;49(1):446–52.CrossRefGoogle Scholar
  14. 14.
    Byard RW, Musgrave I, Maker G, Bunce M. What are the risks to the Australian community from herbal products? Med J Aust. 2017;206:86–90.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Ichim MC. The DNA-based authentication of commercial herbal products reveals their globally widespread adulteration. Front Pharmacol. 2019.  https://doi.org/10.3389/fphar.2019.01227.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Srirama R, Santhosh Kumar JU, Seethapathy GS, Newmaster SG, Ragupathy S, Ganeshaiah KN, Uma Shaanker R, Ravikanth G. Species adulteration in the herbal trade: causes, consequences and mitigation. Drug Saf. 2017;40:651.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Newmaster SG, Grguric M, Shanmughanandhan D, Ramalingam S, Ragupathy S. DNA barcoding detects contamination and substitution in North American herbal products. BMC Med. 2013;11:222.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Blacksell L, Byard RW, Musgrave IF. Forensic problems with the composition and content of herbal medicines. J Forensic Leg Med. 2014;23:19–21.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Sims DN, Felgate PD, Felgate HE, Lokan RJ. Application of a simple extraction procedure using aqueous ammonia to the analysis of basic drugs in blood by GC. Forensic Sci Int. 1991;49:33–42.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, Vermat T, Corthier G, Brochmann C, Willerslev E. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucl Acid Res. 2007;35:e14.CrossRefGoogle Scholar
  21. 21.
    Taylor PG. Reproducibility of ancient DNA sequences from extinct Pleistocene fauna. Mol Biol Evol. 1996;13(1):283–5.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinf. 2010;26:2460–1.CrossRefGoogle Scholar
  23. 23.
    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinf. 2011;27:2194–200.CrossRefGoogle Scholar
  24. 24.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Hunter A, Macgregor AB, Szabo TO, Wellington CA, Bellgard MI. Yabi: an online research environment for grid, high performance and cloud computing. Source Code Biol Med. 2012;7:1.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Huson DH, Auch AF, Qi J, Schuster SC. MEGAN analysis of metagenomic data. Genome Res. 2007;17:377–86.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Khazan M, Hedayati M, Kobarfard F, Askari S, Azizi F. Identification and determination of synthetic pharmaceuticals as adulterants in eight common herbal weight loss supplements. Iran Red Crescent Med J. 2014;16(3):e15344.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Arbo MD, Larentis ER, Linck VM, Aboy AL, Pimentel AL, Henriques AT, Dallegrave E, Garcia SC, Leal MB, Limberger RP. Concentrations of p-synephrine in fruits and leaves of Citrus species (Rutaceae) and the acute toxicity testing of Citrus aurantium extract and p-synephrine. Food Chem Toxicol. 2008;46:2770–5.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Stohs SJ. Safety, efficacy, and mechanistic studies regarding Citrus aurantium (Bitter Orange) extract and p-synephrine. Phytother Res. 2017;10:1463–74.CrossRefGoogle Scholar
  30. 30.
    Samenuk D, Link MS, Homoud MK, Contreras R, Theoharides TC, Wang PJ, Estes NA 3rd. Adverse cardiovascular events temporally associated with ma huang, an herbal source of ephedrine. Mayo Clinic Proc. 2002;77:12–6.CrossRefGoogle Scholar
  31. 31.
    Hikino H, Konno C, Takata H, Tamada M. Anti-inflammatory principle of Ephedra Herbs. Chem Pharm Bull. 1980;28:2900–4.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Mansi IA, Huang J. Rhabdomyolysis in response to weight-loss herbal medicine. Am J Med Sci. 2004;327(6):356–7.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Dewitt MS, Swain R, Gibson LB. The dangers of jimson weed and its abuse by teenagers in the Kanawha Valley of West Virginia. W V Med J. 1997;93(4):182–5.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Behçet A. The source-synthesis- history and use of atropine. JAEM. 2014;13:2–3.CrossRefGoogle Scholar
  35. 35.
    Raclariu AC, Mocan A, Popa MO, Vlase L, Ichim MC, Crisan G, Brysting AK, de Boer H. Veronica officinalis product authentication using DNA metabarcoding and HPLC-MS reveals widespread adulteration with veronica chamaedrys. Front Pharmacol. 2017;8:378.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Baker DA, Stevenson DW, Little DP. DNA barcode identification of black cohosh herbal dietary supplements. J AOAC Int. 2012;95(4):1023–34.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Seethapathy GS, Raclariu-Manolica AC, Anmarkrud JA, Wangensteen H, de Boer HJ. DNA metabarcoding authentication of ayurvedic herbal products on the European market raises concerns of quality and fidelity. Front Plant Sci. 2019.  https://doi.org/10.3389/fpls.2019.00068.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Real A, Comino I, de Lorenzo L, Merchán F, Gil-Humanes J, Giménez MJ, López-Casado MÁ, Torres MI, Cebolla Á, Sousa C, Barro F, Pistón F. Molecular and immunological characterization of gluten proteins isolated from oat cultivars that differ in toxicity for celiac disease. PLoS One. 2012;7:e48365.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Pan L, Weng H, Li H, Liu Z, Xu Y, Zhou C, Lu X, Su X, Zhang Y, Chen D. Therapeutic effects of bupleurum polysaccharides in streptozotocin induced diabetic mice. PLoS One. 2015;10(7).PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Chao Z, Zeng W, Liao J, Liu L, Liang Z, Li X. DNA barcoding Chinese medicinal Bupleurum. Phytomedicine. 2014;21(13):1767–73.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Ogata J, Uchiyama N, Kikura-Hanajiri R, Goda Y. DNA sequence analyses of blended herbal products including synthetic cannabinoids as designer drugs. Forensic Sci Int. 2013;227(1–3):33–41.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    FDA Poisonous Plant Database; Beath OA, Gilbert CS, Eppson HF, Rosenfeld I. Poisonous plants and livestock poisoning. Wyoming Agric Exp Sta Bull, 1953;324, 94. https://www.accessdata.fda.gov/scripts/plantox/detail.cfm?id=2851. Accessed 20 Feb 17.
  43. 43.
    Convention on International Trade in Endangered Species of Flora and Fauna, The CITES Appendices, available https://www.cites.org/eng/app/index.php. Accessed June 2017.
  44. 44.
    Therapeutic Goods Administration, Australian Regulatory Guidelines, Good Manufacturing Practice (GMP) Clearance for Overseas Manufacturers, 17th Edition, Version 1.0 May 2011. https://www.tga.gov.au/publication/manufacturing-principles-medicinal-products. Accessed 22 June 17.
  45. 45.
    Byard RW. The potential forensic significance of traditional herbal medicines. J Forensic Sci. 2010;55:89–92.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Barnes J, McLachlan AJ, Sherwin CM, Enioutina EY. Herbal medicines: challenges in the modern world. Part 1. Australia and New Zealand. Expert Rev Clin Pharmacol. 2016;9(7):905–15.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Han J, Pang X, Liao B, Yao H, Song J, Chen S. An authenticity survey of herbal medicines from markets in China using DNA barcoding. Sci Rep. 2016;6:18723.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Parveen I, Gafner S, Techen N, Murch SJ, Khan IA. DNA barcoding for the identification of botanicals in herbal medicine and dietary supplements: strengths and limitations. Planta Med. 2016;82:1225–35.  https://doi.org/10.1055/s-0042-111208.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Raclariu AC, Heinrich M, Ichim MC, De Boer H. Benefits and limitations of DNA barcoding and metabarcoding in herbal product authentication. Phytochem Anal. 2018;29:123–8.  https://doi.org/10.1002/pca.2732.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Mishra P, Kumar A, Nagireddy A, Mani DN, Shukla AK, Tiwari R, Sundaresan V. DNA barcoding: an efficient tool to overcome authentication challenges in the herbal market. Plant Biotechnol J. 2016;14:8–21.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    De Boer HJ, Ichim MC, Newmaster SG. DNA barcoding and pharmacovigilance of herbal medicines. Drug Saf. 2015;2015(38):611–20.  https://doi.org/10.1007/s40264-015-0306-8.CrossRefGoogle Scholar
  52. 52.
    Hoban CL, Byard RW, Musgrave IF. A comparison of patterns of spontaneous adverse drug reaction reporting with St. John’s Wort and fluoxetine during the period 2000–2013. Clin Exp Pharmacol Physiol. 2015;42:747–51.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
  2. 2.Forensic Science SAAdelaideAustralia
  3. 3.Separation Science and Metabolomics Laboratory and the Advanced Mass Spectrometry FacilityMurdoch UniversityMurdochAustralia
  4. 4.School of Veterinary and Life SciencesMurdoch UniversityMurdochAustralia
  5. 5.Trace and Environmental DNA Laboratory, Department of Environment and AgricultureCurtin UniversityBentleyAustralia

Personalised recommendations