Advertisement

Pharmaceutical Medicine

, Volume 31, Issue 4, pp 235–244 | Cite as

Challenges in Conducting Clinical Trials for Pharmacotherapies in Fragile X Syndrome: Lessons Learned

  • Christina M. Harkins
  • Kelli C. Dominick
  • Logan K. Wink
  • Ernest V. Pedapati
  • Rebecca C. Shaffer
  • Sarah E. Fitzpatrick
  • Matthew H. Davenport
  • John A. Sweeney
  • Craig A. EricksonEmail author
Review Article
  • 75 Downloads

Abstract

Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and most common single gene cause of autism spectrum disorder (ASD). Even in the context of a single gene disorder like FXS, characteristic cognitive and behavioral heterogeneity creates challenges in conducting targeted pharmacotherapy trials. Neuroscientific advances have elucidated aspects of the underlying neurobiology in FXS and have guided targeted treatment development in the last decade. However, despite significant preclinical progress, recent clinical trials have failed to consistently demonstrate therapeutic efficacy based on behavioral outcome measures in patients with FXS. One potential explanation for these failures is that many behavioral measures are not capable of quantitively capturing clinically significant change in such short-term trials. Further, the use of parent and clinician report instruments as primary outcome measures creates additional challenges in clinical trials. Future trials may employ more quantitative measures of evaluating the pathophysiology of FXS to avoid placebo-response resulting from rater bias. Quantitative measures of language, eye gaze, molecular dysregulation, and brain function may be used to identify which individuals may best respond to a particular treatment and to capture potential treatment-associated change. Here, we present a thorough review and reconsideration of the challenges encountered in conducting clinical trials in FXS to allow for lessons learned to drive future success in this field.

Notes

Compliance with Ethical Standards

Funding

No sources of funding were used to assist with the preparation of this review.

Conflict of interest

Christina M. Harkins has no conflicts of interest. Dr. Kelli C. Dominick has no conflicts of interest. Dr. Logan K. Wink has no conflicts of interest. Dr. Ernest V. Pedapati has no conflicts of interest. Dr. Rebecca C. Shaffer has no conflicts of interest. Sarah E. Fitzpatrick has no conflicts of interest. Matthew H. Davenport has no conflicts of interest. Dr. John A. Sweeney has research grant support from the National Institute of Health and serves as a consultant for Takeda Pharmaceuticals. Dr. Craig A. Erickson has research grant support from the National Institute of Health and the Center for Disease Control and Prevention and serves as a consultant for Fulcrum Therapeutics. Dr. Erickson is the inventor on intellectual property held by Indiana University and Cincinnati Children’s Hospital related to use of acamprosate in fragile X syndrome and autism. Dr. Erickson holds equity in Confluence Pharmaceuticals, a company that has licensed this intellectual property from Indiana University.

References

  1. 1.
    Fernandez-Carvajal I, Walichiewicz P, Xiaosen X, Pan R, Hagerman PJ, Tassone F. Screening for expanded alleles of the FMR1 gene in blood spots from newborn males in a Spanish population. J Mol Diagn. 2009;11:324–9.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hagerman PJ. The fragile X prevalence paradox. J Med Genet. 2008;45:498–9.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Garber KB, Visootsak J, Warren ST. Fragile X syndrome. Eur J Hum Genet. 2008;16:666–72.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Devys D, Lutz Y, Rouyer N, Bellocq JP, Mandel JL. The FMR-1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutation. Nat Genet. 1993;4:335–40.CrossRefPubMedGoogle Scholar
  5. 5.
    Schenkel LC, Schwartz C, Skinner C, et al. Clinical validation of fragile X syndrome screening by DNA methylation array. J Mol Diagn. 2016;18:834–41.CrossRefPubMedGoogle Scholar
  6. 6.
    Bassell GJ, Warren ST. Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron. 2008;60:201–14.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Erickson CA, Davenport MH, Schaefer TL, et al. Fragile X targeted pharmacotherapy: lessons learned and future directions. J Neurodevelop Disord. 2017;9:7. doi: 10.1186/s11689-017-9186-9 CrossRefGoogle Scholar
  8. 8.
    Schneider A, Hagerman RJ, Hessl D. Fragile X syndrome—from genes to cognition. Dev Disabil Res Rev. 2009;15:333–42.CrossRefPubMedGoogle Scholar
  9. 9.
    Haessler F, Gaese F, Huss M, et al. Characterization, treatment patterns, and patient-related outcomes of patients with Fragile X syndrome in Germany: final results of the observational EXPLAIN-FXS study. BMC Psychiatry. 2016;16:318.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Loesch DZ, Huggins RM, Bui QM, et al. Effect of fragile X status categories and FMRP deficits on cognitive profiles estimated by robust pedigree analysis. Am J Med Genet A. 2003;122A:13–23.CrossRefPubMedGoogle Scholar
  11. 11.
    Cornish K, Turk J, Hagerman R. The fragile X continuum: new advances and perspectives. J Intellect Disabil Res. 2008;52:469–82.CrossRefPubMedGoogle Scholar
  12. 12.
    de Vries BB, Wiegers AM, Smits AP, et al. Mental status of females with an FMR1 gene full mutation. Am J Hum Genet. 1996;58:1025–32.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Gross C, Berry-Kravis EM, Bassell GJ. Therapeutic strategies in fragile X syndrome: dysregulated mGluR signaling and beyond. Neuropsychopharmacology. 2012;37:178–95.CrossRefPubMedGoogle Scholar
  14. 14.
    Roberts JE, Schaaf JM, Skinner M, et al. Academic skills of boys with fragile X syndrome: profiles and predictors. Am J Ment Retard. 2005;110:107–20.CrossRefPubMedGoogle Scholar
  15. 15.
    Abbeduto L, Brady N, Kover ST. Language development and fragile X syndrome: profiles, syndrome-specificity, and within-syndrome differences. Ment Retard Dev Disabil Res Revi. 2007;13:36–46.CrossRefGoogle Scholar
  16. 16.
    Wang LW, Berry-Kravis E, Hagerman RJ. Fragile X: leading the way for targeted treatments in autism. Neurotherapeutics: the journal of the American Society for Experimental NeuroTherapeutics. 2010;7:264–74.CrossRefGoogle Scholar
  17. 17.
    Miller LJ, McIntosh DN, McGrath J, et al. Electrodermal responses to sensory stimuli in individuals with fragile X syndrome: a preliminary report. Am J Med Genet. 1999;83:268–79.CrossRefPubMedGoogle Scholar
  18. 18.
    Berry-Kravis E, Potanos K. Psychopharmacology in fragile X syndrome–present and future. Ment Retard Dev Disabil Res Rev. 2004;10:42–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Jacquemont S, Berry-Kravis E, Hagerman R, et al. The challenges of clinical trials in fragile X syndrome. Psychopharmacology. 2014;231:1237–50.CrossRefPubMedGoogle Scholar
  20. 20.
    Rogers SJ, Wehner EA, Hagerman R. The behavioral phenotype in fragile X: symptoms of autism in very young children with fragile X syndrome, idiopathic autism, and other developmental disorders. J Dev Behav Pediatr. 2001;22:409–17.CrossRefPubMedGoogle Scholar
  21. 21.
    Kaufmann WE, Cortell R, Kau AS, et al. Autism spectrum disorder in fragile X syndrome: communication, social interaction, and specific behaviors. Am J Med Genet A. 2004;129A:225–34.CrossRefPubMedGoogle Scholar
  22. 22.
    Clifford S, Dissanayake C, Bui QM, Huggins R, Taylor AK, Loesch DZ. Autism spectrum phenotype in males and females with fragile X full mutation and premutation. J Autism Dev Disord. 2007;37:738–47.CrossRefPubMedGoogle Scholar
  23. 23.
    Harris SW, Hessl D, Goodlin-Jones B, et al. Autism profiles of males with fragile X syndrome. Am J Ment Retard. 2008;113:427–38.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hagerman RJ, Jackson AW 3rd, Levitas A, Rimland B, Braden M. An analysis of autism in fifty males with the fragile X syndrome. Am J Med Genet. 1986;23:359–74.CrossRefPubMedGoogle Scholar
  25. 25.
    Bailey DB Jr, Mesibov GB, Hatton DD, Clark RD, Roberts JE, Mayhew L. Autistic behavior in young boys with fragile X syndrome. J Autism Dev Disord. 1998;28:499–508.CrossRefPubMedGoogle Scholar
  26. 26.
    Baumgardner TL, Reiss AL, Freund LS, Abrams MT. Specification of the neurobehavioral phenotype in males with fragile X syndrome. Pediatrics. 1995;95:744–52.PubMedGoogle Scholar
  27. 27.
    Merenstein SA, Sobesky WE, Taylor AK, Riddle JE, Tran HX, Hagerman RJ. Molecular-clinical correlations in males with an expanded FMR1 mutation. Am J Med Genet. 1996;64:388–94.CrossRefPubMedGoogle Scholar
  28. 28.
    Kerby DS, Dawson BL. Autistic features, personality, and adaptive behavior in males with the fragile X syndrome and no autism. Am J Ment Retard. 1994;98:455–62.PubMedGoogle Scholar
  29. 29.
    Hagerman RJ, Berry-Kravis E, Kaufmann WE, et al. Advances in the treatment of fragile X syndrome. Pediatrics. 2009;123:378–90.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Tassone F, Hagerman RJ, Ikle DN, et al. FMRP expression as a potential prognostic indicator in fragile X syndrome. Am J Med Genet. 1999;84:250–61.CrossRefPubMedGoogle Scholar
  31. 31.
    Loesch DZ, Huggins RM, Hagerman RJ. Phenotypic variation and FMRP levels in fragile X. Ment Retard Dev Disabil Res Rev. 2004;10:31–41.CrossRefPubMedGoogle Scholar
  32. 32.
    Dyer-Friedman J, Glaser B, Hessl D, et al. Genetic and environmental influences on the cognitive outcomes of children with fragile X syndrome. J Am Acad Child Adolesc Psychiatry. 2002;41:237–44.CrossRefPubMedGoogle Scholar
  33. 33.
    Berry-Kravis E, Des Portes V, Hagerman R, et al. Mavoglurant in fragile X syndrome: Results of two randomized, double-blind, placebo-controlled trials. Sci Transl Med. 2016;8:321ra5.CrossRefPubMedGoogle Scholar
  34. 34.
    Gomez-Mancilla B, Berry-Kravis E, Hagerman R, et al. Development of mavoglurant and its potential for the treatment of fragile X syndrome. Expert Opin Investig Drugs. 2014;23:125–34.CrossRefPubMedGoogle Scholar
  35. 35.
    ClinicalTrials.gov. National Institutes of Health. http://www.clinicaltrials.gov. Accessed 23 Sep 2015.
  36. 36.
    Bear MF, Huber KM, Warren ST. The mGluR theory of fragile X mental retardation. Trends Neurosci. 2004;27:370–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Huber KM, Gallagher SM, Warren ST, Bear MF. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci USA. 2002;99:7746–50.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Chuang SC, Zhao W, Bauchwitz R, Yan Q, Bianchi R, Wong RK. Prolonged epileptiform discharges induced by altered group I metabotropic glutamate receptor-mediated synaptic responses in hippocampal slices of a fragile X mouse model. J Neurosci. 2005;25:8048–55.CrossRefPubMedGoogle Scholar
  39. 39.
    Yan QJ, Rammal M, Tranfaglia M, Bauchwitz RP. Suppression of two major Fragile X Syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology. 2005;49:1053–66.CrossRefPubMedGoogle Scholar
  40. 40.
    Dolen G, Osterweil E, Rao BS, et al. Correction of fragile X syndrome in mice. Neuron. 2007;56:955–62.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Pop AS, Levenga J, de Esch CE, et al. Rescue of dendritic spine phenotype in Fmr1 KO mice with the mGluR5 antagonist AFQ056/Mavoglurant. Psychopharmacology. 2014;231:1227–35.CrossRefPubMedGoogle Scholar
  42. 42.
    Gantois I, Pop AS, de Esch CE, et al. Chronic administration of AFQ056/Mavoglurant restores social behaviour in Fmr1 knockout mice. Behav Brain Res. 2013;239:72–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Aman MG, Singh NN, Stewart AW, Field CJ. The aberrant behavior checklist: a behavior rating scale for the assessment of treatment effects. Am J Ment Defic. 1985;5:485–91.Google Scholar
  44. 44.
    Guy W. ECDEU assessment manual for psychopharmacology, Publication No. 76–338. Washington, DC: DHEW, NIMH; 1976.Google Scholar
  45. 45.
    Jacquemont S, Curie A, des Portes V, et al. Epigenetic modification of the FMR1 gene in fragile X syndrome is associated with differential response to the mGluR5 antagonist AFQ056. Sci Transl Med. 2011;3:64ra1.CrossRefPubMedGoogle Scholar
  46. 46.
    Berry-Kravis EM, Hessl D, Rathmell B, et al. Effects of STX209 (Arbaclofen) on neurobehavioral function in children and adults with fragile X Syndrome: a randomized, controlled, phase 2 trial. Sci Transl Med. 2012;4:152ra27.CrossRefGoogle Scholar
  47. 47.
    Budimirovic DB, Kaufmann WE. What can we learn about autism from studying fragile X syndrome? Dev Neurosci. 2011;33:379–94.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Benarroch EE. GABAB receptors: structure, functions, and clinical implications. Neurology. 2012;78:578–84.CrossRefPubMedGoogle Scholar
  49. 49.
    Henderson C, Wijetunge L, Kinoshita MN, et al. Reversal of disease-related pathologies in the fragile X mouse model by selective activation of GABAB receptors with arbaclofen. Sci Transl Med. 2012;4:152ra28.CrossRefGoogle Scholar
  50. 50.
    Wahlstrom-Helgren S, Klyachko VA. GABAB receptor-mediated feed-forward circuit dysfunction in the mouse model of fragile X syndrome. J Physiol. 2015;593:5009–24.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Berry-Kravis E, Hagerman R, Visootsak J, et al. Arbaclofen in fragile X syndrome: results of phase 3 trials. J of Neurodev Disord 2017; (in press).Google Scholar
  52. 52.
    Marcus RN, Owen R, Kamen L, et al. A placebo-controlled, fixed-dose study of aripiprazole in children and adolescents with irritability associated with autistic disorder. J Am Acad Child Adolesc Psychiatry. 2009;48:1110–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Owen R, Sikich L, Marcus RN, et al. Aripiprazole in the treatment of irritability in children and adolescents with autistic disorder. Pediatrics. 2009;124:1533–40.CrossRefPubMedGoogle Scholar
  54. 54.
    McCracken JT, McGough J, Shah B, et al. Risperidone in children with autism and serious behavioral problems. N Engl J Med. 2002;347:314–21.CrossRefPubMedGoogle Scholar
  55. 55.
    Shea S, Turgay A, Carroll A, et al. Risperidone in the treatment of disruptive behavioral symptoms in children with autistic and other pervasive developmental disorders. Pediatrics. 2004;114:e634–41.CrossRefPubMedGoogle Scholar
  56. 56.
    Aman MG. Annoted biography on the aberrant behavior checklist (ABC). Columbus: The Ohio State University; 2010.Google Scholar
  57. 57.
    Sansone SM, Widaman KF, Hall SS, et al. Psychometric study of the aberrant behavior checklist in fragile x syndrome and implications for targeted treatment. J Autism Dev Disord. 2012;42:1377–92.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Esbensen AJ, Rojahn J, Aman MG, Ruedrich S. Reliability and validity of an assessment instrument for anxiety, depression, and mood among individuals with mental retardation. J Autism Dev Disord. 2003;33:617–29.CrossRefPubMedGoogle Scholar
  59. 59.
    Cordeiro L, Ballinger E, Hagerman R, Hessl D. Clinical assessment of DSM-IV anxiety disorders in fragile X syndrome: prevalence and characterization. J Neurodev Disord. 2011;3:57–67.CrossRefPubMedGoogle Scholar
  60. 60.
    Indah Winarni T, Chonchaiya W, Adams E, et al. Sertraline may improve language developmental trajectory in young children with fragile x syndrome: a retrospective chart review. Autism Res Treat. 2012;2012:104317.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Berry-Kravis E, Rubin J, Harary E, Daniely Y. A 6-week, randomized, multicenter, double-blind, parallel, flexed- and fixed-dose study of MDX (Metadoxine extended-release; MG01CI) compared with placebo in adolescents and adults with fragile X syndrome. In: American Academy of Child and Adolescent Psychiatry Annual Meeting, 2015 October 2015, San Antonio, Texas.Google Scholar
  62. 62.
    Carter AS, Volkmar FR, Sparrow SS, et al. The vineland adaptive behavior scales: supplementary norms for individuals with autism. J Autism Dev Disord. 1998;28:287–302.CrossRefPubMedGoogle Scholar
  63. 63.
    Sparrow SS, Cicchetti DV. Diagnostic uses of the Vineland Adaptive Behavior Scales. J Pediatr Psychol. 1985;10:215–25.CrossRefPubMedGoogle Scholar
  64. 64.
    Volkmar FR, Carter A, Sparrow SS, Cicchetti DV. Quantifying social development in autism. J Am Acad Child Adolesc Psychiatry. 1993;32:627–32.CrossRefPubMedGoogle Scholar
  65. 65.
    Dykens E, Ort S, Cohen I, et al. Trajectories and profiles of adaptive behavior in males with fragile X syndrome: multicenter studies. J Autism Dev Disord. 1996;26:287–301.CrossRefPubMedGoogle Scholar
  66. 66.
    Klaiman C, Quintin EM, Jo B, et al. Longitudinal profiles of adaptive behavior in fragile X syndrome. Pediatrics. 2014;134:315–24.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Berry-Kravis E, Doll E, Sterling A, et al. Expressive Language sampling as an outcome measure for interventions in fragile X Syndrome. In: International Fragile X Syndrome Conference, 2012 July 25–29, 2012, Miami, Florida.Google Scholar
  68. 68.
    Farzin F, Rivera SM, Hessl D. Brief report: visual processing of faces in individuals with fragile X syndrome: an eye tracking study. J Autism Dev Disord. 2009;39:946–52.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Farzin F, Scaggs F, Hervey C, Berry-Kravis E, Hessl D. Reliability of eye tracking and pupillometry measures in individual s with Fragile X Syndrome. J Autism Dev Disord. 2011;11:1515–22.CrossRefGoogle Scholar
  70. 70.
    Boccia ML, Roberts JE. Behavior and autonomic nervous system function assessed via heart period measures: the case of hyperarousal in boys with fragile X syndrome. Behav Res Methods Instrum Comput. 2000;32:5–10.CrossRefPubMedGoogle Scholar
  71. 71.
    Ferri R, Del Gracco S, Elia M, Musumeci SA, Pettinato S. Heart rate variability and autonomic function during sleep in fragile X syndrome. Am J Med Genet. 1999;83:296–7.CrossRefPubMedGoogle Scholar
  72. 72.
    Klusek J, Roberts JE, Losh M. Cardiac autonomic regulation in autism and Fragile X syndrome: a review. Psychol Bull. 2015;141:141–75.CrossRefPubMedGoogle Scholar
  73. 73.
    Kim SH, Markham JA, Weiler IJ, Greenough WT. Aberrant early-phase ERK inactivation impedes neuronal function in fragile X syndrome. Proc Natl Acad Sci USA. 2008;105:4429–34.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Osterweil EK, Krueger DD, Reinhold K, Bear MF. Hypersensitivity to mGluR5 and ERK1/2 leads to excessive protein synthesis in the hippocampus of a mouse model of fragile X syndrome. J Neurosci. 2010;30:15616–27.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Wang X, Snape M, Klann E, et al. Activation of the extracellular signal-regulated kinase pathway contributes to the behavioral deficit of fragile x-syndrome. J Neurochem. 2012;121:672–9.CrossRefPubMedGoogle Scholar
  76. 76.
    Weng N, Weiler IJ, Sumis A, Berry-Kravis E, Greenough WT. Early-phase ERK activation as a biomarker for metabolic status in fragile X syndrome. Am J Med Genet B Neuropsychiatr Genet. 2008;147B:1253–7.CrossRefPubMedGoogle Scholar
  77. 77.
    Erickson CA, Weng N, Weiler IJ, et al. Open-label riluzole in fragile X syndrome. Brain Res. 2011;1380:264–70.CrossRefPubMedGoogle Scholar
  78. 78.
    Berry-Kravis E, Sumis A, Hervey C, et al. Open-label treatment trial of lithium to target the underlying defect in fragile X syndrome. J Dev Behav Pediatr. 2008;29:293–302.CrossRefPubMedGoogle Scholar
  79. 79.
    Lahiri DK, Long, JM, Ray, B and Sokol DK. Biochemical evidence for the dysregulation of Alzheimer’s amyloid precursor protein (APP) expression and metabolism in Fragile X Syndrome (FXS) and severe autism society of biological psychiatry. New Orleans: Front Cell Neurosci; 2011.Google Scholar
  80. 80.
    Lahiri DK, Sokol DK, Erickson C, Ray B, Ho CY, Maloney B. Autism as early neurodevelopmental disorder: evidence for an sAPPalpha-mediated anabolic pathway. Front Cell Neurosci. 2013;7:94.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    De Rubeis S, Bagni C. Fragile X mental retardation protein control of neuronal mRNA metabolism: insights into mRNA stability. Mol Cell Neurosci. 2010;43:43–50.CrossRefPubMedGoogle Scholar
  82. 82.
    Westmark CJ, Malter JS. FMRP mediates mGluR5-dependent translation of amyloid precursor protein. PLoS Biol. 2007;5:e52.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Erickson CA, Ray B, Maloney B, et al. Impact of acamprosate on plasma amyloid-beta precursor protein in youth: a pilot analysis in fragile X syndrome-associated and idiopathic autism spectrum disorder suggests a pharmacodynamic protein marker. J Psychiatr Res. 2014;59:220–8.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Malter JS, Ray BC, Westmark PR, Westmark CJ. Fragile X Syndrome and Alzheimer’s Disease: another story about APP and beta-amyloid. Curr Alzheimer Res. 2010;7:200–6.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Castren M, Paakkonen A, Tarkka IM, Ryynanen M, Partanen J. Augmentation of auditory N1 in children with fragile X syndrome. Brain Topogr. 2003;15:165–71.CrossRefPubMedGoogle Scholar
  86. 86.
    Knoth IS, Lippe S. Event-related potential alterations in fragile X syndrome. Front Hum Neurosci. 2012;6:264.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Van der Molen MJ, Van der Molen MW, Ridderinkhof KR, Hamel BC, Curfs LM, Ramakers GJ. Auditory change detection in fragile X syndrome males: a brain potential study. Clin Neurophysiol. 2012;123:1309–18.CrossRefPubMedGoogle Scholar
  88. 88.
    Ethridge LE, White SP, Mosconi MW, Wang J, Byerly MJ, Sweeney JA. Reduced habituation of auditory evoked potentials indicate cortical hyper-excitability in Fragile X Syndrome. Transl Psychiatry. 2016;6:e787.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Lovelace JW, Wen TH, Reinhard S, et al. Matrix metalloproteinase-9 deletion rescues auditory evoked potential habituation deficit in a mouse model of Fragile X Syndrome. Neurobiol Dis. 2016;89:126–35.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Schneider A, Leigh MJ, Adams P, et al. Electrocortical changes associated with minocycline treatment in fragile X syndrome. J Psychopharmacol. 2013;27:956–63.CrossRefPubMedGoogle Scholar
  91. 91.
    Greiss Hess L, Fitzpatrick SE, Nguyen DV, et al. A Randomized, double-blind, placebo-controlled trial of low-dose sertraline in young children with fragile X syndrome. J Dev Behav Pediatr. 2016;37:619–28.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Christina M. Harkins
    • 1
  • Kelli C. Dominick
    • 1
    • 2
  • Logan K. Wink
    • 1
    • 2
  • Ernest V. Pedapati
    • 1
    • 2
  • Rebecca C. Shaffer
    • 1
  • Sarah E. Fitzpatrick
    • 1
  • Matthew H. Davenport
    • 1
  • John A. Sweeney
    • 2
  • Craig A. Erickson
    • 1
    • 2
    Email author
  1. 1.Cincinnati Children’s Hospital Medical CenterCincinnatiUSA
  2. 2.University of Cincinnati College of MedicineCincinnatiUSA

Personalised recommendations