Advertisement

Analysis of Low Molecular Weight Substances and Related Processes Influencing Cellular Cholesterol Efflux

  • Dmitry Y. Litvinov
  • Eugeny V. Savushkin
  • Alexander D. DergunovEmail author
Review Article
  • 8 Downloads

Abstract

Cholesterol efflux is the key process protecting the vascular system from the development of atherosclerotic lesions. Various extracellular and intracellular events affect the ability of the cell to efflux excess cholesterol. To explore the possible pathways and processes that promote or inhibit cholesterol efflux, we applied a combined cheminformatic and bioinformatic approach. We performed a comprehensive analysis of published data on the various substances influencing cholesterol efflux and found 153 low molecular weight substances that are included in the Chemical Entities of Biological Interest (ChEBI) database. Pathway enrichment was performed for substances identified within the Reactome database, and 45 substances were selected in 93 significant pathways. The most common pathways included the energy-dependent processes related to active cholesterol transport from the cell, lipoprotein metabolism and lipid transport, and signaling pathways. The activators and inhibitors of cholesterol efflux were non-uniformly distributed among the different pathways: the substances influencing ‘biological oxidations’ activate cholesterol efflux and the substances influencing ‘Signaling by GPCR and PTK6’ inhibit efflux. This analysis may be used in the search and design of efflux effectors for therapies targeting structural and functional high-density lipoprotein deficiency.

Abbreviations

ACAT

acyl-CoA cholesterol acyltransferase

ACE2

angiotensin-converting enzyme 2

Akt

protein kinase B

AMP

adenosine monophosphate

AMPK

AMP-activated protein kinase

apoA-I

apolipoprotein A-I

apoA-II

apolipoprotein A-II

BLT

block lipid transport

8-Br-cAMP

8-bromoadenosine-cAMP

CaM

calmodulin

cAMP

adenosine 3′,5′-cyclic monophosphate

CCL2

CC-chemokine ligand 2

COX

cyclooxygenase

CRH

corticotropin-releasing hormone

CRP

C-reactive protein

CVD

cardiovascular disease

DR3

death receptor 3

EGF

epidermal growth factor

ER

estrogen receptor

FGF-21

fibroblast growth factor 21

GDP-15

growth differentiation factor-15

GLP-1

glucagon-like peptide 1

GR

glucocorticoid receptor

GTP

guanosine triphosphate

HDL

high-density lipoprotein

HCAEC

primary human coronary artery endothelial cells

Huh7 cells

human hepatocellular carcinoma cell line

HUVEC

human umbilical vein endothelial cells

HSA

human serum albumin

HSP65

heat shock protein 65

IFN

interferon

IGF-1

insulin-like growth factor 1

IL

interleukin

IL-1R

IL-1 receptor

IRAK1 inhibitor

inhibitor of IL-1 receptor-associated kinase-1

IRAK4 inhibitor

inhibitor of IL-1 receptor-associated kinase-4

JAK

Janus kinase

KO

knockout

LDL

low-density lipoprotein

LPL

lipoprotein lipase

LPS

lipopolysaccharides

MAP

mitogen-activated protein

mTOR

mammalian target of rapamycin

Mβ-CD

methyl-β-cyclodextrin, hPBMC, mBMDM, MPM; [104]: DPP-4, GLP-1

PAPP-A

pregnancy-associated plasma protein A

PCSK9

proprotein convertase subtilisin/kexin type 9

PI-PLC

phosphatidylinositol-specific phospholipase C

PKA

protein kinase A

PLTP

phospholipid transfer protein

PUFA

polyunsaturated fatty acid

SPTLC1

serine palmitoyltransferase long chain base subunit 1

TCR

T-cell receptor

TGF

transforming growth factor

TNF

tumor necrosis factor

TSPO

trafficking 18 kDa translocator protein

Notes

Compliance with Ethical Standards

Funding

No funding has been received for the conduct of this analysis or the preparation of this article.

Conflict of interest

Dmitry Y. Litvinov, Eugeny V. Savushkin and Alexander D. Dergunov have no conflicts of interest that are directly relevant to the content of this article.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Rohatgi A, Khera A, Berry JD, Givens EG, Ayers CR, Wedin KE, Neeland IJ, Yuhanna IS, Rader DR, de Lemos JA, Shaul PW. HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med. 2014;371:2383–93.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Dergunov AD, Garaeva EA, Savushkin EV, Litvinov DY. Significance of lipid-free and lipid-associated ApoA-I in cellular cholesterol efflux. Curr Protein Pept Sci. 2017;18:92–9.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Litvinov DY, Savushkin EV, Garaeva EA, Dergunov AD. Cholesterol efflux and reverse cholesterol transport: experimental approaches. Curr Med Chem. 2016;23:3883–908.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Phillips MC. Molecular mechanisms of cellular cholesterol efflux. J Biol Chem. 2014;289:24020–9.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Gillon AD, Latham CF, Miller EA. Vesicle-mediated ER export of proteins and lipids. Biochim Biophys Acta. 2012;1821:1040–9.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Schroeder F, Atshaves BP, McIntosh AL, Gallegos AM, Storey SM, Parr RD, Jefferson JR, Ball JM, Kier AB. Sterol carrier protein-2: new roles in regulating lipid rafts and signaling. Biochim Biophys Acta. 2007;1771:700–18.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Raychaudhuri S, Prinz WA. The diverse functions of oxysterol-binding proteins. Annu Rev Cell Dev Biol. 2010;26:157–77.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Olkkonen VM. OSBP-related protein family in lipid transport over membrane contact sites. Lipid Insights. 2015;8:1–9.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Daniele T, Schiaffino MV. Organelle biogenesis and interorganellar connections: better in contact than in isolation. Commun Integr Biol. 2014;7:e29587.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Drin G, von Moser FJ, Copic A. New molecular mechanisms of inter-organelle lipid transport. Biochem Soc Trans. 2016;44:486–92.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Quon E, Beh CT. Membrane contact sites: complex zones for membrane association and lipid exchange. Lipid Insights. 2015;8:55–63.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Haynes MP, Phillips MC, Rothblat GH. Efflux of cholesterol from different cellular pools. Biochemistry. 2000;39:4508–17.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Saleheen D, Scott R, Javad S, Zhao W, Rodrigues A, Picataggi A, Lukmanova D, Mucksavage ML, Luben R, Billheimer J, Kastelein JJ, Boekholdt SM, Khaw KT, Wareham N, Rader DJ. Association of HDL cholesterol efflux capacity with incident coronary heart disease events: a prospective case-control study. Lancet Diabetes Endocrinol. 2015;3:507–13.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Ogura M, Hori M, Harada-Shiba M. Association between cholesterol efflux capacity and atherosclerotic cardiovascular disease in patients with familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2016;36:181–8.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Bhatt A, Rohatgi A. HDL cholesterol efflux capacity: cardiovascular risk factor and potential therapeutic target. Curr Atheroscler Rep. 2016;18:2.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Rohatgi A. High-density lipoprotein function measurement in human studies: focus on cholesterol efflux capacity. Prog Cardiovasc Dis. 2015;58:32–40.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Fisher EA, Feig JE, Hewing B, Hazen SL, Smith JD. High-density lipoprotein function, dysfunction, and reverse cholesterol transport. Arterioscler Thromb Vasc Biol. 2012;32:2813–20.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Chyu KY, Shah PK. HDL/ApoA-1 infusion and ApoA-1 gene therapy in atherosclerosis. Front Pharmacol. 2015;6:187.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Arakawa R, Tsujita M, Iwamoto N, Ito-Ohsumi C, Lu R, Wu CA, Shimizu K, Aotsuka T, Kanazawa H, Abe-Dohmae S, Yokoyama S. Pharmacological inhibition of ABCA1 degradation increases HDL biogenesis and exhibits antiatherogenesis. J Lipid Res. 2009;50:2299–305.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Terao Y, Ayaori M, Ogura M, Yakushiji E, Uto-Kondo H, Hisada T, Ozasa H, Takiguchi S, Nakaya K, Sasaki M, Komatsu T, Iizuka M, Horii S, Mochizuki S, Yoshimura M, Ikewaki K. Effect of sulfonylurea agents on reverse cholesterol transport in vitro and vivo. J Atheroscler Thromb. 2011;18:513–30.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Liu J, Zhang Z, Xu Y, Feng T, Jiang W, Li Z, Hong B, Xie Z, Si S. IMB2026791, a xanthone, stimulates cholesterol efflux by increasing the binding of apolipoprotein A-I to ATP-binding cassette transporter A1. Molecules. 2012;17:2833–54.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Nieland TJ, Penman M, Dori L, Krieger M, Kirchhausen T. Discovery of chemical inhibitors of the selective transfer of lipids mediated by the HDL receptor SR-BI. Proc Natl Acad Sci USA. 2002;99:15422–7.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Howard AD, Verghese PB, Arrese EL, Soulages JL. Characterization of apoA-I-dependent lipid efflux from adipocytes and role of ABCA1. Mol Cell Biochem. 2010;343:115–24.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Cui HL, Grant A, Mukhamedova N, Pushkarsky T, Jennelle L, Dubrovsky L, Gaus K, Fitzgerald ML, Sviridov D, Bukrinsky M. HIV-1 Nef mobilizes lipid rafts in macrophages through a pathway that competes with ABCA1-dependent cholesterol efflux. J Lipid Res. 2012;53:696–708.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Lyssenko NN, Brubaker G, Smith BD, Smith JD. A novel compound inhibits reconstituted high-density lipoprotein assembly and blocks nascent high-density lipoprotein biogenesis downstream of apolipoprotein AI binding to ATP-binding cassette transporter A1-expressing cells. Arterioscler Thromb Vasc Biol. 2011;31:2700–6.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Fielding PE, Nagao K, Hakamata H, Chimini G, Fielding CJ. A two-step mechanism for free cholesterol and phospholipid efflux from human vascular cells to apolipoprotein A-1. Biochemistry. 2000;39:14113–20.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Wang N, Silver DL, Thiele C, Tall AR. ATP-binding cassette transporter A1 (ABCA1) functions as a cholesterol efflux regulatory protein. J Biol Chem. 2001;276:23742–7.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Favari E, Lee M, Calabresi L, Franceschini G, Zimetti F, Bernini F, Kovanen PT. Depletion of pre-beta-high density lipoprotein by human chymase impairs ATP-binding cassette transporter A1- but not scavenger receptor class B type I-mediated lipid efflux to high density lipoprotein. J Biol Chem. 2004;279:9930–6.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Sakr SW, Williams DL, Stoudt GW, Phillips MC, Rothblat GH. Induction of cellular cholesterol efflux to lipid-free apolipoprotein A-I by cAMP. Biochim Biophys Acta. 1999;1438:85–98.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Favari E, Zanotti I, Zimetti F, Ronda N, Bernini F, Rothblat GH. Probucol inhibits ABCA1-mediated cellular lipid efflux. Arterioscler Thromb Vasc Biol. 2004;24:2345–50.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Tsujita M, Yokoyama S. Selective inhibition of free apolipoprotein-mediated cellular lipid efflux by probucol. Biochemistry. 1996;35:13011–20.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Chen J, Zhang X, Kusumo H, Costa LG, Guizzetti M. Cholesterol efflux is differentially regulated in neurons and astrocytes: implications for brain cholesterol homeostasis. Biochim Biophys Acta. 2013;1831:263–75.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Wu CA, Tsujita M, Hayashi M, Yokoyama S. Probucol inactivates ABCA1 in the plasma membrane with respect to its mediation of apolipoprotein binding and high density lipoprotein assembly and to its proteolytic degradation. J Biol Chem. 2004;279:30168–74.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Ontsouka CE, Huang X, Aliyev E, Albrecht C. In vitro characterization and endocrine regulation of cholesterol and phospholipid transport in the mammary gland. Mol Cell Endocrinol. 2017;439:35–45.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Nagao K, Maeda M, Manucat NB, Ueda K. Cyclosporine A and PSC833 inhibit ABCA1 function via direct binding. Biochim Biophys Acta. 2013;1831:398–406.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Smith JD, Miyata M, Ginsberg M, Grigaux C, Shmookler E, Plump AS. Cyclic AMP induces apolipoprotein E binding activity and promotes cholesterol efflux from a macrophage cell line to apolipoprotein acceptors. J Biol Chem. 1996;271:30647–55.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Guizzetti M, Chen J, Oram JF, Tsuji R, Dao K, Moller T, Costa LG. Ethanol induces cholesterol efflux and up-regulates ATP-binding cassette cholesterol transporters in fetal astrocytes. J Biol Chem. 2007;282:18740–9.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Kemmerer M, Wittig I, Richter F, Brune B, Namgaladze D. AMPK activates LXRalpha and ABCA1 expression in human macrophages. Int J Biochem Cell Biol. 2016;78:1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Lee JY, Karwatsky J, Ma L, Zha X. ABCA1 increases extracellular ATP to mediate cholesterol efflux to ApoA-I. Am J Physiol Cell Physiol. 2011;301:C886–94.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Bortnick AE, Favari E, Tao JQ, Francone OL, Reilly M, Zhang Y, Rothblat GH, Bates SR. Identification and characterization of rodent ABCA1 in isolated type II pneumocytes. Am J Physiol Lung Cell Mol Physiol. 2003;285:L869–78.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Li D, Wang D, Wang Y, Ling W, Feng X, Xia M. Adenosine monophosphate-activated protein kinase induces cholesterol efflux from macrophage-derived foam cells and alleviates atherosclerosis in apolipoprotein E-deficient mice. J Biol Chem. 2010;285:33499–509.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Ma L, Dong F, Denis M, Feng Y, Wang MD, Zha X. Ht31, a protein kinase A anchoring inhibitor, induces robust cholesterol efflux and reverses macrophage foam cell formation through ATP-binding cassette transporter A1. J Biol Chem. 2011;286:3370–8.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Liang B, Wang X, Yan F, Bian YF, Liu M, Bai R, Yang HY, Zhang NN, Yang ZM, Xiao CS. Angiotensin-(1–7) upregulates (ATP-binding cassette transporter A1) ABCA1 expression through cyclic AMP signaling pathway in RAW 264.7 macrophages. Eur Rev Med Pharmacol Sci. 2014;18:985–91.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Karwatsky J, Ma L, Dong F, Zha X. Cholesterol efflux to apoA-I in ABCA1-expressing cells is regulated by Ca2+-dependent calcineurin signaling. J Lipid Res. 2010;51:1144–56.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Karunakaran D, Thrush AB, Nguyen MA, Richards L, Geoffrion M, Singaravelu R, Ramphos E, Shangari P, Ouimet M, Pezacki JP, Moore KJ, Perisic L, Maegdefessel L, Hedin U, Harper ME, Rayner KJ. Macrophage mitochondrial energy status regulates cholesterol efflux and is enhanced by anti-miR33 in atherosclerosis. Circ Res. 2015;117:266–78.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Chen J, Costa LG, Guizzetti M. Retinoic acid isomers up-regulate ATP binding cassette A1 and G1 and cholesterol efflux in rat astrocytes: implications for their therapeutic and teratogenic effects. J Pharmacol Exp Ther. 2011;338:870–8.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Kammerer I, Ringseis R, Biemann R, Wen G, Eder K. 13-hydroxy linoleic acid increases expression of the cholesterol transporters ABCA1, ABCG1 and SR-BI and stimulates apoA-I-dependent cholesterol efflux in RAW264.7 macrophages. Lipids Health Dis. 2011;10:222.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Ouimet M, Wang MD, Cadotte N, Ho K, Marcel YL. Epoxycholesterol impairs cholesteryl ester hydrolysis in macrophage foam cells, resulting in decreased cholesterol efflux. Arterioscler Thromb Vasc Biol. 2008;28:1144–50.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Uehara Y, Engel T, Li Z, Goepfert C, Rust S, Zhou X, Langer C, Schachtrup C, Wiekowski J, Lorkowski S, Assmann G, von EA. Polyunsaturated fatty acids and acetoacetate downregulate the expression of the ATP-binding cassette transporter A1. Diabetes. 2002;51:2922–8.Google Scholar
  50. 50.
    Tang SL, Chen WJ, Yin K, Zhao GJ, Mo ZC, Lv YC, Ouyang XP, Yu XH, Kuang HJ, Jiang ZS, Fu YC, Tang CK. PAPP-A negatively regulates ABCA1, ABCG1 and SR-B1 expression by inhibiting LXRalpha through the IGF-I-mediated signaling pathway. Atherosclerosis. 2012;222:344–54.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Sparrow CP, Baffic J, Lam MH, Lund EG, Adams AD, Fu X, Hayes N, Jones AB, Macnaul KL, Ondeyka J, Singh S, Wang J, Zhou G, Moller DE, Wright SD, Menke JG. A potent synthetic LXR agonist is more effective than cholesterol loading at inducing ABCA1 mRNA and stimulating cholesterol efflux. J Biol Chem. 2002;277:10021–7.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Favari E, Zimetti F, Bortnick AE, Adorni MP, Zanotti I, Canavesi M, Bernini F. Impaired ATP-binding cassette transporter A1-mediated sterol efflux from oxidized LDL-loaded macrophages. FEBS Lett. 2005;579:6537–42.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Adorni MP, Cipollari E, Favari E, Zanotti I, Zimetti F, Corsini A, Ricci C, Bernini F, Ferri N. Inhibitory effect of PCSK9 on Abca1 protein expression and cholesterol efflux in macrophages. Atherosclerosis. 2017;256:1–6.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Murthy S, Born E, Mathur SN, Field FJ. LXR/RXR activation enhances basolateral efflux of cholesterol in CaCo-2 cells. J Lipid Res. 2002;43:1054–64.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Bechor S, Zolberg RN, Harari A, Almog T, Kamari Y, Ben-Amotz A, Harats D, Shaish A. 9-cis beta-carotene increased cholesterol efflux to HDL in macrophages. Nutrients. 2016;8.Google Scholar
  56. 56.
    Yu R, Lv Y, Wang J, Pan N, Zhang R, Wang X, Yu H, Tan L, Zhao Y, Li B. Baicalin promotes cholesterol efflux by regulating the expression of SR-BI in macrophages. Exp Ther Med. 2016;12:4113–20.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Triolo M, Annema W, de Boer JF, Tietge UJ, Dullaart RP. Simvastatin and bezafibrate increase cholesterol efflux in men with type 2 diabetes. Eur J Clin Invest. 2014;44:240–8.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Li N, Wang X, Liu P, Lu D, Jiang W, Xu Y, Si S. E17110 promotes reverse cholesterol transport with liver X receptor beta agonist activity in vitro. Acta Pharm Sin B. 2016;6:198–204.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Hoang MH, Jia Y, Jun HJ, Lee JH, Lee DH, Hwang BY, Kim WJ, Lee HJ, Lee SJ. Ethyl 2,4,6-trihydroxybenzoate is an agonistic ligand for liver X receptor that induces cholesterol efflux from macrophages without affecting lipid accumulation in HepG2 cells. Bioorg Med Chem Lett. 2012;22:4094–9.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Hennuyer N, Duplan I, Paquet C, Vanhoutte J, Woitrain E, Touche V, Colin S, Vallez E, Lestavel S, Lefebvre P, Staels B. The novel selective PPARalpha modulator (SPPARMalpha) pemafibrate improves dyslipidemia, enhances reverse cholesterol transport and decreases inflammation and atherosclerosis. Atherosclerosis. 2016;249:200–8.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Chai JT, Digby JE, Ruparelia N, Jefferson A, Handa A, Choudhury RP. Nicotinic acid receptor GPR109A is down-regulated in human macrophage-derived foam cells. PLoS ONE. 2013;8:e62934.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Yue J, Li B, Jing Q, Guan Q. Salvianolic acid B accelerated ABCA1-dependent cholesterol efflux by targeting PPAR-gamma and LXRalpha. Biochem Biophys Res Commun. 2015;462:233–8.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Wang YH, Chen YF, Chen SR, Chen X, Chen JW, Shen XY, Mou YG, Liu PQ. Aspirin increases apolipoprotein-A-I-mediated cholesterol efflux via enhancing expression of ATP-binding cassette transporter A1. Pharmacology. 2010;86:320–6.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Molteni V, Li X, Nabakka J, Liang F, Wityak J, Koder A, Vargas L, Romeo R, Mitro N, Mak PA, Seidel HM, Haslam JA, Chow D, Tuntland T, Spalding TA, Brock A, Bradley M, Castrillo A, Tontonoz P, Saez E. N-Acylthiadiazolines, a new class of liver X receptor agonists with selectivity for LXRbeta. J Med Chem. 2007;50:4255–9.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Bocchetta S, Maillard P, Yamamoto M, Gondeau C, Douam F, Lebreton S, Lagaye S, Pol S, Helle F, Plengpanich W, Guerin M, Bourgine M, Michel ML, Lavillette D, Roingeard P, le GW, Budkowska A. Up-regulation of the ATP-binding cassette transporter A1 inhibits hepatitis C virus infection. PLoS One. 2014;9:e92140.Google Scholar
  66. 66.
    Ceroi A, Masson D, Roggy A, Roumier C, Chague C, Gauthier T, Philippe L, Lamarthee B, Angelot-Delettre F, Bonnefoy F, Perruche S, Biichle S, Preudhomme C, Macintyre E, Lagrost L, Garnache-Ottou F, Saas P. LXR agonist treatment of blastic plasmacytoid dendritic cell neoplasm restores cholesterol efflux and triggers apoptosis. Blood. 2016;128:2694–707.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Zhang J, Grieger JA, Kris-Etherton PM, Thompson JT, Gillies PJ, Fleming JA, Vanden Heuvel JP. Walnut oil increases cholesterol efflux through inhibition of stearoyl CoA desaturase 1 in THP-1 macrophage-derived foam cells. Nutr Metab (Lond). 2011;8:61.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Wang L, Rotter S, Ladurner A, Heiss EH, Oberlies NH, Dirsch VM, Atanasov AG. Silymarin constituents enhance ABCA1 expression in THP-1 macrophages. Molecules. 2015;21:E55.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Ozasa H, Ayaori M, Iizuka M, Terao Y, Uto-Kondo H, Yakushiji E, Takiguchi S, Nakaya K, Hisada T, Uehara Y, Ogura M, Sasaki M, Komatsu T, Horii S, Mochizuki S, Yoshimura M, Ikewaki K. Pioglitazone enhances cholesterol efflux from macrophages by increasing ABCA1/ABCG1 expressions via PPARgamma/LXRalpha pathway: findings from in vitro and ex vivo studies. Atherosclerosis. 2011;219:141–50.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Nakaya K, Ayaori M, Hisada T, Sawada S, Tanaka N, Iwamoto N, Ogura M, Yakushiji E, Kusuhara M, Nakamura H, Ohsuzu F. Telmisartan enhances cholesterol efflux from THP-1 macrophages by activating PPARgamma. J Atheroscler Thromb. 2007;14:133–41.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Wang L, Palme V, Rotter S, Schilcher N, Cukaj M, Wang D, Ladurner A, Heiss EH, Stangl H, Dirsch VM, Atanasov AG. Piperine inhibits ABCA1 degradation and promotes cholesterol efflux from THP-1-derived macrophages. Mol Nutr Food Res. 2017;61:1500960.CrossRefGoogle Scholar
  72. 72.
    Chinetti G, Lestavel S, Bocher V, Remaley AT, Neve B, Torra IP, Teissier E, Minnich A, Jaye M, Duverger N, Brewer HB, Fruchart JC, Clavey V, Staels B. PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med. 2001;7:53–8.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Xia M, Hou M, Zhu H, Ma J, Tang Z, Wang Q, Li Y, Chi D, Yu X, Zhao T, Han P, Xia X, Ling W. Anthocyanins induce cholesterol efflux from mouse peritoneal macrophages: the role of the peroxisome proliferator-activated receptor {gamma}-liver X receptor {alpha}-ABCA1 pathway. J Biol Chem. 2005;280:36792–801.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    He D, Wang H, Xu L, Wang X, Peng K, Wang L, Liu P, Qu P. Saikosaponin-a attenuates oxidized LDL uptake and prompts cholesterol efflux in THP-1 cells. J Cardiovasc Pharmacol. 2016;67:510–8.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Wang S, Zhang X, Liu M, Luan H, Ji Y, Guo P, Wu C. Chrysin inhibits foam cell formation through promoting cholesterol efflux from RAW264.7 macrophages. Pharm Biol. 2015;53:1481–7.Google Scholar
  76. 76.
    Cui H, Okuhira K, Ohoka N, Naito M, Kagechika H, Hirose A, Nishimaki-Mogami T. Tributyltin chloride induces ABCA1 expression and apolipoprotein A-I-mediated cellular cholesterol efflux by activating LXRalpha/RXR. Biochem Pharmacol. 2011;81:819–24.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Tamehiro N, Sato Y, Suzuki T, Hashimoto T, Asakawa Y, Yokoyama S, Kawanishi T, Ohno Y, Inoue K, Nagao T, Nishimaki-Mogami T. Riccardin C: a natural product that functions as a liver X receptor (LXR)alpha agonist and an LXRbeta antagonist. FEBS Lett. 2005;579:5299–304.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Ma W, Ding H, Gong X, Liu Z, Lin Y, Zhang Z, Lin G. Methyl protodioscin increases ABCA1 expression and cholesterol efflux while inhibiting gene expressions for synthesis of cholesterol and triglycerides by suppressing SREBP transcription and microRNA 33a/b levels. Atherosclerosis. 2015;239:566–70.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Wagner BL, Valledor AF, Shao G, Daige CL, Bischoff ED, Petrowski M, Jepsen K, Baek SH, Heyman RA, Rosenfeld MG, Schulman IG, Glass CK. Promoter-specific roles for liver X receptor/corepressor complexes in the regulation of ABCA1 and SREBP1 gene expression. Mol Cell Biol. 2003;23:5780–9.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Terasaka N, Hiroshima A, Koieyama T, Ubukata N, Morikawa Y, Nakai D, Inaba T. T-0901317, a synthetic liver X receptor ligand, inhibits development of atherosclerosis in LDL receptor-deficient mice. FEBS Lett. 2003;536:6–11.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Rayner KJ, Suarez Y, Davalos A, Parathath S, Fitzgerald ML, Tamehiro N, Fisher EA, Moore KJ, Fernandez-Hernando C. MiR-33 contributes to the regulation of cholesterol homeostasis. Science. 2010;328:1570–3.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Katsube A, Hayashi H, Kusuhara H. Pim-1L protects cell surface-resident ABCA1 from lysosomal degradation in hepatocytes and thereby regulates plasma high-density lipoprotein level. Arterioscler Thromb Vasc Biol. 2016;36:2304–14.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Low H, Mukhamedova N, Cui HL, McSharry BP, Avdic S, Hoang A, Ditiatkovski M, Liu Y, Fu Y, Meikle PJ, Blomberg M, Polyzos KA, Miller WE, Religa P, Bukrinsky M, Soderberg-Naucler C, Slobedman B, Sviridov D. Cytomegalovirus restructures lipid rafts via a US28/CDC42-mediated pathway, enhancing cholesterol efflux from host cells. Cell Rep. 2016;16:186–200.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Jiang M, Li X. Activation of PPARgamma does not contribute to macrophage ABCA1 expression and ABCA1-mediated cholesterol efflux to apoAI. Biochem Biophys Res Commun. 2017;482:849–56.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Liu XY, Lu Q, Ouyang XP, Tang SL, Zhao GJ, Lv YC, He PP, Kuang HJ, Tang YY, Fu Y, Zhang DW, Tang CK. Apelin-13 increases expression of ATP-binding cassette transporter A1 via activating protein kinase C alpha signaling in THP-1 macrophage-derived foam cells. Atherosclerosis. 2013;226:398–407.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Rousselle A, Qadri F, Leukel L, Yilmaz R, Fontaine JF, Sihn G, Bader M, Ahluwalia A, Duchene J. CXCL5 limits macrophage foam cell formation in atherosclerosis. J Clin Invest. 2013;123:1343–7.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Chen Y, Wang Z, Zhou L. Interleukin 8 inhibition enhanced cholesterol efflux in acetylated low-density lipoprotein-stimulated THP-1 macrophages. J Investig Med. 2014;62:615–20.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Halvorsen B, Holm S, Yndestad A, Scholz H, Sagen EL, Nebb H, Holven KB, Dahl TB, Aukrust P. Interleukin-10 increases reverse cholesterol transport in macrophages through its bidirectional interaction with liver X receptor alpha. Biochem Biophys Res Commun. 2014;450:1525–30.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Yu XH, Jiang HL, Chen WJ, Yin K, Zhao GJ, Mo ZC, Ouyang XP, Lv YC, Jiang ZS, Zhang DW, Tang CK. Interleukin-18 and interleukin-12 together downregulate ATP-binding cassette transporter A1 expression through the interleukin-18R/nuclear factor-kappaB signaling pathway in THP-1 macrophage-derived foam cells. Circ J. 2012;76:1780–91.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Fu H, Tang YY, Ouyang XP, Tang SL, Su H, Li X, Huang LP, He M, Lv YC, He PP, Yao F, Tan YL, Xie W, Zhang M, Wu J, Li Y, Chen K, Liu D, Lan G, Zeng MY, Zheng XL, Tang CK. Interleukin-27 inhibits foam cell formation by promoting macrophage ABCA1 expression through JAK2/STAT3 pathway. Biochem Biophys Res Commun. 2014;452:881–7.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Panousis CG, Evans G, Zuckerman SH. TGF-beta increases cholesterol efflux and ABC-1 expression in macrophage-derived foam cells: opposing the effects of IFN-gamma. J Lipid Res. 2001;42:856–63.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Edgel KA, Leboeuf RC, Oram JF. Tumor necrosis factor-alpha and lymphotoxin-alpha increase macrophage ABCA1 by gene expression and protein stabilization via different receptors. Atherosclerosis. 2010;209:387–92.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Sun RL, Huang CX, Bao JL, Jiang JY, Zhang B, Zhou SX, Cai WB, Wang H, Wang JF, Zhang YL. CC-chemokine ligand 2 (CCL2) suppresses high density lipoprotein (HDL) internalization and cholesterol efflux via CC-chemokine receptor 2 (CCR93) induction and p42/44 mitogen-activated protein kinase (MAPK) activation in human endothelial cells. J Biol Chem. 2016;291:19532–44.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Boshuizen MC, Hoeksema MA, Neele AE, van d, V, Hamers AA, Van den Bossche J, Lutgens E, de Winther MP. Interferon-beta promotes macrophage foam cell formation by altering both cholesterol influx and efflux mechanisms. Cytokine. 2016;77:220–6.Google Scholar
  95. 95.
    Ma KL, Ruan XZ, Powis SH, Chen Y, Moorhead JF, Varghese Z. Inflammatory stress exacerbates lipid accumulation in hepatic cells and fatty livers of apolipoprotein E knockout mice. Hepatology. 2008;48:770–81.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Mao M, Lei H, Liu Q, Chen Y, Zhao L, Li Q, Luo S, Zuo Z, He Q, Huang W, Zhang N, Zhou C, Ruan XZ. Effects of miR-33a-5P on ABCA1/G1-mediated cholesterol efflux under inflammatory stress in THP-1 macrophages. PLoS One. 2014;9:e109722.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Wang XQ, Panousis CG, Alfaro ML, Evans GF, Zuckerman SH. Interferon-gamma-mediated downregulation of cholesterol efflux and ABC1 expression is by the Stat1 pathway. Arterioscler Thromb Vasc Biol. 2002;22:e5–9.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Hao XR, Cao DL, Hu YW, Li XX, Liu XH, Xiao J, Liao DF, Xiang J, Tang CK. IFN-gamma down-regulates ABCA1 expression by inhibiting LXRalpha in a JAK/STAT signaling pathway-dependent manner. Atherosclerosis. 2009;203:417–28.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    McLaren JE, Calder CJ, McSharry BP, Sexton K, Salter RC, Singh NN, Wilkinson GW, Wang EC, Ramji DP. The TNF-like protein 1A-death receptor 3 pathway promotes macrophage foam cell formation in vitro. J Immunol. 2010;184:5827–34.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Pedigo CE, Ducasa GM, Leclercq F, Sloan A, Mitrofanova A, Hashmi T, Molina-David J, Ge M, Lassenius MI, Forsblom C, Lehto M, Groop PH, Kretzler M, Eddy S, Martini S, Reich H, Wahl P, Ghiggeri G, Faul C, Burke GW III, Kretz O, Huber TB, Mendez AJ, Merscher S, Fornoni A. Local TNF causes NFATc1-dependent cholesterol-mediated podocyte injury. J Clin Invest. 2016;126:3336–50.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Lin YT, Jian DY, Kwok CF, Ho LT, Juan CC. Visfatin promotes foam cell formation by dysregulating CD36, SRA, ABCA1, and ABCG1 expression in Raw264.7 macrophages. Shock. 2016;45:460–8.Google Scholar
  102. 102.
    Wang H, Liu Y, Zhu L, Wang W, Wan Z, Chen F, Wu Y, Zhou J, Yuan Z. 17beta-estradiol promotes cholesterol efflux from vascular smooth muscle cells through a liver X receptor alpha-dependent pathway. Int J Mol Med. 2014;33:550–8.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Liang B, Wang X, Bian Y, Yang H, Liu M, Bai R, Yang Z, Xiao C. Angiotensin-(1-7) upregulates expression of adenosine triphosphate-binding cassette transporter A1 and adenosine triphosphate-binding cassette transporter G1 through the Mas receptor through the liver X receptor alpha signalling pathway in THP-1 macrophages treated with angiotensin-II. Clin Exp Pharmacol Physiol. 2014;41:1023–30.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Mostafa AM, Hamdy NM, El-Mesallamy HO, Abdel-Rahman SZ. Glucagon-like peptide 1 (GLP-1)-based therapy upregulates LXR-ABCA1/ABCG1 cascade in adipocytes. Biochem Biophys Res Commun. 2015;468:900–5.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Shang W, Yu X, Wang H, Chen T, Fang Y, Yang X, Zhou P, Nie F, Zhou Q, Zhou J. Fibroblast growth factor 21 enhances cholesterol efflux in THP-1 macrophage-derived foam cells. Mol Med Rep. 2015;11:503–8.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Cheng B, Wan J, Wang Y, Mei C, Liu W, Ke L, He P. Ghrelin inhibits foam cell formation via simultaneously down-regulating the expression of acyl-coenzyme A:cholesterol acyltransferase 1 and up-regulating adenosine triphosphate-binding cassette transporter A1. Cardiovasc Pathol. 2010;19:e159–66.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Wu JF, Wang Y, Zhang M, Tang YY, Wang B, He PP, Lv YC, Ouyang XP, Yao F, Tan YL, Tang SL, Tang DP, Cayabyab FS, Zheng XL, Zhang DW, Zeng GF, Tang CK. Growth differentiation factor-15 induces expression of ATP-binding cassette transporter A1 through PI3-K/PKCzeta/SP1 pathway in THP-1 macrophages. Biochem Biophys Res Commun. 2014;444:325–31.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Lyu J, Imachi H, Iwama H, Zhang H, Murao K. Insulin-like growth factor 1 regulates the expression of ATP-binding cassette transporter A1 in pancreatic beta cells. Horm Metab Res. 2016;48:338–44.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Mostafa AM, Hamdy NM, Abdel-Rahman SZ, El-Mesallamy HO. Effect of vildagliptin and pravastatin combination on cholesterol efflux in adipocytes. IUBMB Life. 2016;68:535–43.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Park YM, Kashyap R, Major A, Silverstein RL. Insulin promotes macrophage foam cell formation: potential implications in diabetes-related atherosclerosis. Lab Invest. 2012;92:1171–80.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Cho W, Kang JL, Park YM. Corticotropin-releasing hormone (CRH) promotes macrophage foam cell formation via reduced expression of ATP binding cassette transporter-1 (ABCA1). PLoS One. 2015;10:e0130587.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Ayaori M, Sawada S, Yonemura A, Iwamoto N, Ogura M, Tanaka N, Nakaya K, Kusuhara M, Nakamura H, Ohsuzu F. Glucocorticoid receptor regulates ATP-binding cassette transporter-A1 expression and apolipoprotein-mediated cholesterol efflux from macrophages. Arterioscler Thromb Vasc Biol. 2006;26:163–8.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Zhou X, Yin Z, Guo X, Hajjar DP, Han J. Inhibition of ERK1/2 and activation of liver X receptor synergistically induce macrophage ABCA1 expression and cholesterol efflux. J Biol Chem. 2010;285:6316–26.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Greco D, Favari E, Adorni MP, Zimetti F, Gatti R, Bernini F, Ronda N. Hydrocortisone directly promotes cholesterol accumulation in macrophages. Ann Rheum Dis. 2014;73:1274–6.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Nonomura K, Arai Y, Mitani H, Abe-Dohmae S, Yokoyama S. Insulin down-regulates specific activity of ATP-binding cassette transporter A1 for high density lipoprotein biogenesis through its specific phosphorylation. Atherosclerosis. 2011;216:334–41.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Fernandez-Suarez ME, Escola-Gil JC, Pastor O, Davalos A, Blanco-Vaca F, Lasuncion MA, Martinez-Botas J, Gomez-Coronado D. Clinically used selective estrogen receptor modulators affect different steps of macrophage-specific reverse cholesterol transport. Sci Rep. 2016;6:32105.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Chen SG, Xiao J, Liu XH, Liu MM, Mo ZC, Yin K, Zhao GJ, Jiang J, Cui LB, Tan CZ, Yin WD, Tang CK. Ibrolipim increases ABCA1/G1 expression by the LXRalpha signaling pathway in THP-1 macrophage-derived foam cells. Acta Pharmacol Sin. 2010;31:1343–9.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Sugimoto K, Tsujita M, Wu CA, Suzuki K, Yokoyama S. An inhibitor of acylCoA: cholesterol acyltransferase increases expression of ATP-binding cassette transporter A1 and thereby enhances the ApoA-I-mediated release of cholesterol from macrophages. Biochim Biophys Acta. 2004;1636:69–76.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Tamehiro N, Zhou S, Okuhira K, Benita Y, Brown CE, Zhuang DZ, Latz E, Hornemann T, von EA, Xavier RJ, Freeman MW, Fitzgerald ML. SPTLC1 binds ABCA1 to negatively regulate trafficking and cholesterol efflux activity of the transporter. Biochemistry. 2008;47:6138–47.Google Scholar
  120. 120.
    Azuma Y, Kawasaki T, Ikemoto K, Ohno K, Yamada T, Yamasaki M, Nobuhara Y. Effects of NTE-122, a novel acyl-CoA:cholesterol acyltransferase inhibitor, on cholesterol esterification and high-density lipoprotein-induced cholesterol efflux in macrophages. Jpn J Pharmacol. 1999;79:159–67.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Oram JF, Wolfbauer G, Vaughan AM, Tang C, Albers JJ. Phospholipid transfer protein interacts with and stabilizes ATP-binding cassette transporter A1 and enhances cholesterol efflux from cells. J Biol Chem. 2003;278:52379–85.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Zanotti I, Favari E, Sposito AC, Rothblat GH, Bernini F. Pitavastatin increases ABCA1-mediated lipid efflux from Fu5AH rat hepatoma cells. Biochem Biophys Res Commun. 2004;321:670–4.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Kawashima RL, Medh JD. Down-regulation of lipoprotein lipase increases ABCA1-mediated cholesterol efflux in THP-1 macrophages. Biochem Biophys Res Commun. 2014;450:1416–21.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Niesor EJ, Schwartz GG, Perez A, Stauffer A, Durrwell A, Bucklar-Suchankova G, Benghozi R, Abt M, Kallend D. Statin-induced decrease in ATP-binding cassette transporter A1 expression via microRNA33 induction may counteract cholesterol efflux to high-density lipoprotein. Cardiovasc Drugs Ther. 2015;29:7–14.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Wang W, Song W, Wang Y, Chen L, Yan X. HMG-CoA reductase inhibitors, simvastatin and atorvastatin, downregulate ABCG1-mediated cholesterol efflux in human macrophages. J Cardiovasc Pharmacol. 2013;62:90–8.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Chen WM, Sheu WH, Tseng PC, Lee TS, Lee WJ, Chang PJ, Chiang AN. Modulation of microRNA expression in subjects with metabolic syndrome and decrease of cholesterol efflux from macrophages via microRNA-33-mediated attenuation of ATP-binding cassette transporter A1 expression by statins. PLoS One. 2016;11:e0154672.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Wong J, Quinn CM, Gelissen IC, Jessup W, Brown AJ. The effect of statins on ABCA1 and ABCG1 expression in human macrophages is influenced by cellular cholesterol levels and extent of differentiation. Atherosclerosis. 2008;196:180–9.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Zanotti I, Poti F, Favari E, Steffensen KR, Gustafsson JA, Bernini F. Pitavastatin effect on ATP binding cassette A1-mediated lipid efflux from macrophages: evidence for liver X receptor (LXR)-dependent and LXR-independent mechanisms of activation by cAMP. J Pharmacol Exp Ther. 2006;317:395–401.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Bielicki JK, Johnson WJ, Weinberg RB, Glick JM, Rothblat GH. Efflux of lipid from fibroblasts to apolipoproteins: dependence on elevated levels of cellular unesterified cholesterol. J Lipid Res. 1992;33:1699–709.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Karten B, Campenot RB, Vance DE, Vance JE. Expression of ABCG1, but not ABCA1, correlates with cholesterol release by cerebellar astroglia. J Biol Chem. 2006;281:4049–57.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Rios-Marco P, Jimenez-Lopez JM, Marco C, Segovia JL, Carrasco MP. Antitumoral alkylphospholipids induce cholesterol efflux from the plasma membrane in HepG2 cells. J Pharmacol Exp Ther. 2011;336:866–73.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Feng B, Tabas I. ABCA1-mediated cholesterol efflux is defective in free cholesterol-loaded macrophages. Mechanism involves enhanced ABCA1 degradation in a process requiring full NPC1 activity. J Biol Chem. 2002;277:43271–80.Google Scholar
  133. 133.
    Luquain-Costaz C, Lefai E, Arnal-Levron M, Markina D, Sakai S, Euthine V, Makino A, Guichardant M, Yamashita S, Kobayashi T, Lagarde M, Moulin P, Delton-Vandenbroucke I. Bis(monoacylglycero)phosphate accumulation in macrophages induces intracellular cholesterol redistribution, attenuates liver-X receptor/ATP-Binding cassette transporter A1/ATP-binding cassette transporter G1 pathway, and impairs cholesterol efflux. Arterioscler Thromb Vasc Biol. 2013;33:1803–11.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Rios-Marco P, Marco C, Cueto FJ, Carrasco MP, Jimenez-Lopez JM. Pleiotropic effects of antitumour alkylphospholipids on cholesterol transport and metabolism. Exp Cell Res. 2016;340:81–90.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Hu YW, Ma X, Li XX, Liu XH, Xiao J, Mo ZC, Xiang J, Liao DF, Tang CK. Eicosapentaenoic acid reduces ABCA1 serine phosphorylation and impairs ABCA1-dependent cholesterol efflux through cyclic AMP/protein kinase A signaling pathway in THP-1 macrophage-derived foam cells. Atherosclerosis. 2009;204:e35–43.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Spartano NL, Lamon-Fava S, Matthan NR, Obin MS, Greenberg AS, Lichtenstein AH. Linoleic acid suppresses cholesterol efflux and ATP-binding cassette transporters in murine bone marrow-derived macrophages. Lipids. 2014;49:415–22.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Kanter JE, Tang C, Oram JF, Bornfeldt KE. Acyl-CoA synthetase 1 is required for oleate and linoleate mediated inhibition of cholesterol efflux through ATP-binding cassette transporter A1 in macrophages. Biochim Biophys Acta. 2012;1821:358–64.PubMedCrossRefGoogle Scholar
  138. 138.
    Dong F, Mo Z, Eid W, Courtney KC, Zha X. Akt inhibition promotes ABCA1-mediated cholesterol efflux to ApoA-I through suppressing mTORC1. PLoS One. 2014;9:e113789.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Gulshan K, Brubaker G, Conger H, Wang S, Zhang R, Hazen SL, Smith JD. PI(4,5)P2 is translocated by ABCA1 to the cell surface where it mediates apolipoprotein A1 binding and nascent HDL assembly. Circ Res. 2016;119:827–38.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Witting SR, Maiorano JN, Davidson WS. Ceramide enhances cholesterol efflux to apolipoprotein A-I by increasing the cell surface presence of ATP-binding cassette transporter A1. J Biol Chem. 2003;278:40121–7.PubMedCrossRefGoogle Scholar
  141. 141.
    Haidar B, Kiss RS, Sarov-Blat L, Brunet R, Harder C, McPherson R, Marcel YL. Cathepsin D, a lysosomal protease, regulates ABCA1-mediated lipid efflux. J Biol Chem. 2006;281:39971–81.PubMedCrossRefGoogle Scholar
  142. 142.
    Zhang L, Chen Y, Yang X, Yang J, Cao X, Li X, Li L, Miao QR, Hajjar DP, Duan Y, Han J. MEK1/2 inhibitors activate macrophage ABCG1 expression and reverse cholesterol transport-An anti-atherogenic function of ERK1/2 inhibition. Biochim Biophys Acta. 2016;1861:1180–91.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Luo T, Hu J, Xi D, Xiong H, He W, Liu J, Li M, Lu H, Zhao J, Lai W, Guo Z. Lck inhibits heat shock protein 65-mediated reverse cholesterol transport in T cells. J Immunol. 2016;197:3861–70.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Campia I, Sala V, Kopecka J, Leo C, Mitro N, Costamagna C, Caruso D, Pescarmona G, Crepaldi T, Ghigo D, Bosia A, Riganti C. Digoxin and ouabain induce the efflux of cholesterol via liver X receptor signalling and the synthesis of ATP in cardiomyocytes. Biochem J. 2012;447:301–11.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Zhang Q, Ma AZ, Song ZY, Wang C, Fu XD. Nifedipine enhances cholesterol efflux in RAW264.7 macrophages. Cardiovasc Drugs Ther. 2013;27:425–31.Google Scholar
  146. 146.
    Tang CK, Tang GH, Yi GH, Wang Z, Liu LS, Wan S, Yuan ZH, He XS, Yang JH, Ruan CG, Yang YZ. Effect of apolipoprotein A-I on ATP binding cassette transporter A1 degradation and cholesterol efflux in THP-1 macrophage-derived foam cells. Acta Biochim Biophys Sin (Shanghai). 2004;36:218–26.CrossRefGoogle Scholar
  147. 147.
    Ogura M, Ayaori M, Terao Y, Hisada T, Iizuka M, Takiguchi S, Uto-Kondo H, Yakushiji E, Nakaya K, Sasaki M, Komatsu T, Ozasa H, Ohsuzu F, Ikewaki K. Proteasomal inhibition promotes ATP-binding cassette transporter A1 (ABCA1) and ABCG1 expression and cholesterol efflux from macrophages in vitro and in vivo. Arterioscler Thromb Vasc Biol. 2011;31:1980–7.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Mendez AJ. Monensin and brefeldin A inhibit high density lipoprotein-mediated cholesterol efflux from cholesterol-enriched cells. Implications for intracellular cholesterol transport. J Biol Chem. 1995;270:5891–900.Google Scholar
  149. 149.
    Fielding CJ, Moser K. Evidence for the separation of albumin- and apo A-I-dependent mechanisms of cholesterol efflux from cultured fibroblasts into human plasma. J Biol Chem. 1982;257:10955–60.PubMedPubMedCentralGoogle Scholar
  150. 150.
    Fu Y, Hoang A, Escher G, Parton RG, Krozowski Z, Sviridov D. Expression of caveolin-1 enhances cholesterol efflux in hepatic cells. J Biol Chem. 2004;279:14140–6.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Taylor JM, Allen AM, Graham A. Targeting mitochondrial 18 kDa translocator protein (TSPO) regulates macrophage cholesterol efflux and lipid phenotype. Clin Sci (Lond). 2014;127:603–13.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Khan OM, Akula MK, Skalen K, Karlsson C, Stahlman M, Young SG, Boren J, Bergo MO. Targeting GGTase-I activates RHOA, increases macrophage reverse cholesterol transport, and reduces atherosclerosis in mice. Circulation. 2013;127:782–90.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Zhang L, Jiang M, Shui Y, Chen Y, Wang Q, Hu W, Ma X, Li X, Liu X, Cao X, Liu M, Duan Y, Han J. DNA topoisomerase II inhibitors induce macrophage ABCA1 expression and cholesterol efflux-an LXR-dependent mechanism. Biochim Biophys Acta. 2013;1831:1134–45.PubMedCrossRefGoogle Scholar
  154. 154.
    Tsunemi A, Ueno T, Fukuda N, Watanabe T, Tahira K, Haketa A, Hatanaka Y, Tanaka S, Matsumoto T, Matsumoto Y, Nagase H, Soma M. A novel gene regulator, pyrrole-imidazole polyamide targeting ABCA1 gene increases cholesterol efflux from macrophages and plasma HDL concentration. J Mol Med (Berl). 2014;92:509–21.PubMedCrossRefGoogle Scholar
  155. 155.
    Zhao Y, Chen X, Yang H, Zhou L, Okoro EU, Guo Z. A novel function of apolipoprotein E: upregulation of ATP-binding cassette transporter A1 expression. PLoS One. 2011;6:e21453.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Bujold K, Rhainds D, Jossart C, Febbraio M, Marleau S, Ong H. CD36-mediated cholesterol efflux is associated with PPARgamma activation via a MAPK-dependent COX-2 pathway in macrophages. Cardiovasc Res. 2009;83:457–64.PubMedCrossRefGoogle Scholar
  157. 157.
    Rana M, Kumar A, Tiwari RL, Singh V, Chandra T, Dikshit M, Barthwal MK. IRAK regulates macrophage foam cell formation by modulating genes involved in cholesterol uptake and efflux. BioEssays. 2016;38:591–604.PubMedCrossRefGoogle Scholar
  158. 158.
    Hong YF, Kim H, Kim HS, Park WJ, Kim JY, Chung DK. Lactobacillus acidophilus K301 inhibits atherogenesis via induction of 24 (S), 25-epoxycholesterol-mediated ABCA1 and ABCG1 production and cholesterol efflux in macrophages. PLoS One. 2016;11:e0154302.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Berrougui H, Loued S, Khalil A. Purified human paraoxonase-1 interacts with plasma membrane lipid rafts and mediates cholesterol efflux from macrophages. Free Radic Biol Med. 2012;52:1372–81.PubMedCrossRefGoogle Scholar
  160. 160.
    Cheng TJ, Lin SW, Chen CW, Guo HR, Wang YJ. Arsenic trioxide suppresses liver X receptor beta and enhances cholesteryl ester transfer protein expression without affecting the liver X receptor alpha in HepG2 cells. Chem Biol Interact. 2016;258:288–96.PubMedCrossRefGoogle Scholar
  161. 161.
    Voloshyna I, Kasselman LJ, Carsons SE, Littlefield MJ, Gomolin IH, De LJ, Reiss AB. COX-2-dependent and independent effects of COX-2 inhibitors and NSAIDs on proatherogenic changes in human monocytes/macrophages. J Investig Med. 2017;65:694–704.PubMedCrossRefGoogle Scholar
  162. 162.
    Zhao GJ, Mo ZC, Tang SL, Ouyang XP, He PP, Lv YC, Yao F, Tan YL, Xie W, Shi JF, Wang Y, Zhang M, Liu D, Tang DP, Zheng XL, Tian GP, Tang CK. Chlamydia pneumoniae negatively regulates ABCA1 expression via TLR2-Nuclear factor-kappa B and miR-33 pathways in THP-1 macrophage-derived foam cells. Atherosclerosis. 2014;235:519–25.PubMedCrossRefGoogle Scholar
  163. 163.
    Wang X, Liao D, Bharadwaj U, Li M, Yao Q, Chen C. C-reactive protein inhibits cholesterol efflux from human macrophage-derived foam cells. Arterioscler Thromb Vasc Biol. 2008;28:519–26.PubMedCrossRefGoogle Scholar
  164. 164.
    Clement M, Basatemur G, Masters L, Baker L, Bruneval P, Iwawaki T, Kneilling M, Yamasaki S, Goodall J, Mallat Z. Necrotic cell sensor Clec4e promotes a proatherogenic macrophage phenotype through activation of the unfolded protein response. Circulation. 2016;134:1039–51.PubMedCrossRefGoogle Scholar
  165. 165.
    Jones RJ, Gu D, Bjorklund CC, Kuiatse I, Remaley AT, Bashir T, Vreys V, Orlowski RZ. The novel anticancer agent JNJ-26854165 induces cell death through inhibition of cholesterol transport and degradation of ABCA1. J Pharmacol Exp Ther. 2013;346:381–92.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Lee-Rueckert M, Lappalainen J, Leinonen H, Pihlajamaa T, Jauhiainen M, Kovanen PT. Acidic extracellular environments strongly impair ABCA1-mediated cholesterol efflux from human macrophage foam cells. Arterioscler Thromb Vasc Biol. 2010;30:1766–72.PubMedCrossRefGoogle Scholar
  167. 167.
    Ha JS, Ha CE, Chao JT, Petersen CE, Theriault A, Bhagavan NV. Human serum albumin and its structural variants mediate cholesterol efflux from cultured endothelial cells. Biochim Biophys Acta. 2003;1640:119–28.PubMedCrossRefGoogle Scholar
  168. 168.
    Wang MD, Franklin V, Sundaram M, Kiss RS, Ho K, Gallant M, Marcel YL. Differential regulation of ATP binding cassette protein A1 expression and ApoA-I lipidation by Niemann-Pick type C1 in murine hepatocytes and macrophages. J Biol Chem. 2007;282:22525–33.PubMedCrossRefGoogle Scholar
  169. 169.
    Zhao GJ, Tang SL, Lv YC, Ouyang XP, He PP, Yao F, Chen WJ, Lu Q, Tang YY, Zhang M, Fu Y, Zhang DW, Yin K, Tang CK. Antagonism of betulinic acid on LPS-mediated inhibition of ABCA1 and cholesterol efflux through inhibiting nuclear factor-kappaB signaling pathway and miR-33 expression. PLoS One. 2013;8:e74782.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Wang X, Mu H, Chai H, Liao D, Yao Q, Chen C. Human immunodeficiency virus protease inhibitor ritonavir inhibits cholesterol efflux from human macrophage-derived foam cells. Am J Pathol. 2007;171:304–14.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Wang Y, Wu JF, Tang YY, Zhang M, Li Y, Chen K, Zeng MY, Yao F, Xie W, Zheng XL, Zeng GF, Tang CK. Urotensin II increases foam cell formation by repressing ABCA1 expression through the ERK/NF-kappaB pathway in THP-1 macrophages. Biochem Biophys Res Commun. 2014;452:998–1003.PubMedCrossRefGoogle Scholar
  172. 172.
    Rosenblat M, Rom O, Volkova N, Aviram M. Nitro-oleic acid reduces J774A.1 macrophage oxidative status and triglyceride mass: involvement of paraoxonase2 and triglyceride metabolizing enzymes. Lipids. 2016;51:941–53.Google Scholar
  173. 173.
    Yin K, You Y, Swier V, Tang L, Radwan MM, Pandya AN, Agrawal DK. Vitamin D protects against atherosclerosis via regulation of cholesterol efflux and macrophage polarization in hypercholesterolemic swine. Arterioscler Thromb Vasc Biol. 2015;35:2432–42.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Uto-Kondo H, Ayaori M, Nakaya K, Takiguchi S, Yakushiji E, Ogura M, Terao Y, Ozasa H, Sasaki M, Komatsu T, Sotherden GM, Hosoai T, Sakurada M, Ikewaki K. Citrulline increases cholesterol efflux from macrophages in vitro and ex vivo via ATP-binding cassette transporters. J Clin Biochem Nutr. 2014;55:32–9.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Yan X, Shen T, Jiang X, Tang X, Wang D, Li H, Ling W. Coenzyme Q10 consumption promotes ABCG1-mediated macrophage cholesterol efflux: a randomized, double-blind, placebo-controlled, cross-over study in healthy volunteers. Mol Nutr Food Res. 2015;59:1725–34.PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Wang D, Yan X, Xia M, Yang Y, Li D, Li X, Song F, Ling W. Coenzyme Q10 promotes macrophage cholesterol efflux by regulation of the activator protein-1/miR-378/ATP-binding cassette transporter G1-signaling pathway. Arterioscler Thromb Vasc Biol. 2014;34:1860–70.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Polo MP, de Bravo MG, de Alaniz MJ. Effect of ethanol on cell growth and cholesterol metabolism in cultured Hep G2 cells. Biochem Cell Biol. 2003;81:379–86.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Rosenblat M, Volkova N, Khatib S, Mahmood S, Vaya J, Aviram M. Reduced glutathione increases quercetin stimulatory effects on HDL- or apoA1-mediated cholesterol efflux from J774A.1 macrophages. Free Radic Res. 2014;48:1462–72.Google Scholar
  179. 179.
    Lukasova M, Malaval C, Gille A, Kero J, Offermanns S. Nicotinic acid inhibits progression of atherosclerosis in mice through its receptor GPR109A expressed by immune cells. J Clin Invest. 2011;121:1163–73.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Wu ZH, Zhao SP. Niacin promotes cholesterol efflux through stimulation of the PPARgamma-LXRalpha-ABCA1 pathway in 3T3-L1 adipocytes. Pharmacology. 2009;84:282–7.PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Michiels CF, Kurdi A, Timmermans JP, De Meyer GR, Martinet W. Spermidine reduces lipid accumulation and necrotic core formation in atherosclerotic plaques via induction of autophagy. Atherosclerosis. 2016;251:319–27.PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Gaus K, Dean RT, Kritharides L, Jessup W. Inhibition of cholesterol efflux by 7-ketocholesterol: comparison between cells, plasma membrane vesicles, and liposomes as cholesterol donors. Biochemistry. 2001;40:13002–14.PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Petrick L, Rosenblat M, Aviram M. In vitro effects of exogenous carbon monoxide on oxidative stress and lipid metabolism in macrophages. Toxicol Ind Health. 2016;32:1318–23.PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Yin QH, Zhang R, Li L, Wang YT, Liu JP, Zhang J, Bai L, Cheng JQ, Fu P, Liu F. Exendin-4 ameliorates lipotoxicity-induced glomerular endothelial cell injury by improving ABC transporter A1-mediated cholesterol efflux in diabetic apoE knockout mice. J Biol Chem. 2016;291:26487–501.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Yan JQ, Tan CZ, Wu JH, Zhang DC, Chen JL, Zeng BY, Jiang YP, Nie J, Liu W, Liu Q, Dai H. Neopterin negatively regulates expression of ABCA1 and ABCG1 by the LXRalpha signaling pathway in THP-1 macrophage-derived foam cells. Mol Cell Biochem. 2013;379:123–31.PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Jiang Z, Sang H, Fu X, Liang Y, Li L. Alpinetin enhances cholesterol efflux and inhibits lipid accumulation in oxidized low-density lipoprotein-loaded human macrophages. Biotechnol Appl Biochem. 2015;62:840–7.PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Xu X, Li Q, Pang L, Huang G, Huang J, Shi M, Sun X, Wang Y. Arctigenin promotes cholesterol efflux from THP-1 macrophages through PPAR-gamma/LXR-alpha signaling pathway. Biochem Biophys Res Commun. 2013;441:321–6.PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Park SH, Paek JH, Shin D, Lee JY, Lim SS, Kang YH. Purple perilla extracts with alpha-asarone enhance cholesterol efflux from oxidized LDL-exposed macrophages. Int J Mol Med. 2015;35:957–65.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Iizuka M, Ayaori M, Uto-Kondo H, Yakushiji E, Takiguchi S, Nakaya K, Hisada T, Sasaki M, Komatsu T, Yogo M, Kishimoto Y, Kondo K, Ikewaki K. Astaxanthin enhances ATP-binding cassette transporter A1/G1 expressions and cholesterol efflux from macrophages. J Nutr Sci Vitaminol (Tokyo). 2012;58:96–104.PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Li Y, Feng T, Liu P, Liu C, Wang X, Li D, Li N, Chen M, Xu Y, Si S. Optimization of rutaecarpine as ABCA1 up-regulator for treating atherosclerosis. ACS Med Chem Lett. 2014;5:884–8.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Gui YZ, Yan H, Gao F, Xi C, Li HH, Wang YP. Betulin attenuates atherosclerosis in apoE−/− mice by up-regulating ABCA1 and ABCG1. Acta Pharmacol Sin. 2016;37:1337–48.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Hu YW, Ma X, Huang JL, Mao XR, Yang JY, Zhao JY, Li SF, Qiu YR, Yang J, Zheng L, Wang Q. Dihydrocapsaicin attenuates plaque formation through a PPARgamma/LXRalpha pathway in apoE(−/−) mice fed a high-fat/high-cholesterol diet. PLoS One. 2013;8:e66876.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Dong SZ, Zhao SP, Wu ZH, Yang J, Xie XZ, Yu BL, Nie S. Curcumin promotes cholesterol efflux from adipocytes related to PPARgamma-LXRalpha-ABCA1 passway. Mol Cell Biochem. 2011;358:281–5.PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Xu Y, Xu Y, Bao Y, Hong B, Si S. Identification of dehydroxytrichostatin A as a novel up-regulator of the ATP-binding cassette transporter A1 (ABCA1). Molecules. 2011;16:7183–98.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Lv YC, Yang J, Yao F, Xie W, Tang YY, Ouyang XP, He PP, Tan YL, Li L, Zhang M, Liu D, Cayabyab FS, Zheng XL, Tang CK. Diosgenin inhibits atherosclerosis via suppressing the MiR-19b-induced downregulation of ATP-binding cassette transporter A1. Atherosclerosis. 2015;240:80–9.PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Fu X, Xu AG, Yao MY, Guo L, Zhao LS. Emodin enhances cholesterol efflux by activating peroxisome proliferator-activated receptor-gamma in oxidized low density lipoprotein-loaded THP1 macrophages. Clin Exp Pharmacol Physiol. 2014;41:679–84.PubMedPubMedCentralGoogle Scholar
  197. 197.
    Iio A, Ohguchi K, Maruyama H, Tazawa S, Araki Y, Ichihara K, Nozawa Y, Ito M. Ethanolic extracts of Brazilian red propolis increase ABCA1 expression and promote cholesterol efflux from THP-1 macrophages. Phytomedicine. 2012;19:383–8.PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Iio A, Ohguchi K, Iinuma M, Nozawa Y, Ito M. Hesperetin upregulates ABCA1 expression and promotes cholesterol efflux from THP-1 macrophages. J Nat Prod. 2012;75:563–6.PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Wang L, Ladurner A, Latkolik S, Schwaiger S, Linder T, Hosek J, Palme V, Schilcher N, Polansky O, Heiss EH, Stangl H, Mihovilovic MD, Stuppner H, Dirsch VM, Atanasov AG. Leoligin, the Major Lignan from Edelweiss (Leontopodium nivale subsp. alpinum), Promotes Cholesterol Efflux from THP-1 Macrophages. J Nat Prod. 2016;79:1651–7.Google Scholar
  200. 200.
    Berrougui H, Isabelle M, Cherki M, Khalil A. Marrubium vulgare extract inhibits human-LDL oxidation and enhances HDL-mediated cholesterol efflux in THP-1 macrophage. Life Sci. 2006;80:105–12.PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Gui Y, Yao S, Yan H, Hu L, Yu C, Gao F, Xi C, Li H, Ye Y, Wang Y. A novel small molecule liver X receptor transcriptional regulator, nagilactone B, suppresses atherosclerosis in apoE-deficient mice. Cardiovasc Res. 2016;112:502–14.PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    Zhao JF, Jim Leu SJ, Shyue SK, Su KH, Wei J, Lee TS. Novel effect of paeonol on the formation of foam cells: promotion of LXRalpha-ABCA1-dependent cholesterol efflux in macrophages. Am J Chin Med. 2013;41:1079–96.PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    Li XH, Li Y, Cheng ZY, Cai XG, Wang HM. The effects of phellinus linteus polysaccharide extracts on cholesterol efflux in oxidized low-density lipoprotein-loaded THP-1 macrophages. J Investig Med. 2015;63:752–7.PubMedCrossRefPubMedCentralGoogle Scholar
  204. 204.
    Zhao S, Li J, Wang L, Wu X. Pomegranate peel polyphenols inhibit lipid accumulation and enhance cholesterol efflux in raw264.7 macrophages. Food Funct. 2016;7:3201–10.Google Scholar
  205. 205.
    Wang D, Xia M, Yan X, Li D, Wang L, Xu Y, Jin T, Ling W. Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b. Circ Res. 2012;111:967–81.PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Xu Y, Liu Q, Xu Y, Liu C, Wang X, He X, Zhu N, Liu J, Wu Y, Li Y, Li N, Feng T, Lai F, Zhang M, Hong B, Jiang JD, Si S. Rutaecarpine suppresses atherosclerosis in ApoE−/− mice through upregulating ABCA1 and SR-BI within RCT. J Lipid Res. 2014;55:1634–47.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Sun L, Li E, Wang F, Wang T, Qin Z, Niu S, Qiu C. Quercetin increases macrophage cholesterol efflux to inhibit foam cell formation through activating PPARgamma-ABCA1 pathway. Int J Clin Exp Pathol. 2015;8:10854–60.PubMedPubMedCentralGoogle Scholar
  208. 208.
    Tian H, Liu Q, Qin S, Zong C, Zhang Y, Yao S, Yang N, Guan T, Guo S. Synthesis and cardiovascular protective efects of quercetin 7-O-sialic acid. J Cell Mol Med. 2017;21:107–20.PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    Voloshyna I, Teboul I, Littlefield MJ, Siegart NM, Turi GK, Fazzari MJ, Carsons SE, DeLeon J, Reiss AB. Resveratrol counters systemic lupus erythematosus-associated atherogenicity by normalizing cholesterol efflux. Exp Biol Med (Maywood). 2016;241:1611–9.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Park SH, Kim JL, Kang MK, Gong JH, Han SY, Shim JH, Lim SS, Kang YH. Sage weed (Salvia plebeia) extract antagonizes foam cell formation and promotes cholesterol efflux in murine macrophages. Int J Mol Med. 2012;30:1105–12.PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    Majdalawieh AF, Ro HS. Sesamol and sesame (Sesamum indicum) oil enhance macrophage cholesterol efflux via up-regulation of PPARgamma1 and LXRalpha transcriptional activity in a MAPK-dependent manner. Eur J Nutr. 2015;54:691–700.PubMedCrossRefPubMedCentralGoogle Scholar
  212. 212.
    Liu N, Wu C, Sun L, Zheng J, Guo P. Sesamin enhances cholesterol efflux in RAW264.7 macrophages. Molecules. 2014;19:7516–27.Google Scholar
  213. 213.
    Liu Z, Wang J, Huang E, Gao S, Li H, Lu J, Tian K, Little PJ, Shen X, Xu S, Liu P. Tanshinone IIA suppresses cholesterol accumulation in human macrophages: role of heme oxygenase-1. J Lipid Res. 2014;55:201–13.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Berrougui H, Cloutier M, Isabelle M, Khalil A. Phenolic-extract from argan oil (Argania spinosa L.) inhibits human low-density lipoprotein (LDL) oxidation and enhances cholesterol efflux from human THP-1 macrophages. Atherosclerosis. 2006;184:389–96.Google Scholar
  215. 215.
    Chen CY, Shyue SK, Ching LC, Su KH, Wu YL, Kou YR, Chiang AN, Pan CC, Lee TS. Wogonin promotes cholesterol efflux by increasing protein phosphatase 2B-dependent dephosphorylation at ATP-binding cassette transporter-A1 in macrophages. J Nutr Biochem. 2011;22:1015–21.PubMedCrossRefPubMedCentralGoogle Scholar
  216. 216.
    Zhu S, Liu JH. Zerumbone, a natural cyclic sesquiterpene, promotes ABCA1-dependent cholesterol efflux from human THP-1 macrophages. Pharmacology. 2015;95:258–63.PubMedCrossRefPubMedCentralGoogle Scholar
  217. 217.
    Rom O, Aviram M. Paraoxsonase2 (PON2) and oxidative stress involvement in pomegranate juice protection against cigarette smoke-induced macrophage cholesterol accumulation. Chem Biol Interact. 2016;259:394–400.PubMedCrossRefPubMedCentralGoogle Scholar
  218. 218.
    Zhang H, Li X, Qian Z. Regulation of macrophage cholesterol efflux and liver X receptor alpha activation by nicotine. Int J Clin Exp Med. 2015;8:16374–8.PubMedPubMedCentralGoogle Scholar
  219. 219.
    McFarland AJ, Anoopkumar-Dukie S, Arora DS, Grant GD, McDermott CM, Perkins AV, Davey AK. Molecular mechanisms underlying the effects of statins in the central nervous system. Int J Mol Sci. 2014;15:20607–37.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Hastings J, de MP, Dekker A, Ennis M, Harsha B, Kale N, Muthukrishnan V, Owen G, Turner S, Williams M, Steinbeck C. The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013. Nucleic Acids Res. 2013;41:D456–D463.Google Scholar
  221. 221.
    Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw R, Jassal B, Korninger F, May B, Milacic M, Roca CD, Rothfels K, Sevilla C, Shamovsky V, Shorser S, Varusai T, Viteri G, Weiser J, Wu G, Stein L, Hermjakob H, D’Eustachio P. The reactome pathway knowledgebase. Nucleic Acids Res. 2018;46:D649–55.PubMedCrossRefPubMedCentralGoogle Scholar
  222. 222.
    Tenenbaum A, Fisman EZ. Balanced pan-PPAR activator bezafibrate in combination with statin: comprehensive lipids control and diabetes prevention? Cardiovasc Diabetol. 2012;11:140.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Khera AV, Cuchel M, Llera-Moya M, Rodrigues A, Burke MF, Jafri K, French BC, Phillips JA, Mucksavage ML, Wilensky RL, Mohler ER, Rothblat GH, Rader DJ. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med. 2011;364:127–35.PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Kim TS, Rha SW, Kim SY, Park DG, Sung KC, Yoon MH, Kim KH, Lee HC, Kim WS, Kim YJ, Ahn JC, Rhee MY, Cha DH, Yoo BS, Park SH, Yoo KD, Jeon DW, Yoon YW, Cho SK, Oh YS. Efficacy and tolerability of telmisartan/amlodipine and rosuvastatin coadministration in hypertensive patients with hyperlipidemia: a phase III, multicenter, randomized, double-blind study. Clin Ther. 2019;41:728–41.PubMedCrossRefPubMedCentralGoogle Scholar
  225. 225.
    Mirjafari H, Al-Husain A, Bruce IN. Cardiovascular risk factors in inflammatory arthritis. Curr Opin Lipidol. 2011;22:296–301.PubMedCrossRefPubMedCentralGoogle Scholar
  226. 226.
    Kim JK, Park SU. An update on the biological and pharmacological activities of diosgenin. EXCLI J. 2018;17:24–8.PubMedPubMedCentralGoogle Scholar
  227. 227.
    Palmisano BT, Zhu L, Eckel RH, Stafford JM. Sex differences in lipid and lipoprotein metabolism. Mol Metab. 2018;15:45–55.PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Jiang H, Badralmaa Y, Yang J, Lempicki R, Hazen A, Natarajan V. Retinoic acid and liver X receptor agonist synergistically inhibit HIV infection in CD4+ T cells by up-regulating ABCA1-mediated cholesterol efflux. Lipids Health Dis. 2012;11:69.PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Padro T, Munoz-Garcia N, Vilahur G, Chagas P, Deya A, Antonijoan RM, Badimon L. Moderate beer intake and cardiovascular health in overweight individuals. Nutrients. 2018;10:E1237.PubMedCrossRefPubMedCentralGoogle Scholar
  230. 230.
    Evans TD, Sergin I, Zhang X, Razani B. Target acquired: selective autophagy in cardiometabolic disease. Sci Signal. 2017;10:eaag2298.PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Madeo F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and disease. Science. 2018;359:eaan2788.PubMedCrossRefPubMedCentralGoogle Scholar
  232. 232.
    Reeskamp LF, Meessen ECE, Groen AK. Transintestinal cholesterol excretion in humans. Curr Opin Lipidol. 2018;29:10–7.PubMedCrossRefPubMedCentralGoogle Scholar
  233. 233.
    Parikh M, Patel K, Soni S, Gandhi T. Liver X receptor: a cardinal target for atherosclerosis and beyond. J Atheroscler Thromb. 2014;21:519–31.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National Research Centre for Preventive MedicineMoscowRussia

Personalised recommendations