Pharmaceutical Medicine

, Volume 31, Issue 6, pp 399–421 | Cite as

Cardiovascular Outcome Trials of Diabetes and Obesity Drugs: Implications for Conditional Approval and Early Phase Clinical Development

Review Article


Over the past decade, clinical development and regulatory review of investigational drugs for diabetes and obesity have been guided by heightened standards for pre- and post-marketing assessment of cardiovascular safety. In high-risk patients with type 2 diabetes, several large multicentre cardiovascular outcome trials (CVOTs) have confirmed non-inferiority, i.e. cardiovascular safety for several glucose-lowering agents. More recent diabetes CVOTs have demonstrated major cardiovascular benefits for drugs representing two newer classes, sodium–glucose cotransporter (SGLT)-2 inhibition and glucagon-like peptide (GLP)-1 receptor agonists. Collectively, hard endpoint data from diabetes CVOTs have ushered in a new era of type 2 diabetes drug development and clinical care. Moreover, some unexpected cardiovascular side-effects have been unearthed for certain drugs. With respect to the history of obesity pharmacotherapy, there have been several instances over the years in which weight-reducing medications were withdrawn from the market because of unacceptable cardiotoxicity, including aminorex, fenfluramine and dexfenfluramine, phenylpropanolamine, and sibutramine. Development programmes for novel anti-obesity drugs are also now required to provide evidence of cardiovascular safety. However, while weight reduction with more recently approved anti-obesity medications has been shown to improve multiple cardiometabolic risk factors, more definitive demonstration of cardiovascular risk/benefit through completion of CVOTs is still awaited. Thus, a marked disparity exists between the CVOT evidence bases for cardiovascular safety of newer glucose-lowering and weight-reducing medications. We believe that in this modern era of metabolic drug development cardiovascular effects of new drug candidates can and should be more rigorously assessed during the early phases of development, to inform go-/no-go decisions. Incorporating advanced imaging-, circulating-, and/or functional biomarkers into early phase development has the potential to identify early signals of cardiovascular risk or benefit, that may not be readily apparent through routine monitoring of traditional risk factors that have been relied upon to date.



We thank Dr. Chris Weyer for constructive comments on the manuscript.

Compliance with Ethical Standards

Conflict of interest

Drs. Krentz and Rodriguez-Araujo are employees of ProSciento which performs early-phase studies of diabetes and obesity medications.


No funding was received for the preparation of this review article.


  1. 1.
    Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84.PubMedCrossRefGoogle Scholar
  2. 2.
    Eckel RH, Kahn SE, Ferrannini E, et al. Obesity and type 2 diabetes: what can be unified and what needs to be individualized? J Clin Endocrinol Metab. 2011;96(6):1654–63.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444(7121):840–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444(7121):875–80.PubMedCrossRefGoogle Scholar
  5. 5.
    Low Wang CC, Hess CN, Hiatt WR, Goldfine AB. Clinical Update: Cardiovascular disease in diabetes mellitus: atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus—mechanisms, management, and clinical considerations. Circulation. 2016;133(24):2459–502.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Rueda-Clausen CF, Ogunleye AA, Sharma AM. Health benefits of long-term weight-loss maintenance. Ann Rev Nutr Relat. 2015;35:475–516.CrossRefGoogle Scholar
  7. 7.
    Bray GA, Fruhbeck G, Ryan DH, Wilding JP. Management of obesity. Lancet. 2016;387(10031):1947–56.PubMedCrossRefGoogle Scholar
  8. 8.
    Yanovski SZ, Yanovski JA. Long-term drug treatment for obesity: a systematic and clinical review. JAMA. 2014;311(1):74–86.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Kim GW, Lin JE, Blomain ES, Waldman SA. Antiobesity pharmacotherapy: new drugs and emerging targets. Clin Pharmacol Ther. 2014;95(1):53–66.PubMedCrossRefGoogle Scholar
  10. 10.
    Han TS, Lean ME. A clinical perspective of obesity, metabolic syndrome and cardiovascular disease. JRSM Cardiovasc Dis. 2016;5:2048004016633371.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Thomas CE, Mauer EA, Shukla AP, Rathi S, Aronne LJ. Low adoption of weight loss medications: a comparison of prescribing patterns of antiobesity pharmacotherapies and SGLT2s. Obesity (Silver Spring). 2016;24(9):1955–61.CrossRefGoogle Scholar
  12. 12.
    Krentz AJ, Hompesch M. Targeting hyperglycaemia with anti-obesity drugs: time for a paradigm shift? Drugs. 2013;73(15):1649–51.PubMedCrossRefGoogle Scholar
  13. 13.
    Hollander P, Bays HE, Rosenstock J, et al. Coadministration of canagliflozin and phentermine for weight management in overweight and obese individuals without diabetes: a randomized clinical trial. Diabetes Care. 2017;40(5):632–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Magkos F, Nikonova E, Fain R, Zhou S, Ma T, Shanahan W. Effect of lorcaserin on glycemic parameters in patients with type 2 diabetes mellitus. Obesity (Silver Spring). 2017;25:842–9.CrossRefGoogle Scholar
  15. 15.
    Sweeting AN, Tabet E, Caterson ID, Markovic TP. Management of obesity and cardiometabolic risk–role of phentermine/extended release topiramate. Diabetes Metab Syndr Obes. 2014;7:35–44.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Scheen AJ, Van Gaal LF. Combating the dual burden: therapeutic targeting of common pathways in obesity and type 2 diabetes. Lancet Diabetes Endocrinol. 2014;2(11):911–22.PubMedCrossRefGoogle Scholar
  17. 17.
    Skow MA, Bergmann NC, Knop FK. Diabetes and obesity treatment based on dual incretin receptor activation: ‘twincretins’. Diabetes Obes Metab. 2016;18(9):847–54.PubMedCrossRefGoogle Scholar
  18. 18.
    Jindal A, Whaley-Connell A, Brietzke S, Sowers JR. Therapy of obese patients with cardiovascular disease. Curr Opin Pharmacol. 2013;13(2):200–4.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Misra VL, Khashab M, Chalasani N. Nonalcoholic fatty liver disease and cardiovascular risk. Curr Gastroenterol Rep. 2009;11(1):50–5.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Krentz AJ, Hompesch M. Cardiovascular safety of new drugs for diabetes: getting the balance right? Pharm Med. 2014;28:109–17.CrossRefGoogle Scholar
  21. 21.
    Krentz AJ, Fujioka K, Hompesch M. Evolution of pharmacological obesity treatments: focus on adverse side-effect profiles. Diabetes Obes Metab. 2016;18(6):558–70.PubMedCrossRefGoogle Scholar
  22. 22.
    Holman RR, Sourij H, Califf RM. Cardiovascular outcome trials of glucose-lowering drugs or strategies in type 2 diabetes. Lancet. 2014;383(9933):2008–17.PubMedCrossRefGoogle Scholar
  23. 23.
    Meigs JB. Epidemiology of cardiovascular complications in type 2 diabetes mellitus. Acta Diabetol. 2003;40(Suppl 2):S358–61.PubMedCrossRefGoogle Scholar
  24. 24.
    Sattar N. Revisiting the links between glycaemia, diabetes and cardiovascular disease. Diabetologia. 2013;56(4):686–95.PubMedCrossRefGoogle Scholar
  25. 25.
    Krentz AJ. Sulfonylureas in the prevention of vascular complications: from UKPDS to the ADVANCE study. In: Crepaldi GT, Avogaro A, editors. The metabolic syndrome: diabetes, obesity, hyperlipidemia and hypertension. Amsterdam: Excertpa Medical International Conference Series; 2002. p. 261–77.Google Scholar
  26. 26.
    Schnell O, Ryden L, Standl E, Ceriello A, Group CES. Current perspectives on cardiovascular outcome trials in diabetes. Cardiovasc Diabetol. 2016;15(1):139.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Simpson SH, Lee J, Choi S, Vandermeer B, Abdelmoneim AS, Featherstone TR. Mortality risk among sulfonylureas: a systematic review and network meta-analysis. Lancet Diabetes Endocrinol. 2015;3(1):43–51.PubMedCrossRefGoogle Scholar
  28. 28.
    UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352(9131):854–65.CrossRefGoogle Scholar
  29. 29.
    Griffin SJ, Leaver JK, Irving GJ. Impact of metformin on cardiovascular disease: a meta-analysis of randomised trials among people with type 2 diabetes. Diabetologia. 2017;60:1620–29.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Guidance for industry. Diabetes mellitus—evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes. Accessed 31 Mar 2017.
  31. 31.
    Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457–71.PubMedCrossRefGoogle Scholar
  32. 32.
    Raji A, Seely EW, Bekins SA, Williams GH, Simonson DC. Rosiglitazone improves insulin sensitivity and lowers blood pressure in hypertensive patients. Diabetes Care. 2003;26(1):172–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Sidhu JS, Kaposzta Z, Markus HS, Kaski JC. Effect of rosiglitazone on common carotid intima-media thickness progression in coronary artery disease patients without diabetes mellitus. Arterioscler Thromb Vasc Biol. 2004;24(5):930–4.PubMedCrossRefGoogle Scholar
  34. 34.
    Krentz AJ. Rosiglitazone: trials, tribulations and termination. Drugs. 2011;71(2):123–30.PubMedCrossRefGoogle Scholar
  35. 35.
    Consoli A, Formoso G. Do thiazolidinediones still have a role in treatment of type 2 diabetes mellitus? Diabetes Obes Metab. 2013;15(11):967–77.PubMedCrossRefGoogle Scholar
  36. 36.
    Woodcock J, Sharfstein JM, Hamburg M. Regulatory action on rosiglitazone by the U.S. Food and Drug Administration. N Engl J Med. 2012;363(16):1489–91.CrossRefGoogle Scholar
  37. 37.
    Krentz AJ, Bailey CJ, Melander A. Thiazolidinediones for type 2 diabetes. New agents reduce insulin resistance but need long term clinical trials. BMJ. 2000;321(7256):252–3.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Seltzer HS. A summary of criticisms of the findings and conclusions of the University Group Diabetes Program (UGDP). Diabetes. 1972;21(9):976–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Kilo C, Miller JP, Williamson JR. The crux of the UGDP. Spurious results and biologically inappropriate data analysis. Diabetologia. 1980;18(3):179–85.PubMedCrossRefGoogle Scholar
  40. 40.
    Williams RH, Palmer JP. Farewell to phenformin for treating diabetes mellitus. Ann Intern Med. 1975;83(4):567–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs. 2005;65(3):385–411.PubMedCrossRefGoogle Scholar
  42. 42.
    Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89.PubMedCrossRefGoogle Scholar
  43. 43.
    Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.PubMedCrossRefGoogle Scholar
  44. 44.
    Igel LI, Sinha A, Saunders KH, Apovian CM, Vojta D, Aronne LJ. Metformin: an old therapy that deserves a new indication for the treatment of obesity. Curr Atheroscler Rep. 2016;18(4):16.PubMedCrossRefGoogle Scholar
  45. 45.
    Inzucchi SE, Zinman B, Wanner C, et al. SGLT-2 inhibitors and cardiovascular risk: proposed pathways and review of ongoing outcome trials. Diabetes Vasc Dis Res. 2015;12(2):90–100.CrossRefGoogle Scholar
  46. 46.
    Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA. 2003;290(4):486–94.PubMedCrossRefGoogle Scholar
  47. 47.
    Hanefeld M, Schaper F. Acarbose: oral anti-diabetes drug with additional cardiovascular benefits. Expert Rev Cardiovasc Ther. 2008;6(2):153–63.PubMedCrossRefGoogle Scholar
  48. 48.
    Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366(9493):1279–89.PubMedCrossRefGoogle Scholar
  49. 49.
    Scheen AJ. Outcomes and lessons from the PROactive study. Diabetes Res Clin Pract. 2012;98(2):175–86.PubMedCrossRefGoogle Scholar
  50. 50.
    McCarthy M. US regulators relax restrictions on rosiglitazone. BMJ. 2013;347:f7144.PubMedCrossRefGoogle Scholar
  51. 51.
    Wilding JP. PPAR agonists for the treatment of cardiovascular disease in patients with diabetes. Diabetes Obes Metab. 2012;14(11):973–82.PubMedCrossRefGoogle Scholar
  52. 52.
    Stout RW. The impact of insulin upon atherosclerosis. Horm Metab Res. 1994;26(3):125–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Muis MJ, Bots ML, Grobbee DE, Stolk RP. Insulin treatment and cardiovascular disease; friend or foe? A point of view. Diabetes Med. 2005;22(2):118–26.CrossRefGoogle Scholar
  54. 54.
    Siraj ES, Rubin DJ, Riddle MC, et al. Insulin dose and cardiovascular mortality in the ACCORD trial. Diabetes Care. 2015;38(11):2000–8.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Investigators OT, Gerstein HC, Bosch J, et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med. 2012;367(4):319–28.CrossRefGoogle Scholar
  56. 56.
    Hanefeld M, Bramlage P. Insulin use early in the course of type 2 diabetes mellitus: the ORIGIN trial. Curr Diabetes Rep. 2013;13(3):342–9.CrossRefGoogle Scholar
  57. 57.
    Marso SP, McGuire DK, Zinman B, et al. Design of DEVOTE (trial comparing cardiovascular safety of insulin degludec vs insulin glargine in patients with type 2 diabetes at high risk of cardiovascular events)—DEVOTE 1. Am Heart J. 2016;179:175–83.PubMedCrossRefGoogle Scholar
  58. 58.
    Mannucci E, Giannini S, Dicembrini I. Cardiovascular effects of basal insulins. Drug Healthc Patient Saf. 2015;7:113–20.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Adler AI. Drugs and diabetes: understanding the new breed of cardiovascular safety trials. Lancet Diabetes Endocrinol. 2013;1:175–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Chow E, Bernjak A, Williams S, et al. Risk of cardiac arrhythmias during hypoglycemia in patients with type 2 diabetes and cardiovascular risk. Diabetes. 2014;63(5):1738–47.PubMedCrossRefGoogle Scholar
  61. 61.
    Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358(6):580–91.PubMedCrossRefGoogle Scholar
  62. 62.
    Garber AJ, Abrahamson MJ, Barzilay JI, et al. Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm—2017 executive summary. Endocr Pract. 2017;23(2):207–38.PubMedCrossRefGoogle Scholar
  63. 63.
    Hirshberg B, Raz I. Impact of the U.S. Food and Drug Administration cardiovascular assessment requirements on the development of novel antidiabetes drugs. Diabetes Care. 2011;34(Suppl 2):S101–6.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Hirschberg B, Katz A. Cardiovascular outcome studies with novel antidiabetes agents: scientific and operational considerations. Diabetes Care. 2013;36(suppl 2):S253–8.CrossRefGoogle Scholar
  65. 65.
    Fadini GP, Avogaro A, Degli Esposti L, et al. Risk of hospitalization for heart failure in patients with type 2 diabetes newly treated with DPP-4 inhibitors or other oral glucose-lowering medications: a retrospective registry study on 127,555 patients from the Nationwide OsMed Health-DB Database. Eur Heart J. 2015;36(36):2454–62.PubMedCrossRefGoogle Scholar
  66. 66.
    Li L, Li S, Deng K, et al. Dipeptidyl peptidase-4 inhibitors and risk of heart failure in type 2 diabetes: systematic review and meta-analysis of randomised and observational studies. BMJ. 2016;352:i610.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Bonora E, Cigolini M. DPP-4 inhibitors and cardiovascular disease in type 2 diabetes mellitus. Expectations, observations and perspectives. Nutr Metab Cardiovasc Dis. 2016;26(4):273–84.PubMedCrossRefGoogle Scholar
  68. 68.
    Schnell O, Standl E, Catrinoiu D, et al. Report from the 1st Cardiovascular Outcome Trial (CVOT) summit of the diabetes & cardiovascular disease (D&CVD) EASD Study Group. Cardiovasc Diabetol. 2016;15:33.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Smith RJ, Goldfine AB, Hiatt WR. Evaluating the cardiovascular safety of new medications for type 2 diabetes: time to reassess? Diabetes Care. 2016;39(5):738–42.PubMedCrossRefGoogle Scholar
  70. 70.
    Tahrani AA, Barnett AH, Bailey CJ. Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus. Nat Rev Endocrinol. 2016;12:566–92.PubMedCrossRefGoogle Scholar
  71. 71.
    Krentz AJ. Management of type 2 diabetes in the obese patient: current concerns and emerging therapies. Curr Med Res Opin. 2008;24(2):401–17.PubMedCrossRefGoogle Scholar
  72. 72.
    Avogaro A, Fadini GP, Sesti G, Bonora E, Del Prato S. Continued efforts to translate diabetes cardiovascular outcome trials into clinical practice. Cardiovasc Diabetol. 2016;15(1):111.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Fitchett DH, Udell JA, Inzucchi SE. Heart failure outcomes in clinical trials of glucose-lowering agents in patients with diabetes. Eur J Heart Fail. 2017;19(1):43–53.PubMedCrossRefGoogle Scholar
  74. 74.
    Scirica BM, Bhatt DL, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369(14):1317–26.PubMedCrossRefGoogle Scholar
  75. 75.
    Scirica BM, Braunwald E, Raz I, et al. Heart failure, saxagliptin, and diabetes mellitus: observations from the SAVOR-TIMI 53 randomized trial. Circulation. 2014;130(18):1579–88.PubMedCrossRefGoogle Scholar
  76. 76.
    White WB, Cannon CP, Heller SR, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369(14):1327–35.PubMedCrossRefGoogle Scholar
  77. 77.
    Green JB, Bethel MA, Armstrong PW, et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;373(3):232–42.PubMedCrossRefGoogle Scholar
  78. 78.
    Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28.PubMedCrossRefGoogle Scholar
  79. 79.
    Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375(4):323–34.PubMedCrossRefGoogle Scholar
  80. 80.
    Sattar N, McLaren J, Kristensen SL, Preiss D, McMurray JJ. SGLT2 Inhibition and cardiovascular events: why did EMPA-REG outcomes surprise and what were the likely mechanisms? Diabetologia. 2016;59(7):1333–9.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Krentz AJ. Cardiovascular outcome trials of glucose-lowering drugs come of age. Cardiovasc Endocrinol. 2015;4:115–6.CrossRefGoogle Scholar
  82. 82.
    Vallon V, Thomson SC. Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia. 2017;60(2):215–25.PubMedCrossRefGoogle Scholar
  83. 83.
    DeFronzo RA. The EMPA-REG study: what has it told us? A diabetologist’s perspective. J Diabetes Complic. 2016;30(1):1–2.CrossRefGoogle Scholar
  84. 84.
    DeFronzo RA, Norton L, Abdul-Ghani M. Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nat Rev Nephrol. 2017;13(1):11–26.PubMedCrossRefGoogle Scholar
  85. 85.
    Mudaliar S, Alloju S, Henry RR. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypothesis. Diabetes Care. 2016;39(7):1115–22.PubMedCrossRefGoogle Scholar
  86. 86.
    Ferrannini E, Mark M, Mayoux E. CV protection in the EMPA-REG OUTCOME trial: a “thrifty substrate” hypothesis. Diabetes Care. 2016;39(7):1108–14.PubMedCrossRefGoogle Scholar
  87. 87.
    Marx N, McGuire DK. Sodium-glucose cotransporter-2 inhibition for the reduction of cardiovascular events in high-risk patients with diabetes mellitus. Eur Heart J. 2016;37(42):3192–200.PubMedCrossRefGoogle Scholar
  88. 88.
    Martens P, Mathieu C, Verbrugge FH. Promise of SGLT2 inhibitors in heart failure: diabetes and beyond. Curr Treat Options Cardiovasc Med. 2017;19(3):23.PubMedCrossRefGoogle Scholar
  89. 89.
    Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–57.PubMedCrossRefGoogle Scholar
  90. 90.
    FDA Drug Safety Communication: FDA confirms increased risk of leg and foot amputations with the diabetes medicine canagliflozin (Invokana I, Invokamet XR). Accessed 28 June 2017.
  91. 91.
    Sha S, Polidori D, Heise T, et al. Effect of the sodium glucose co-transporter 2 inhibitor canagliflozin on plasma volume in patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2014;16(11):1087–95.PubMedCrossRefGoogle Scholar
  92. 92.
    Kosiborod M, Cavender, M., Norhammar, A. Lower rates of hospitalization for heart failure and all-cause death in new users of SGLT2 inhibitors: the CVD-REAL study. Presented at the 66th scientific session of the American College of Cardiology, Washington, DC, 17–19 March 2017. Abstract 415-14; 2017.Google Scholar
  93. 93.
    Pfeffer MA, Claggett B, Diaz R, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015;373(23):2247–57.PubMedCrossRefGoogle Scholar
  94. 94.
    Marx N, McGuire DK, Perkovic V, et al. Composite primary end points in cardiovascular outcomes trials involving type 2 diabetes patients: should unstable angina be included in the primary end point? Diabetes Care. 2017;40(9):1144–51.PubMedCrossRefGoogle Scholar
  95. 95.
    Sivertsen J, Rosenmeier J, Holst JJ, Vilsboll T. The effect of glucagon-like peptide 1 on cardiovascular risk. Nat Rev Cardiol. 2012;9(4):209–22.PubMedCrossRefGoogle Scholar
  96. 96.
    Okerson T, Chilton RJ. The cardiovascular effects of GLP-1 receptor agonists. Cardiovasc Ther. 2012;30(3):e146–55.PubMedCrossRefGoogle Scholar
  97. 97.
    Kang YM, Jung CH. Cardiovascular effects of glucagon-like peptide-1 receptor agonists. Endocrinol Metab (Seoul). 2016;31(2):258–74.CrossRefGoogle Scholar
  98. 98.
    Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Uccellatore A, Genovese S, Dicembrini I, Mannucci E, Ceriello A. Comparison review of short-acting and long-acting glucagon-like peptide-1 receptor agonists. Diabetes Ther. 2015;6(3):239–56.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Cooney MT, Vartiainen E, Laatikainen T, Juolevi A, Dudina A, Graham IM. Elevated resting heart rate is an independent risk factor for cardiovascular disease in healthy men and women. Am Heart J. 2010;159(4):612-9e3.CrossRefGoogle Scholar
  101. 101.
  102. 102.
    Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375:1834–44.PubMedCrossRefGoogle Scholar
  103. 103.
    Holman RR, Bethel MA, George J, et al. Rationale and design of the EXenatide Study of Cardiovascular Event Lowering (EXSCEL) trial. Am Heart J. 2016;174:103–10.PubMedCrossRefGoogle Scholar
  104. 104.
    Holman RR, Bethel MA, Mentz RJ, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017;377(13):1228–39.PubMedCrossRefGoogle Scholar
  105. 105.
  106. 106.
  107. 107.
    Colman E, Golden J, Roberts M, Egan A, Weaver J, Rosebraugh C. The FDA’s assessment of two drugs for chronic weight management. N Engl J Med. 2012;367(17):1577–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Lean ME. Sibutramine—a review of clinical efficacy. Int J Obes Relat Metab Disord. 1997;21(Suppl 1):S306-6 (discussion 7–9).Google Scholar
  109. 109.
    Nisoli E, Carruba MO. An assessment of the safety and efficacy of sibutramine, an anti-obesity drug with a novel mechanism of action. Obes Rev. 2000;1(2):127–39.PubMedCrossRefGoogle Scholar
  110. 110.
    Poston WS, Foreyt JP. Sibutramine and the management of obesity. Expert Opin Pharmacother. 2004;5(3):633–42.PubMedCrossRefGoogle Scholar
  111. 111.
    Torp-Pedersen C, Caterson I, Coutinho W, et al. Cardiovascular responses to weight management and sibutramine in high-risk subjects: an analysis from the SCOUT trial. Eur Heart J. 2007;28(23):2915–23.PubMedCrossRefGoogle Scholar
  112. 112.
    Scheen AJ. Cardiovascular risk-benefit profile of sibutramine. Am J Cardiovasc Drugs. 2010;10(5):321–34.PubMedCrossRefGoogle Scholar
  113. 113.
    James WP, Caterson ID, Coutinho W, et al. Effect of sibutramine on cardiovascular outcomes in overweight and obese subjects. N Engl J Med. 2010;363(10):905–17.PubMedCrossRefGoogle Scholar
  114. 114.
    Astrup A. Drug management of obesity—efficacy versus safety. N Engl J Med. 2010;363(3):288–90.PubMedCrossRefGoogle Scholar
  115. 115.
    Downey M, Still C, Sharma AM. Is there a path for approval of an antiobesity drug: what did the Sibutramine Cardiovascular Outcomes trial find? Curr Opin Endocrinol Diabetes Obes. 2011;18(5):321–7.PubMedCrossRefGoogle Scholar
  116. 116.
    VIVUS. QSYMIA (phentermine and topiramate extended-release). 2013. Accessed 5 Apr 2017.
  117. 117.
    Caterson ID, Finer N, Coutinho W, et al. Maintained intentional weight loss reduces cardiovascular outcomes: results from the Sibutramine Cardiovascular OUTcomes (SCOUT) trial. Diabetes Obes Metab. 2012;14(6):523–30.PubMedCrossRefGoogle Scholar
  118. 118.
    Food and Drug Administration. Guidance for industry developing products for weight management. 2007. Accessed 3 May 2017.
  119. 119.
    Colman E. Food and drug administration’s obesity drug guidance document: a short history. Circulation. 2012;125(17):2156–64.PubMedCrossRefGoogle Scholar
  120. 120.
    Manning S, Pucci A, Finer N. Pharmacotherapy for obesity: novel agents and paradigms. Ther Adv Chronic Dis. 2014;5(3):135–48.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Wharton S, Serodio KJ. Next generation of weight management medications: implications for diabetes and CVD risk. Curr Cardiol Rep. 2015;17(5):35.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Rueda-Clausen CF, Padwal RS, Sharma AM. New pharmacological approaches for obesity management. Nat Rev Endocrinol. 2013;9(8):467–78.PubMedCrossRefGoogle Scholar
  123. 123.
    Cunningham JW, Wiviott SD. Modern obesity pharmacotherapy: weighing cardiovascular risk and benefit. Clin Cardiol. 2014;37(11):693–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Smith SR, Weissman NJ, Anderson CM, et al. Multicenter, placebo-controlled trial of lorcaserin for weight management. N Engl J Med. 2010;363(3):245–56.PubMedCrossRefGoogle Scholar
  125. 125.
    Fidler MC, Sanchez M, Raether B, et al. A one-year randomized trial of lorcaserin for weight loss in obese and overweight adults: the BLOSSOM trial. J Clin Endocrinol Metab. 2011;96(10):3067–77.PubMedCrossRefGoogle Scholar
  126. 126.
    O’Neil PM, Smith SR, Weissman NJ, et al. Randomized placebo-controlled clinical trial of lorcaserin for weight loss in type 2 diabetes mellitus: the BLOOM-DM study. Obesity (Silver Spring). 2012;20(7):1426–36.CrossRefGoogle Scholar
  127. 127.
    Rothman RB, Baumann MH. Serotonergic drugs and valvular heart disease. Expert Opin Drug Saf. 2009;8(3):317–29.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Hess R, Cross LB. The safety and efficacy of lorcaserin in the management of obesity. Postgrad Med. 2013;125(6):62–72.PubMedCrossRefGoogle Scholar
  129. 129.
    Aronne L, Shanahan W, Fain R, et al. Safety and efficacy of lorcaserin: a combined analysis of the BLOOM and BLOSSOM trials. Postgrad Med. 2014;126(6):7–18.PubMedCrossRefGoogle Scholar
  130. 130.
    Allison DB, Gadde KM, Garvey WT, et al. Controlled-release phentermine/topiramate in severely obese adults: a randomized controlled trial (EQUIP). Obesity (Silver Spring). 2012;20(2):330–42.CrossRefGoogle Scholar
  131. 131.
    Gadde KM, Allison DB, Ryan DH, et al. Effects of low-dose, controlled-release, phentermine plus topiramate combination on weight and associated comorbidities in overweight and obese adults (CONQUER): a randomised, placebo-controlled, phase 3 trial. Lancet. 2011;377(9774):1341–52.PubMedCrossRefGoogle Scholar
  132. 132.
    Garvey WT, Ryan DH, Look M, et al. Two-year sustained weight loss and metabolic benefits with controlled-release phentermine/topiramate in obese and overweight adults (SEQUEL): a randomized, placebo-controlled, phase 3 extension study. Am J Clin Nutr. 2012;95(2):297–308.PubMedCrossRefGoogle Scholar
  133. 133.
    Davidson MH, Tonstad S, Oparil S, Schwiers M, Day WW, Bowden CH. Changes in cardiovascular risk associated with phentermine and topiramate extended-release in participants with comorbidities and a body mass index >/= 27 kg/m(2). Am J Cardiol. 2013;111(8):1131–8.PubMedCrossRefGoogle Scholar
  134. 134.
    Shin JH, Gadde KM. Clinical utility of phentermine/topiramate (Qsymia) combination for the treatment of obesity. Diabetes Metab Syndr Obes. 2013;6:131–9.PubMedPubMedCentralGoogle Scholar
  135. 135.
    Haslam D. Weight management in obesity—past and present. Int J Clin Pract. 2017;70:206–17.CrossRefGoogle Scholar
  136. 136.
    Smith SR, Fujioka K, Gupta AK, et al. Combination therapy with naltrexone and bupropion for obesity reduces total and visceral adiposity. Diabetes Obes Metab. 2013;15(9):863–6.PubMedCrossRefGoogle Scholar
  137. 137.
    Greenway FL, Fujioka K, Plodkowski RA, et al. Effect of naltrexone plus bupropion on weight loss in overweight and obese adults (COR-I): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2010;376(9741):595–605.PubMedCrossRefGoogle Scholar
  138. 138.
    Hollander P, Gupta AK, Plodkowski R, et al. Effects of naltrexone sustained-release/bupropion sustained-release combination therapy on body weight and glycemic parameters in overweight and obese patients with type 2 diabetes. Diabetes Care. 2013;36(12):4022–9.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Kim GW, Lin JE, Valentino MA, Colon-Gonzalez F, Waldman SA. Regulation of appetite to treat obesity. Expert Rev Clin Pharmacol. 2011;4(2):243–59.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Takeda. Cardiovascular outcomes study of naltrexone SR/bupropion SR in overweight and obese subjects with cardiovascular risk factors (the Light study). 2014. Accessed 7 July 2017.
  141. 141.
    Nissen SE, Wolski KE, Prcela L, et al. Effect of naltrexone-bupropion on major adverse cardiovascular events in overweight and obese patients with cardiovascular risk factors: a randomized clinical trial. JAMA. 2016;315(10):990–1004.PubMedCrossRefGoogle Scholar
  142. 142.
  143. 143.
    Wadden TA, Hollander P, Klein S, et al. Weight maintenance and additional weight loss with liraglutide after low-calorie-diet-induced weight loss: the SCALE maintenance randomized study. Int J Obes (Lond). 2013;37(11):1443–51.CrossRefGoogle Scholar
  144. 144.
    Fujioka K. Current and emerging medications for overweight or obesity in people with comorbidities. Diabetes Obes Metab. 2015;17(11):1021–32.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Kuhnen P, Clement K, Wiegand S, et al. Proopiomelanocortin deficiency treated with a melanocortin-4 receptor agonist. N Engl J Med. 2016;375(3):240–6.PubMedCrossRefGoogle Scholar
  146. 146.
    Greenfield JR, Miller JW, Keogh JM, et al. Modulation of blood pressure by central melanocortinergic pathways. N Engl J Med. 2009;360(1):44–52.PubMedCrossRefGoogle Scholar
  147. 147.
    Bello NT, Zahner MR. Tesofensine, a monoamine reuptake inhibitor for the treatment of obesity. Curr Opin Investig Drugs. 2009;10(10):1105–16.PubMedGoogle Scholar
  148. 148.
    Tomlinson B, Hu M, Zhang Y, Chan P, Liu ZM. Investigational glucagon-like peptide-1 agonists for the treatment of obesity. Expert Opin Investig Drugs. 2016;25(10):1167–79.PubMedCrossRefGoogle Scholar
  149. 149.
    Januzzi JL Jr, Butler J, Jarolim P, et al. Effects of canagliflozin on cardiovascular biomarkers in older adults with type 2 diabetes. J Am Coll Cardiol. 2017;70(6):704–12.PubMedCrossRefGoogle Scholar
  150. 150.
    Tiwari G, Tiwari R, Sriwastawa B, et al. Drug delivery systems: an updated review. Int J Pharm Investig. 2012;2(1):2–11.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Fan S, Geng Q, Pan Z, et al. Clarifying off-target effects for torcetrapib using network pharmacology and reverse docking approach. BMC Syst Biol. 2012;6:152.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Mondal D, Pradhan L, Ali M, Agrawal KC. HAART drugs induce oxidative stress in human endothelial cells and increase endothelial recruitment of mononuclear cells: exacerbation by inflammatory cytokines and amelioration by antioxidants. Cardiovasc Toxicol. 2004;4(3):287–302.PubMedCrossRefGoogle Scholar
  153. 153.
    Banerjee D, Rodriguez M, Nag M, Adamson JW. Exposure of endothelial cells to recombinant human erythropoietin induces nitric oxide synthase activity. Kidney Int. 2000;57(5):1895–904.PubMedCrossRefGoogle Scholar
  154. 154.
    Yoshino S, Cassar A, Matsuo Y, et al. Fractional flow reserve with dobutamine challenge and coronary microvascular endothelial dysfunction in symptomatic myocardial bridging. Circ J. 2014;78(3):685–92.PubMedCrossRefGoogle Scholar
  155. 155.
    Diez-Delhoyo F, Gutierrez-Ibanes E, Loughlin G, et al. Coronary physiology assessment in the catheterization laboratory. World J Cardiol. 2015;7(9):525–38.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Moroni L, Selmi C, Angelini C, Meroni PL. Evaluation of endothelial function by flow-mediated dilation: a comprehensive review in rheumatic disease. Arch Immunol Ther Exp (Warsz). 2017. doi: 10.1007/s00005-017-0465-7. [Epub ahead of print].Google Scholar
  157. 157.
    Tomiyama H, Kohro T, Higashi Y, et al. A multicenter study design to assess the clinical usefulness of semi-automatic measurement of flow-mediated vasodilatation of the brachial artery. Int Heart J. 2012;53(3):170–5.PubMedCrossRefGoogle Scholar
  158. 158.
    Muniyappa R, Sowers JR. Role of insulin resistance in endothelial dysfunction. Rev Endocr Metab Disord. 2013;14(1):5–12.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Wang S, Zhang M, Liang B, et al. AMPKalpha2 deletion causes aberrant expression and activation of NAD(P)H oxidase and consequent endothelial dysfunction in vivo: role of 26S proteasomes. Circ Res. 2010;106(6):1117–28.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Covic A, Siriopol D. Pulse wave velocity ratio: the new “gold standard” for measuring arterial stiffness. Hypertension. 2015;65(2):289–90.PubMedCrossRefGoogle Scholar
  161. 161.
    Tousoulis D, Kampoli AM, Tentolouris C, Papageorgiou N, Stefanadis C. The role of nitric oxide on endothelial function. Curr Vasc Pharmacol. 2012;10(1):4–18.PubMedCrossRefGoogle Scholar
  162. 162.
    Ferrari R. RAAS inhibition and mortality in hypertension. Glob Cardiol Sci Pract. 2013;2013(3):269–78.PubMedPubMedCentralGoogle Scholar
  163. 163.
    Sorriento D, Trimarco B, Iaccarino G. Adrenergic mechanism in the control of endothelial function. Transl Med UniSa. 2011;1:213–28.PubMedPubMedCentralGoogle Scholar
  164. 164.
    Madin K, Iqbal P. Twenty four hour ambulatory blood pressure monitoring: a new tool for determining cardiovascular prognosis. Postgrad Med J. 2006;82(971):548–51.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Abraham WT, Adamson PB, Bourge RC, et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet. 2011;377(9766):658–66.PubMedCrossRefGoogle Scholar
  166. 166.
    Ramot Y, Nyska A. Drug-induced thrombosis—experimental, clinical, and mechanistic considerations. Toxicol Pathol. 2007;35(2):208–25.PubMedCrossRefGoogle Scholar
  167. 167.
    Kohler HP. Insulin resistance syndrome: interaction with coagulation and fibrinolysis. Swiss Med Wkly. 2002;132(19–20):241–52.PubMedGoogle Scholar
  168. 168.
    Adams RL, Bird RJ. Review article: Coagulation cascade and therapeutics update: relevance to nephrology. Part 1: Overview of coagulation, thrombophilias and history of anticoagulants. Nephrology (Carlton). 2009;14(5):462–70.CrossRefGoogle Scholar
  169. 169.
    Itoh N, Ohta H. Pathophysiological roles of FGF signaling in the heart. Front Physiol. 2013;4:247.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Mozos I, Luca CT. Crosstalk between oxidative and nitrosative stress and arterial stiffness. Curr Vasc Pharmacol. 2017;15:446–56.PubMedCrossRefGoogle Scholar
  171. 171.
    Quintero M, Colombo SL, Godfrey A, Moncada S. Mitochondria as signaling organelles in the vascular endothelium. Proc Natl Acad Sci USA. 2006;103(14):5379–84.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Nicholls SJ, Sipahi I, Schoenhagen P, Crowe T, Tuzcu EM, Nissen SE. Application of intravascular ultrasound in anti-atherosclerotic drug development. Nat Rev Drug Discov. 2006;5(6):485–92.PubMedCrossRefGoogle Scholar
  173. 173.
    Allemang MT, Lakin RO, Kanaya T, Eslahpazir BA, Bezerra HG, Kashyap VS. The use of dextran and carbon dioxide for optical coherence tomography in the superficial femoral artery. J Vasc Surg. 2014;59(1):238–40.PubMedCrossRefGoogle Scholar
  174. 174.
    Aboyans V, Criqui MH, Abraham P, et al. Measurement and interpretation of the ankle-brachial index: a scientific statement from the American Heart Association. Circulation. 2012;126(24):2890–909.PubMedCrossRefGoogle Scholar
  175. 175.
    Glover GH. Overview of functional magnetic resonance imaging. Neurosurg Clin N Am. 2011;22(2):133–9 (vii).PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Sengelov M, Jorgensen PG, Jensen JS, et al. Global longitudinal strain is a superior predictor of all-cause mortality in heart failure with reduced ejection fraction. JACC Cardiovasc Imaging. 2015;8(12):1351–9.PubMedCrossRefGoogle Scholar
  177. 177.
    Murthy VL, Naya M, Foster CR, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation. 2011;124(20):2215–24.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Grassi I, Nanni C, Allegri V, et al. The clinical use of PET with (11)C-acetate. Am J Nucl Med Mol Imaging. 2012;2(1):33–47.PubMedGoogle Scholar
  179. 179.
    Bouteldja N, Andersen LT, Moller N, Gormsen LC. Using positron emission tomography to study human ketone body metabolism: a review. Metabolism. 2014;63(11):1375–84.PubMedCrossRefGoogle Scholar
  180. 180.
    Morrow L, Krentz AJ. Early phase metabolic research with reference to special populations. In: Krentz AJHL, Hompesch M, editors. Translational research methods for diabetes, obesity and cardiometabolic drug development. New York: Springer; 2015. p. 225–42.Google Scholar
  181. 181.
    Voudris KV, Chanin J, Feldman DN, Charitakis K. Novel inflammatory biomarkers in coronary artery disease: potential therapeutic approaches. Curr Med Chem. 2015;22(22):2680–9.PubMedCrossRefGoogle Scholar
  182. 182.
    Wang J, Tan GJ, Han LN, Bai YY, He M, Liu HB. Novel biomarkers for cardiovascular risk prediction. J Geriatr Cardiol. 2017;14(2):135–50.PubMedPubMedCentralGoogle Scholar
  183. 183.
    Lacey B, Herrington WG, Preiss D, Lewington S, Armitage J. The role of emerging risk factors in cardiovascular outcomes. Curr Atheroscler Rep. 2017;19(6):28.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Saeed A, Ballantyne CM. Assessing cardiovascular risk and testing in type 2 diabetes. Curr Cardiol Rep. 2017;19(3):19.PubMedCrossRefGoogle Scholar
  185. 185.
    Sager PT, Seltzer J, Turner JR, et al. Cardiovascular safety outcome trials: a meeting report from the cardiac safety research consortium. Am Heart J. 2015;169(4):486–95.PubMedCrossRefGoogle Scholar
  186. 186.
    Vogenberg FR, Isaacson Barash C, Pursel M. Personalized medicine: part 1: evolution and development into theranostics. P T. 2010;35(10):560–76.PubMedPubMedCentralGoogle Scholar
  187. 187.
    Pinto N, Dolan ME. Clinically relevant genetic variations in drug metabolizing enzymes. Curr Drug Metab. 2011;12(5):487–97.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Aguiar M, Masse R, Gibbs BF. Regulation of cytochrome P450 by posttranslational modification. Drug Metab Rev. 2005;37(2):379–404.PubMedCrossRefGoogle Scholar
  189. 189.
    Preissner SC, Hoffmann MF, Preissner R, Dunkel M, Gewiess A, Preissner S. Polymorphic cytochrome P450 enzymes (CYPs) and their role in personalized therapy. PLoS ONE. 2013;8(12):e82562.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Tebani A, Afonso C, Marret S, Bekri S. Omics-based strategies in precision medicine: toward a paradigm shift in inborn errors of metabolism investigations. Int J Mol Sci. 2016;17(9):1555. doi: 10.3390/ijms17091555.PubMedCentralCrossRefGoogle Scholar
  191. 191.
    Nissen SE. The rise and fall of rosiglitazone. Eur Heart J. 2010;31(7):773–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.ProScientoChula VistaUSA

Personalised recommendations