Genome Editing: Promoting Responsible Research

  • François HirschEmail author
  • Christine Lemaitre
  • Hervé Chneiweiss
  • Lluis Montoliu
Current Opinion


For more than 40 years, scientists have been developing tools and technologies for genome modification; however, initial progress was slow and few outside of the molecular biology community took an interest in the field. Everything has dramatically changed with the recent appearance of the so-called precision approaches, and especially with the ‘CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat) revolution’. With great powers come great responsibilities. CRISPR-derived technologies have been proven efficient, cheap, rather easy and fast, and provided universal access to genome modification techniques beyond the leading research centers and reference laboratories. The popularization of techniques to manipulate the human genome and that of all other living beings consequently raises many essential questions, on the ethical and legal sides, both for the scientific community and the lay public. In order to mitigate excessive hype and concern among citizens, a call for the mobilization of the various stakeholders is now urgent through a global governance of genome editing.


Compliance with Ethical Standards


No funding was received for the preparation of this review.

Conflict of interest

François Hirsch, Christine Lemaitre, Hervé Chneiweiss and Lluis Montoliu are members of the Board of ARRIGE.


  1. 1.
    Mak TW. Gene targeting in embryonic stem cells scores a knockout in Stockholm. Cell. 2007;6:1027–31.CrossRefGoogle Scholar
  2. 2.
    Buehr M, Meek S, Blair K, et al. Capture of authentic embryonic stem cells from rat blastocysts. Cell. 2008;7:1287–98.CrossRefGoogle Scholar
  3. 3.
    Wilmut I, Schnieke AE, McWhir J, et al. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997;385:810–3.CrossRefGoogle Scholar
  4. 4.
    Trounson AO. Future and applications of cloning. Methods Mol Biol. 2006;348:319–32.CrossRefGoogle Scholar
  5. 5.
    Beerli RR, Segal DJ, Dreier B, et al. Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc Natl Acad Sci USA. 1998;95:14628–33.CrossRefGoogle Scholar
  6. 6.
    Wood AJ, Lo TW, Zeitler B, Pickle CS, et al. Targeted genome editing across species using ZFNs and TALENs. Science. 2011;333(6040):307.CrossRefGoogle Scholar
  7. 7. Studies involving genome editing. Accessed Feb 2019.
  8. 8.
    Mojica FJ, Juez G, Rodríguez-Valera F. Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol Microbiol. 1993;9(3):613–21.CrossRefGoogle Scholar
  9. 9.
    Mojica FJ, Díez-Villaseñor C, García-Martínez J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 2005;60(2):174–82.CrossRefGoogle Scholar
  10. 10.
    Mojica FJ, Montoliu L. On the origin of CRISPR–Cas technology: from prokaryotes to mammals. Trends Microbiol. 2016;24(10):811–20.CrossRefGoogle Scholar
  11. 11.
    Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR–Cas9. Science. 2014;346(6213):1258096.CrossRefGoogle Scholar
  12. 12.
    Li P, Xu Y, Zhang X, et al. CRISPR/Cas9-mediated gene editing in human tripronuclearzygotes. Protein Cell. 2015;6:363–72.CrossRefGoogle Scholar
  13. 13.
    Ma H, Marti-Gutierrez N, Park SW, et al. Correction of a pathogenic gene mutation in human embryos. Nature. 2017;548(7668):413–9.CrossRefGoogle Scholar
  14. 14.
    Egli D, Zuccaro VM, Kosicki M, et al. Inter-homologue repair in fertilized human eggs? Nature. 2018;560(7717):E5–7.CrossRefGoogle Scholar
  15. 15.
    Convention on Human Rights and Biomedicine (Oviedo Convention). Accessed Feb 2019.
  16. 16.
    Human Genome Editing Initative. Accessed Feb 2019.
  17. 17.
    International Summit on Human Genome Editing—He Jiankui presentation. 2018. Accessed Feb 2019.
  18. 18.
    Callaway E. UK scientists gain licence to edit genes in human embryos. Nature. 2016;530(7588):18.CrossRefGoogle Scholar
  19. 19.
    Reardon S. First CRISPR clinical trial gets green light from US panel. Nature. 2016. (22 June 2016).Google Scholar
  20. 20. A safety and efficacy study evaluating CTX001 in subjects with transfusion-dependent β-thalassemia. Accessed Feb 2019.
  21. 21.
    Yang S, Chang R, Yang H, et al. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J Clin Investig. 2017;127(7):2719–24.CrossRefGoogle Scholar
  22. 22.
    Hainzl S, Peking P, Kocher T, et al. COL7A1 editing via CRISPR/Cas9 in recessive dystrophic epidermolysis bullosa. Mol Ther. 2017;5(11):2573–84.CrossRefGoogle Scholar
  23. 23.
    Jain A, Zode G, Kasetti RB, et al. CRISPR–Cas9-based treatment of myocilin-associated glaucoma. Proc Natl Acad Sci USA. 2017;114(42):11199–204.CrossRefGoogle Scholar
  24. 24.
    Alphey L, McKemey A, Nimmo D, et al. Genetic control of Aedes mosquitoes. Pathog Glob Health. 2013;107(4):170–9.CrossRefGoogle Scholar
  25. 25.
    Waltz E. US government approves ‘killer’ mosquitoes to fight disease. Nature. 2018. Scholar
  26. 26.
    Radars Info Burkina. Lâcher de moustiques génétiquement modifiés au Burkina Faso : Est-ce la panacée pour l’éradication du paludisme? Accessed Feb 2019.
  27. 27.
    Hammond AM, Galizi R, Kyrou K, et al. A CRISPR–Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nature Biotechnol. 2016;34(1):78–83.CrossRefGoogle Scholar
  28. 28.
    Hammond AM, Kyrou K, Bruttini M, et al. The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLoS Genet. 2017;13(10):e1007039.CrossRefGoogle Scholar
  29. 29.
    Kyrou K, Hammond AM, Roberto Galizi R, et al. A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nature Biotechnol. 2018;36:1062–6.CrossRefGoogle Scholar
  30. 30.
    Niu D, Wei HJ, Lin L, et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR–Cas9. Science. 2017;6357:1303–7.CrossRefGoogle Scholar
  31. 31.
    International Summit on Human Genome Editing. 2015. Accessed Feb 2019.
  32. 32.
    UN Convention on Biodiversity to establish a moratorium on gene drives. Accessed Feb 2019.
  33. 33.
    Notes du Comité d’éthique en réponse aux saisines. Accessed Feb 2019.
  34. 34.
    Hirsch F, Lévy Y, Chneiweiss H. CRISPR–Cas9: a European position on genome editing. Nature. 2017;541(7635):30.CrossRefGoogle Scholar
  35. 35.
    Chneiweiss H, Hirsch F, Montoliu L, et al. Fostering responsible research with genome editing technologies: a European perspective. Transgenic Res. 2017;5:709–13.CrossRefGoogle Scholar
  36. 36.
    de Lecuona I, Casado M, Marfany G, et al. Gene editing in humans: towards a global and inclusive debate for responsible research. Yale J Biol Med. 2017;90(4):673–81.Google Scholar
  37. 37.
    Association for Responsible Research and Innovation in Genome Editing (ARRIGE). ARRIGE Kick-Off meeting. Accessed Feb 2019.
  38. 38.
    Association for Responsible Research and Innovation in Genome Editing (ARRIGE). Accessed Feb 2019.
  39. 39.
    Montoliu L, Merchant J, Hirsch F, et al. ARRIGE arrives: toward the responsible use of genome editing. CRISPR J. 2018;1(2):128–30. Scholar
  40. 40.
    Enserink M. Interested in responsible gene editing? Join the (new) club. Science. 2018. (27 March 2018).Google Scholar
  41. 41.
    Smalley E. As CRISPR–Cas adoption soars, summit calls for genome editing oversight. Nature Biotechnol. 2018;36:485.CrossRefGoogle Scholar
  42. 42.
    Hurlbut JB, Jasanoff S, Saha K, et al. Building capacity for a global genome editing observatory: conceptual challenges. Trends Biotechnol. 2018;36(7):639–41.CrossRefGoogle Scholar
  43. 43.
    World Economic Forum. How should we regulate genome editing? Accessed Feb 2019.
  44. 44.
    National Academies of Sciences, Engineering and Medicine. On Human Genome Editing II: Statement by the Organizing Committee of the Second International Summit on Human Genome Editing. Accessed Feb 2019.
  45. 45.
    World Health Organisation. Human Genome editing. Accessed Feb 2019.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Ethics Committee, Institut National de la Santé et de la Recherche Medicale (INSERM)ParisFrance
  2. 2.Sorbonne UniversitésParisFrance
  3. 3.Centre National de la Recherche Scientifique (CNRS)ParisFrance
  4. 4.Institut National de la Santé et de la Recherche Medicale (INSERM)ParisFrance
  5. 5.Institut de Biologie Paris Seine (IBPS)ParisFrance
  6. 6.Neuroscience Paris Seine (NPS)ParisFrance
  7. 7.National Centre for Biotechnology (CNB-CSIC)MadridSpain
  8. 8.Biomedical Research Networking Centre on Rare Diseases (CIBERER-ISCIII)MadridSpain
  9. 9.CSIC Ethics CommitteeMadridSpain

Personalised recommendations