Advertisement

Pharmaceutical Medicine

, Volume 33, Issue 1, pp 53–61 | Cite as

ITS2: An Ideal DNA Barcode for the Arid Medicinal Plant Rhazya Stricta

  • Samia A. KhanEmail author
  • Mohamed N. Baeshen
  • Hassan A. Ramadan
  • Nabih A. Baeshen
Original Research Article
  • 7 Downloads

Abstract

Introduction

In Saudi Arabia, Rhazya stricta is a widely used folkloric plant because of its various therapeutic properties. It is sold in herbal markets as a dried powder; however, the absence of visible phenotypic traits in the powder can mask its authenticity. Potential misidentification of this substance threatens consumer health. DNA barcoding could accurately identify this plant regardless of its physical state, however barcoding presents the challenge of variations in marker loci.

Objectives

The objective of this work was to assess barcode markers from the chloroplast and nuclear regions to determine their taxonomic accuracy in R. stricta barcoding, and select the best marker for this species that could fulfill the authentication test for its fresh and dried samples.

Method

In this study, we assessed seven barcode markers from the chloroplast (psbA-trnH, matK, rbcL, rpoB, and rpoC1) and nuclear regions (ITS1and ITS2). We compared DNA sequences of R. stricta from 50 fresh locally collected samples and 10 dried ground samples from the herbal market with the database sequences of R. stricta, R. orientalis, and eight other related species as controls. We utilized three methods (BLAST, nearest distance, and neighbor-joining tree) in this analysis.

Result

With the exception of psbA-trnH, all the chloroplast markers determined high similarity with other taxa. However, nuclear ITS2 best distinguished between R. stricta, R. orientalis, and other related species because of its secondary structures, which allowed for more accurate distinctions. A two-locus marker of ITS1 + ITS2 sequences also showed promising results. A two-dimensional image of our proposed marker was generated to more easily handle DNA barcoding applications.

Conclusion

Our study indicates that ITS2 is a cost-effective barcoding marker capable of verifying the authenticity of R. stricta and other medicinal plants in order to protect consumer health.

Notes

Compliance with Ethical Standards

Funding

The funding source for this study was King Abdullah City of Science and Technology (KACST), who supported this study under grant number GSP-34-119.

Conflict of interest

Samia A. Khan, Mohamed N. Baeshen, Hassan A. Ramadan, and Nabih A. Baeshen report no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

40290_2019_266_MOESM1_ESM.pdf (39 kb)
Supplementary material 1 (PDF 39 kb)

References

  1. 1.
    Mandaville JP. Bedouin Ethnobotany: plant concepts and uses in a desert pastoral world. Tucson: University of Arizona Press; 2011.Google Scholar
  2. 2.
    Zahran MA. Climate-vegetation: afro-asian mediterranean and red sea coastal lands. New York: Springer; 2010.CrossRefGoogle Scholar
  3. 3.
    Elkady AI, Hussein RAEH, Abu-Zinadah OA. Differential control of growth, apoptotic activity and gene expression in human colon cancer cells by extracts derived from medicinal herbs, Rhazya stricta and Zingiber officinale and their combination. World J Gastroenterol. 2014;20:15275–88.CrossRefGoogle Scholar
  4. 4.
    Ahmed A, Asad MJ, Ahmad MS, Qureshi R, Shah SI, Gul H, et al. Antidiabetic and hypolipidemic potential of Rhazya stricta Decne extract and its fractions. Int Curr Pharm J. 2015;4:353–61.CrossRefGoogle Scholar
  5. 5.
    Elkady AI. Crude alkaloid extract of Rhazya stricta inhibits cell growth and sensitizes human lung cancer cells to cisplatin through induction of apoptosis. Genet Mol Biol. 2013;36:12–21.CrossRefGoogle Scholar
  6. 6.
    Iqbal W, Alkarim S, Kamal T, Choudhry H, Sabir J, Bora RS, et al. Rhazyaminine from Rhazya stricta inhibits metastasis and induces apoptosis by down regulating Bcl-2 gene in MCF7 cell line. Integr Cancer Ther. 2018;1534735418809901.Google Scholar
  7. 7.
    Emad AM, Gamal EGE. Screening for antimicrobial activity of some plants from Saudi folk medicine. Glob J Res Med Plants Indigenous Med. 2013;2:189.Google Scholar
  8. 8.
    Baeshen N, Lari S, Al Doghaither H, Ramadan HA. Effect of Rhazya stricta extract on rat Adiponectin gene and insulin resistance. J Am Sci. 2010;6:1237–45.Google Scholar
  9. 9.
    Marwat SK, Usman K, Shah SS, Anwar N, Ullah I. A review of phytochemistry, bioactivities and ethno medicinal uses of Rhazya stricta Decsne (Apocynaceae). Afr J Microbiol Res. 2012;6:1629–41.Google Scholar
  10. 10.
    Aksoy Ö, Erbulucu T, Özen F, Deveci A. Genetic variation in critically endangered plant Amsonia orientalis Decne. J Biodivers Environ Sci. 2013;3:44–53.Google Scholar
  11. 11.
    Acemi A, Türker-Kaya S, Fazıl Ö. FT-IR spectroscopy based evaluation of changes in primary metabolites of Amsonia orientalis after in vitro 6-benzylaminopurine treatment. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2016;44:209–14.CrossRefGoogle Scholar
  12. 12.
    Veldman S, Otieno J, Gravendeel B, van Andel T, de Boer H. Conservation of endangered wild harvested medicinal plants: use of DNA barcoding. In: Gurib-Fakim A, editor. Novel plant bioresources: applications in food, medicine and cosmetics, chap 6. Wiley; 2014. p. 81–8.Google Scholar
  13. 13.
    Vassou SL, Kusuma G, Parani M. DNA barcoding for species identification from dried and powdered plant parts: a case study with authentication of the raw drug market samples of Sida cordifolia. Gene. 2015;559:86–93.CrossRefGoogle Scholar
  14. 14.
    DeSalle R. Species discovery versus species identification in DNA barcoding efforts: response to Rubinoff. Conserv Biol. 2006;20:1545–7.CrossRefGoogle Scholar
  15. 15.
    Uncu AT, Frary A, Doganlar S. Cultivar origin and admixture detection in Turkish olive oils by SNP-based CAPS assays. J Agric Food Chem. 2015;63:2284–95.CrossRefGoogle Scholar
  16. 16.
    Mishra P, Kumar A, Nagireddy A, Mani DN, Shukla AK, Tiwari R, et al. DNA barcoding: an efficient tool to overcome authentication challenges in the herbal market. Plant Biotechnol J. 2016;14:8–21.CrossRefGoogle Scholar
  17. 17.
    Ali MA, Gyulai G, Hidvegi N, Kerti B, Al Hemaid FM, Pandey AK, et al. The changing epitome of species identification–DNA barcoding. Saudi J Biol Sci. 2014;21:204–31.CrossRefGoogle Scholar
  18. 18.
    Khan S, Al-Qurainy F, Nadeem M, Tarroum M. Development of genetic markers for Ochradenus arabicus (Resedaceae), an endemic medicinal plant of Saudi Arabia. Genet Mol Res. 2012;11:1300–8.CrossRefGoogle Scholar
  19. 19.
    Hebert PD, Cywinska A, Ball SL. Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci. 2003;270:313–21.CrossRefGoogle Scholar
  20. 20.
    Palmer JD, Herbon LA. Plant mitochondrial DNA evolved rapidly in structure, but slowly in sequence. J Mol Evol. 1988;28:87–97.CrossRefGoogle Scholar
  21. 21.
    Fazekas AJ, Kesanakurti PR, Burgess KS, Percy DM, Graham SW, Barrett SC, et al. Are plant species inherently harder to discriminate than animal species using DNA barcoding markers? Mol Ecol Resour. 2009;9:130–9.CrossRefGoogle Scholar
  22. 22.
    Chen S, Yao H, Han J, Liu C, Song J, Shi L, et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One. 2010;5:e8613.CrossRefGoogle Scholar
  23. 23.
    Pečnikar ŽF, Buzan EV. 20 years since the introduction of DNA barcoding: from theory to application. J Appl Genet. 2014;55:43–52.CrossRefGoogle Scholar
  24. 24.
    Agarwal M, Shrivastava N, Padh H. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep. 2008;27:617–31.CrossRefGoogle Scholar
  25. 25.
    Kress WJ, Erickson DL. A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS One. 2007;2:e508.CrossRefGoogle Scholar
  26. 26.
    Lahaye R, Van der Bank M, Bogarin D, Warner J, Pupulin F, Gigot G, et al. DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci. 2008;105:2923–8.CrossRefGoogle Scholar
  27. 27.
    Mahadani P, Sharma GD, Ghosh SK. Identification of ethnomedicinal plants (Rauvolfioideae: Apocynaceae) through DNA barcoding from northeast India. Pharm Mag. 2013;9:255.CrossRefGoogle Scholar
  28. 28.
    Khan SA, Baeshen MN, Ramadan HA, Baeshen NA. Emergence of plastidial intergenic spacers as suitable DNA barcodes for arid medicinal plant Rhazya stricta. Am J Plant Sci. 2017;8:1774.CrossRefGoogle Scholar
  29. 29.
    Chase MW, Salamin N, Wilkinson M, Dunwell JM, Kesanakurthi RP, Haidar N, et al. Land plants and DNA barcodes: short-term and long-term goals. Philos Trans R Soc Lond B Biol Sci. 2005;360:1889–95.CrossRefGoogle Scholar
  30. 30.
    Chase MW, Fay MF. Barcoding of plants and fungi. Science. 2009;325:682–3.CrossRefGoogle Scholar
  31. 31.
    Wolfe KH, Li WH, Sharp PM. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci. 1987;84:9054–8.CrossRefGoogle Scholar
  32. 32.
    Hollingsworth PM, Graham SW, Little DP. Choosing and using a plant DNA barcode. PLoS One. 2011;6:e19254.CrossRefGoogle Scholar
  33. 33.
    Yu N, Wei YL, Zhang X, Zhu N, Wang Y-L, Zhu Y, et al. Barcode ITS2: a useful tool for identifying Trachelospermum jasminoides and a good monitor for medicine market. Sci Rep. 2017;7:5037.CrossRefGoogle Scholar
  34. 34.
    Gu W, Song J, Cao Y, Sun Q, Yao H, Wu Q, et al. Application of the ITS2 region for barcoding medicinal plants of Selaginellaceae in Pteridophyta. PLoS One. 2013;8:e67818.CrossRefGoogle Scholar
  35. 35.
    Kane N, Sveinsson S, Dempewolf H, Yang JY, Zhang D, Engels JM, et al. Ultra-barcoding in cacao (Theobroma spp.; Malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA. Am J Bot. 2012;99:320–9.CrossRefGoogle Scholar
  36. 36.
    Kranitz ML, Biffin E, Clark A, Hollingsworth ML, Ruhsam M, Gardner MF, et al. Evolutionary diversification of new Caledonian Araucaria. PLoS ONE. 2014;9:e110308.CrossRefGoogle Scholar
  37. 37.
    Middendorf LR, Humphrey PG, Narayanan N, Roemer SC. Sequencing technology. In: Rehm HJ, Reed G (eds). Biotechnology Set, Second Edition. Wiley; 2008. pp. 193–226. In: McGall GH. Nucleoside triphosphate analogs for nonradioactive labeling of nucleic acids, nucleoside triphosphates and their analogs: chemistry, biotechnology, and biological applications. Boca Raton: CRC Press; 2005.Google Scholar
  38. 38.
    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9.CrossRefGoogle Scholar
  39. 39.
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CrossRefGoogle Scholar
  40. 40.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.CrossRefGoogle Scholar
  41. 41.
    Koetschan C, Förster F, Keller A, Schleicher T, Ruderisch B, Schwarz R, et al. The ITS2 Database III—sequences and structures for phylogeny. Nucleic Acids Res. 2009;38:D275–9.CrossRefGoogle Scholar
  42. 42.
    Liu C, Shi L, Xu X, Li H, Xing H, Liang D, et al. DNA barcode goes two-dimensions: DNA QR code web server. PLoS One. 2012;7:e35146.CrossRefGoogle Scholar
  43. 43.
    Choudhary M, Kumar V, Malhotra H, Singh S. Medicinal plants with potential anti-arthritic activity. J Intercult Ethnopharm. 2015;4:147.CrossRefGoogle Scholar
  44. 44.
    Al-Essa MA, Al-Mehaidib A, Al-Gain S. Parental awareness of liver disease among children in Saudi Arabia. Ann Saudi Med. 1998;18:79–81.CrossRefGoogle Scholar
  45. 45.
    Gilani SA, Kikuchi A, Shinwari ZK, Khattak ZI, Watanabe KN. Phytochemical, pharmacological and ethnobotanical studies of Rhazya stricta Decne. Phytother Res. 2007;21:301–7.CrossRefGoogle Scholar
  46. 46.
    Miller SE. DNA barcoding and the renaissance of taxonomy. Proc Natl Acad Sci. 2007;104:4775–6.CrossRefGoogle Scholar
  47. 47.
    Li M, Au K-Y, Lam H, Cheng L, But PP-H, Shaw P-C. Molecular identification and cytotoxicity study of herbal medicinal materials that are confused by Aristolochia herbs. Food chemistry 2014;147:332–339.Google Scholar
  48. 48.
    Zheng SH, Ren WG, Wang ZH, Huang LF. Use of chloroplast DNA barcodes to identify Osmunda japonica and its adulterants. Plant Syst Evol. 2015;301:1843–50.CrossRefGoogle Scholar
  49. 49.
    Priti G, Sandip U. Authentication of medicinal plants by DNA markers. Plant Gene. 2015;4:83–99.CrossRefGoogle Scholar
  50. 50.
    Enan M, Ahmed A. DNA barcoding based on plastid matK and RNA polymerase for assessing the genetic identity of date (Phoenix dactylifera L.) cultivars. Genet Mol Res. 2014;13:3527–3536.Google Scholar
  51. 51.
    Al-Qurainy F, Khan S, Nadeem M, Tarroum M, Al-Ameri A. Selection of DNA barcoding loci and phylogenetic study of a medicinal and endemic plant, Plectranthus asirensis JRI Wood from Saudi Arabia. Genet Mol Res. 2014;13:6184–90.CrossRefGoogle Scholar
  52. 52.
    Han J, Pang X, Liao B, Yao H, Song J, Chen S. An authenticity survey of herbal medicines from markets in China using DNA barcoding. Sci Rep. 2016;6:18723.CrossRefGoogle Scholar
  53. 53.
    Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH. Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci. 2005;102:8369–74.CrossRefGoogle Scholar
  54. 54.
    Kress WJ, Erickson DL. DNA barcodes: genes, genomics, and bioinformatics. Proc Natl Acad Sci. 2008;105:2761–2.CrossRefGoogle Scholar
  55. 55.
    Wong KL, But P-H, Shaw P-C. Evaluation of seven DNA barcodes for differentiating closely related medicinal Gentiana species and their adulterants. Chin Med. 2013;8:16.CrossRefGoogle Scholar
  56. 56.
    Molina J, Hazzouri KM, Nickrent D, Geisler M, Meyer RS, Pentony MM, et al. Possible loss of the chloroplast genome in the parasitic flowering plant Rafflesia lagascae (Rafflesiaceae). Mol Biol Evol. 2014;31:793–803.CrossRefGoogle Scholar
  57. 57.
    Smith DR, Lee RW. A plastid without a genome: evidence from the nonphotosynthetic green alga Polytomella. Plant Physiol. 2014;164(4):1812–9.CrossRefGoogle Scholar
  58. 58.
    Madesis P, Ganopoulos I, Ralli P, Tsaftaris A. Barcoding the major Mediterranean leguminous crops by combining universal chloroplast and nuclear DNA sequence targets. Genet Mol Res. 2012;11:2548–58.CrossRefGoogle Scholar
  59. 59.
    CBOL Plant Working Group. A DNA barcode for land plants. Proc Natl Acad Sci. 2009;106:12794–7.CrossRefGoogle Scholar
  60. 60.
    Asahina H, Shinozaki J, Masuda K, Morimitsu Y, Satake M. Identification of medicinal Dendrobium species by phylogenetic analyses using matK and rbcL sequences. J Nat Med. 2010;64:133–8.CrossRefGoogle Scholar
  61. 61.
    Starr JR, Naczi RF, Chouinard BN. Plant DNA barcodes and species resolution in sedges (Carex, Cyperaceae). Mol Ecol Resour. 2009;9:151–63.CrossRefGoogle Scholar
  62. 62.
    Yu H, Wu K, Song J, Zhu Y, Yao H, Luo K, et al. Expedient identification of Magnoliaceae species by DNA barcoding. Plant Omics. 2014;7:47.Google Scholar
  63. 63.
    Yao H, Song JY, Ma XY, Liu C, Li Y, Xu HX, et al. Identification of Dendrobium species by a candidate DNA barcode sequence: the chloroplast psbA-trnH intergenic region. Planta Med. 2009;75:667–9.CrossRefGoogle Scholar
  64. 64.
    Whitlock BA, Hale AM, Groff PA. Intraspecific inversions pose a challenge for the trnH-psbA plant DNA barcode. PLoS One. 2010;5:e11533.CrossRefGoogle Scholar
  65. 65.
    Liu J, Moeller M, Gao LM, Zhang DQ, Li DZ. DNA barcoding for the discrimination of Eurasian yews (Taxus L., Taxaceae) and the discovery of cryptic species. Mol Ecol Resourc. 2011;11:89–100.Google Scholar
  66. 66.
    Singh HK, Parveen I, Raghuvanshi S, Babbar SB. The loci recommended as universal barcodes for plants on the basis of floristic studies may not work with congeneric species as exemplified by DNA barcoding of Dendrobium species. BMC Res Notes. 2012;5:42.CrossRefGoogle Scholar
  67. 67.
    Sun YL, Kang H-M, Han S-H, Park Y-C, Hong S-K. Taxonomy and phylogeny of the genus citrus based on the nuclear ribosomal DNA its region sequence. Pak J Bot. 2015;47:95–101.Google Scholar
  68. 68.
    Michel CI, Meyer RS, Taveras Y, Molina J. The nuclear internal transcribed spacer (ITS2) as a practical plant DNA barcode for herbal medicines. J Appl Res Med Aromatic Plants. 2016;3:94–100.CrossRefGoogle Scholar
  69. 69.
    Sharma A, Folch JL, Cardoso-Taketa A, Lorence A, Villarreal ML. DNA barcoding of the Mexican sedative and anxiolytic plant Galphimia glauca. J Ethnopharmacol. 2012;144(2):371–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Biological Sciences, King Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Biological SciencesUniversity of JeddahJeddahSaudi Arabia
  3. 3.Department of Marine Biology, Faculty of Marine SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.Department of Cell BiologyNational Research CenterDokkiEgypt

Personalised recommendations