Skip to main content
Log in

Muscle Glycogen Metabolism and High-Intensity Exercise Performance: A Narrative Review

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Muscle glycogen is the main substrate during high-intensity exercise and large reductions can occur after relatively short durations. Moreover, muscle glycogen is stored heterogeneously and similarly displays a heterogeneous and fiber-type specific depletion pattern with utilization in both fast- and slow-twitch fibers during high-intensity exercise, with a higher degradation rate in the former. Thus, depletion of individual fast- and slow-twitch fibers has been demonstrated despite muscle glycogen at the whole-muscle level only being moderately lowered. In addition, muscle glycogen is stored in specific subcellular compartments, which have been demonstrated to be important for muscle function and should be considered as well as global muscle glycogen availability. In the present review, we discuss the importance of glycogen metabolism for single and intermittent bouts of high-intensity exercise and outline possible underlying mechanisms for a relationship between muscle glycogen and fatigue during these types of exercise. Traditionally this relationship has been attributed to a decreased ATP resynthesis rate due to inadequate substrate availability at the whole-muscle level, but emerging evidence points to a direct coupling between muscle glycogen and steps in the excitation–contraction coupling including altered muscle excitability and calcium kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Christensen EH, Hansen O. Arbeitsfähigkeit und ernärung (Physical performance and nutrition). Skandinavishes Archiv für Physiolgie. 1939;81:160–71.

    Article  Google Scholar 

  2. Hargreaves M, Hawley JA, Jeukendrup A. Pre-exercise carbohydrate and fat ingestion: effects on metabolism and performance. J Sports Sci. 2004;22(1):31–8.

    Article  PubMed  Google Scholar 

  3. Bergstrom J, Hermansen L, Hultman E, Saltin B. Diet, muscle glycogen and physical performance. Acta Physiol Scand. 1967;71(2):140–50.

    Article  CAS  PubMed  Google Scholar 

  4. Hermansen L, Hultman E, Saltin B. Muscle glycogen during prolonged severe exercise. Acta Physiol Scand. 1967;71(2):129–39.

    Article  CAS  PubMed  Google Scholar 

  5. Karlsson J, Saltin B. Diet, muscle glycogen, and endurance performance. J Appl Physiol. 1971;31(2):203–6.

    Article  CAS  PubMed  Google Scholar 

  6. Gollnick PD, Piehl K, Saubert CW, Armstrong RB, Saltin B. Diet, exercise, and glycogen changes in human muscle fibers. J Appl Physiol. 1972;33(4):421–5.

    Article  CAS  PubMed  Google Scholar 

  7. Costill DL, Gollnick PD, Jansson ED, Saltin B, Stein EM. Glycogen depletion pattern in human muscle fibres during distance running. Acta Physiol Scand. 1973;89(3):374–83.

    Article  CAS  PubMed  Google Scholar 

  8. Hargreaves M. Skeletal muscle metabolism during exercise in humans. Clin Exp Pharmacol Physiol. 2000;27(3):225–8.

    Article  CAS  PubMed  Google Scholar 

  9. Gaitanos GC, Williams C, Boobis LH, Brooks S. Human muscle metabolism during intermittent maximal exercise. J Appl Physiol (1985). 1993;75(2):712–9.

    Article  CAS  Google Scholar 

  10. Jensen TE, Richter EA. Regulation of glucose and glycogen metabolism during and after exercise. J Physiol. 2012;590(5):1069–76.

    Article  CAS  PubMed  Google Scholar 

  11. Parolin ML, Chesley A, Matsos MP, Spriet LL, Jones NL, Heigenhauser GJ. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am J Physiol. 1999;277(5):E890-900.

    CAS  PubMed  Google Scholar 

  12. Hultman E, Greenhaff PL. Skeletal muscle energy metabolism and fatigue during intense exercise in man. Sci Prog. 1991;75(298 Pt 3–4):361–70.

    CAS  PubMed  Google Scholar 

  13. Clausen T, Nielsen OB. The Na+, K(+)-pump and muscle contractility. Acta Physiol Scand. 1994;152(4):365–73.

    Article  CAS  PubMed  Google Scholar 

  14. Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88(1):287–332.

    Article  CAS  PubMed  Google Scholar 

  15. Fitts RH. The role of acidosis in fatigue: pro perspective. Med Sci Sports Exerc. 2016;48(11):2335–8.

    Article  PubMed  Google Scholar 

  16. Cheng AJ, Place N, Westerblad H. Molecular basis for exercise-induced fatigue: the importance of strictly controlled cellular Ca(2+) handling. Cold Spring Harb Perspect Med. 2018;8(2):a029710.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Fitts RH. Cellular mechanisms of muscle fatigue. Physiol Rev. 1994;74(1):49–94.

    Article  CAS  PubMed  Google Scholar 

  18. McKenna MJ, Bangsbo J, Renaud JM. Muscle K+, Na+, and Cl disturbances and Na+-K+ pump inactivation: implications for fatigue. J Appl Physiol (1985). 2008;104(1):288–95.

    Article  CAS  Google Scholar 

  19. Vigh-Larsen JF, Ermidis G, Rago V, Randers MB, Fransson D, Nielsen JL, et al. Muscle metabolism and fatigue during simulated ice hockey match-play in elite players. Med Sci Sports Exerc. 2020;52(10):2162–71.

    Article  CAS  PubMed  Google Scholar 

  20. Gollnick PD, Armstrong RB, Sembrowich WL, Shepherd RE, Saltin B. Glycogen depletion pattern in human skeletal muscle fibers after heavy exercise. J Appl Physiol. 1973;34(5):615–8.

    Article  CAS  PubMed  Google Scholar 

  21. Nielsen J, Ørtenblad N. Physiological aspects of the subcellular localization of glycogen in skeletal muscle. Appl Physiol Nutr Metab. 2013;38(2):91–9.

    Article  CAS  PubMed  Google Scholar 

  22. Ørtenblad N, Westerblad H, Nielsen J. Muscle glycogen stores and fatigue. J Physiol. 2013;591(18):4405–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Marchand I, Chorneyko K, Tarnopolsky M, Hamilton S, Shearer J, Potvin J, et al. Quantification of subcellular glycogen in resting human muscle: granule size, number, and location. J Appl Physiol (1985). 2002;93(5):1598–607.

    Article  CAS  Google Scholar 

  24. Friden J, Seger J, Ekblom B. Topographical localization of muscle glycogen: an ultrahistochemical study in the human vastus lateralis. Acta Physiol Scand. 1989;135(3):381–91.

    Article  CAS  PubMed  Google Scholar 

  25. Friden J, Seger J, Ekblom B. Implementation of periodic acid-thiosemicarbazide-silver proteinate staining for ultrastructural assessment of muscle glycogen utilization during exercise. Cell Tissue Res. 1985;242(1):229–32.

    Article  CAS  PubMed  Google Scholar 

  26. Sjostrom M, Friden J, Ekblom B. Fine structural details of human muscle fibres after fibre type specific glycogen depletion. Histochemistry. 1982;76(4):425–38.

    Article  CAS  PubMed  Google Scholar 

  27. Chin ER, Allen DG. Effects of reduced muscle glycogen concentration on force, Ca2+ release and contractile protein function in intact mouse skeletal muscle. J Physiol. 1997;498(Pt 1):17–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ørtenblad N, Nielsen J, Saltin B, Holmberg HC. Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle. J Physiol. 2011;589(Pt 3):711–25.

    Article  PubMed  CAS  Google Scholar 

  29. Bangsbo J, Graham TE, Kiens B, Saltin B. Elevated muscle glycogen and anaerobic energy production during exhaustive exercise in man. J Physiol. 1992;451:205–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hargreaves M, Finn JP, Withers RT, Halbert JA, Scroop GC, Mackay M, et al. Effect of muscle glycogen availability on maximal exercise performance. Eur J Appl Physiol Occup Physiol. 1997;75(2):188–92.

    Article  CAS  PubMed  Google Scholar 

  31. Balsom PD, Gaitanos GC, Soderlund K, Ekblom B. High-intensity exercise and muscle glycogen availability in humans. Acta Physiol Scand. 1999;165(4):337–45.

    Article  CAS  PubMed  Google Scholar 

  32. Sahlin K, Tonkonogi M, Soderlund K. Energy supply and muscle fatigue in humans. Acta Physiol Scand. 1998;162(3):261–6.

    Article  CAS  PubMed  Google Scholar 

  33. Green HJ. How important is endogenous muscle glycogen to fatigue in prolonged exercise? Can J Physiol Pharmacol. 1991;69(2):290–7.

    Article  CAS  PubMed  Google Scholar 

  34. Jensen R, Nielsen J, Ørtenblad N. Inhibition of glycogenolysis prolongs action potential repriming period and impairs muscle function in rat skeletal muscle. J Physiol. 2020;598(4):789–803.

    Article  CAS  PubMed  Google Scholar 

  35. Watanabe D, Wada M. Effects of reduced muscle glycogen on excitation-contraction coupling in rat fast-twitch muscle: a glycogen removal study. J Muscle Res Cell Motil. 2019;40(3–4):353–64.

    Article  CAS  PubMed  Google Scholar 

  36. Dutka TL, Lamb GD. Na+-K+ pumps in the transverse tubular system of skeletal muscle fibers preferentially use ATP from glycolysis. Am J Physiol Cell Physiol. 2007;293(3):C967–77.

    Article  CAS  PubMed  Google Scholar 

  37. Helander I, Westerblad H, Katz A. Effects of glucose on contractile function, [Ca2+]i, and glycogen in isolated mouse skeletal muscle. Am J Physiol Cell Physiol. 2002;282(6):C1306–12.

    Article  CAS  PubMed  Google Scholar 

  38. Kabbara AA, Nguyen LT, Stephenson GM, Allen DG. Intracellular calcium during fatigue of cane toad skeletal muscle in the absence of glucose. J Muscle Res Cell Motil. 2000;21(5):481–9.

    Article  CAS  PubMed  Google Scholar 

  39. Nielsen J, Schroder HD, Rix CG, Ørtenblad N. Distinct effects of subcellular glycogen localization on tetanic relaxation time and endurance in mechanically skinned rat skeletal muscle fibres. J Physiol. 2009;587(Pt 14):3679–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hearris MA, Hammond KM, Fell JM, Morton JP. Regulation of muscle glycogen metabolism during exercise: implications for endurance performance and training adaptations. Nutrients. 2018;10(3):298.

    Article  PubMed Central  CAS  Google Scholar 

  41. Murray B, Rosenbloom C. Fundamentals of glycogen metabolism for coaches and athletes. Nutr Rev. 2018;76(4):243–59.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Areta JL, Hopkins WG. Skeletal muscle glycogen content at rest and during endurance exercise in humans: a meta-analysis. Sports Med. 2018;48(9):2091–102.

    Article  PubMed  Google Scholar 

  43. Saltin B. Metabolic fundamentals in exercise. Med Sci Sports. 1973;5(3):137–46.

    CAS  PubMed  Google Scholar 

  44. Saltin B, Karlsson J. Muscle glycogen utilization during work of different intensities. In: Pernow B, Saltin B, editors. Muscle metabolism during exercise. New York: Plenum pub; 1971. p. 289–99.

    Chapter  Google Scholar 

  45. Bogdanis GC, Nevill ME, Lakomy HK, Boobis LH. Power output and muscle metabolism during and following recovery from 10 and 20 s of maximal sprint exercise in humans. Acta Physiol Scand. 1998;163(3):261–72.

    Article  CAS  PubMed  Google Scholar 

  46. Bogdanis GC, Nevill ME, Boobis LH, Lakomy HK. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol (1985). 1996;80(3):876–84.

    Article  CAS  Google Scholar 

  47. Jones NL, McCartney N, Graham T, Spriet LL, Kowalchuk JM, Heigenhauser GJ, et al. Muscle performance and metabolism in maximal isokinetic cycling at slow and fast speeds. J Appl Physiol (1985). 1985;59(1):132–6.

    Article  CAS  PubMed  Google Scholar 

  48. Greenhaff PL, Nevill ME, Soderlund K, Bodin K, Boobis LH, Williams C, et al. The metabolic responses of human type I and II muscle fibres during maximal treadmill sprinting. J Physiol. 1994;478(Pt 1):149–55.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Spriet LL. Anaerobic metabolism in human skeletal muscle during short-term, intense activity. Can J Physiol Pharmacol. 1992;70(1):157–65.

    Article  CAS  PubMed  Google Scholar 

  50. Spriet LL, Lindinger MI, McKelvie RS, Heigenhauser GJ, Jones NL. Muscle glycogenolysis and H+ concentration during maximal intermittent cycling. J Appl Physiol (1985). 1989;66(1):8–13.

    Article  CAS  Google Scholar 

  51. Vollestad NK, Tabata I, Medbo JI. Glycogen breakdown in different human muscle fibre types during exhaustive exercise of short duration. Acta Physiol Scand. 1992;144(2):135–41.

    Article  CAS  PubMed  Google Scholar 

  52. Vollestad NK, Blom PC. Effect of varying exercise intensity on glycogen depletion in human muscle fibres. Acta Physiol Scand. 1985;125(3):395–405.

    Article  CAS  PubMed  Google Scholar 

  53. Vollestad NK, Vaage O, Hermansen L. Muscle glycogen depletion patterns in type I and subgroups of type II fibres during prolonged severe exercise in man. Acta Physiol Scand. 1984;122(4):433–41.

    Article  CAS  PubMed  Google Scholar 

  54. Gollnick PD, Armstrong RB, Saubert CW, Sembrowich WL, Shepherd RE, Saltin B. Glycogen depletion patterns in human skeletal muscle fibers during prolonged work. Pflugers Arch. 1973;344(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  55. Essen B. Intramuscular substrate utilization during prolonged exercise. Ann N Y Acad Sci. 1977;301:30–44.

    Article  CAS  PubMed  Google Scholar 

  56. Krustrup P, Soderlund K, Mohr M, Gonzalez-Alonso J, Bangsbo J. Recruitment of fibre types and quadriceps muscle portions during repeated, intense knee-extensor exercise in humans. Pflugers Arch. 2004;449(1):56–65.

    Article  CAS  PubMed  Google Scholar 

  57. Krustrup P, Mohr M, Steensberg A, Bencke J, Kjaer M, Bangsbo J. Muscle and blood metabolites during a soccer game: implications for sprint performance. Med Sci Sports Exerc. 2006;38(6):1165–74.

    Article  CAS  PubMed  Google Scholar 

  58. Ball-Burnett M, Green HJ, Houston ME. Energy metabolism in human slow and fast twitch fibres during prolonged cycle exercise. J Physiol. 1991;437:257–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gollnick PD, Piehl K, Saltin B. Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J Physiol. 1974;241(1):45–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kristensen DE, Albers PH, Prats C, Baba O, Birk JB, Wojtaszewski JF. Human muscle fibre type-specific regulation of AMPK and downstream targets by exercise. J Physiol. 2015;593(8):2053–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Norman B, Sollevi A, Jansson E. Increased IMP content in glycogen-depleted muscle fibres during submaximal exercise in man. Acta Physiol Scand. 1988;133(1):97–100.

    Article  CAS  PubMed  Google Scholar 

  62. Sahlin K, Soderlund K, Tonkonogi M, Hirakoba K. Phosphocreatine content in single fibers of human muscle after sustained submaximal exercise. Am J Physiol. 1997;273(1 Pt 1):C172–8.

    Article  CAS  PubMed  Google Scholar 

  63. Karatzaferi C, de Haan A, Ferguson RA, van Mechelen W, Sargeant AJ. Phosphocreatine and ATP content in human single muscle fibres before and after maximum dynamic exercise. Pflugers Arch. 2001;442(3):467–74.

    Article  CAS  PubMed  Google Scholar 

  64. Ørtenblad N, Nielsen J. Muscle glycogen and cell function—location, location, location. Scand J Med Sci Sports. 2015;25(Suppl 4):34–40.

    Article  PubMed  Google Scholar 

  65. Wanson JC, Drochmans P. Role of the sarcoplasmic reticulum in glycogen metabolism. Binding of phosphorylase, phosphorylase kinase, and primer complexes to the sarcovesicles of rabbit skeletal muscle. J Cell Biol. 1972;54(2):206–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wanson JC, Drochmans P. Rabbit skeletal muscle glycogen. A morphological and biochemical study of glycogen beta-particles isolated by the precipitation-centrifugation method. J Cell Biol. 1968;38(1):130–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nielsen J, Cheng AJ, Ørtenblad N, Westerblad H. Subcellular distribution of glycogen and decreased tetanic Ca2+ in fatigued single intact mouse muscle fibres. J Physiol. 2014;592(9):2003–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jensen R, Ørtenblad N, Stausholm MH, Skjaerbaek MC, Larsen DN, Hansen M, et al. Heterogeneity in subcellular muscle glycogen utilisation during exercise impacts endurance capacity in men. J Physiol. 2020;598(19):4271–92.

    Article  CAS  PubMed  Google Scholar 

  69. Gejl KD, Ørtenblad N, Andersson E, Plomgaard P, Holmberg HC, Nielsen J. Local depletion of glycogen with supramaximal exercise in human skeletal muscle fibres. J Physiol. 2017;595(9):2809–21.

    Article  CAS  PubMed  Google Scholar 

  70. Nielsen J, Holmberg HC, Schroder HD, Saltin B, Ørtenblad N. Human skeletal muscle glycogen utilization in exhaustive exercise: role of subcellular localization and fibre type. J Physiol. 2011;589(Pt 11):2871–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Marchand I, Tarnopolsky M, Adamo KB, Bourgeois JM, Chorneyko K, Graham TE. Quantitative assessment of human muscle glycogen granules size and number in subcellular locations during recovery from prolonged exercise. J Physiol. 2007;580(Pt. 2):617–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hokken R, Laugesen S, Aagaard P, Suetta C, Frandsen U, Ørtenblad N, et al. Subcellular localization- and fibre type-dependent utilization of muscle glycogen during heavy resistance exercise in elite power and Olympic weightlifters. Acta Physiol (Oxf). 2021;231(2):e13561.

  73. Stephenson DG, Nguyen LT, Stephenson GM. Glycogen content and excitation-contraction coupling in mechanically skinned muscle fibres of the cane toad. J Physiol. 1999;519(Pt 1):177–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Barnes M, Gibson LM, Stephenson DG. Increased muscle glycogen content is associated with increased capacity to respond to T-system depolarisation in mechanically skinned skeletal muscle fibres from the rat. Pflugers Arch. 2001;442(1):101–6.

    Article  CAS  PubMed  Google Scholar 

  75. Symons JD, Jacobs I. High-intensity exercise performance is not impaired by low intramuscular glycogen. Med Sci Sports Exerc. 1989;21(5):550–7.

    Article  CAS  PubMed  Google Scholar 

  76. Greenhaff PL, Gleeson M, Maughan RJ. Diet-induced metabolic acidosis and the performance of high intensity exercise in man. Eur J Appl Physiol Occup Physiol. 1988;57(5):583–90.

    Article  CAS  PubMed  Google Scholar 

  77. Greenhaff PL, Gleeson M, Maughan RJ. The effects of dietary manipulation on blood acid-base status and the performance of high intensity exercise. Eur J Appl Physiol Occup Physiol. 1987;56(3):331–7.

    Article  CAS  PubMed  Google Scholar 

  78. Greenhaff PL, Gleeson M, Whiting PH, Maughan RJ. Dietary composition and acid-base status: limiting factors in the performance of maximal exercise in man? Eur J Appl Physiol Occup Physiol. 1987;56(4):444–50.

    Article  CAS  PubMed  Google Scholar 

  79. Maughan RJ, Poole DC. The effects of a glycogen-loading regimen on the capacity to perform anaerobic exercise. Eur J Appl Physiol Occup Physiol. 1981;46(3):211–9.

    Article  CAS  PubMed  Google Scholar 

  80. Jacobs I. Lactate concentrations after short, maximal exercise at various glycogen levels. Acta Physiol Scand. 1981;111(4):465–9.

    Article  CAS  PubMed  Google Scholar 

  81. Wootton SAWC. Influence of carbohydrate-status on performance during maximal exercise. Int J Sports Med. 1984;5:126–7.

    Article  CAS  Google Scholar 

  82. Young K, Davies CT. Effect of diet on human muscle weakness following prolonged exercise. Eur J Appl Physiol Occup Physiol. 1984;53(1):81–5.

    Article  CAS  PubMed  Google Scholar 

  83. Sahlin K, Broberg S, Katz A. Glucose formation in human skeletal muscle. Influence of glycogen content. Biochem J. 1989;258(3):911–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Maughan RJ. Effects of prior exercise on the performance of intense isometric exercise. Br J Sports Med. 1988;22(1):12–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hargreaves M, McKenna MJ, Jenkins DG, Warmington SA, Li JL, Snow RJ, et al. Muscle metabolites and performance during high-intensity, intermittent exercise. J Appl Physiol (1985). 1998;84(5):1687–91.

    Article  CAS  Google Scholar 

  86. Vandenberghe K, Hespel P, Vanden Eynde B, Lysens R, Richter EA. No effect of glycogen level on glycogen metabolism during high intensity exercise. Med Sci Sports Exerc. 1995;27(9):1278–83.

    Article  CAS  PubMed  Google Scholar 

  87. Jenkins DG, Palmer J, Spillman D. The influence of dietary carbohydrate on performance of supramaximal intermittent exercise. Eur J Appl Physiol Occup Physiol. 1993;67(4):309–14.

    Article  CAS  PubMed  Google Scholar 

  88. Casey A, Short AH, Curtis S, Greenhaff PL. The effect of glycogen availability on power output and the metabolic response to repeated bouts of maximal, isokinetic exercise in man. Eur J Appl Physiol Occup Physiol. 1996;72(3):249–55.

    Article  CAS  PubMed  Google Scholar 

  89. Pizza FX, Flynn MG, Duscha BD, Holden J, Kubitz ER. A carbohydrate loading regimen improves high intensity, short duration exercise performance. Int J Sport Nutr. 1995;5(2):110–6.

    Article  CAS  PubMed  Google Scholar 

  90. Mitchell JB, DiLauro PC, Pizza FX, Cavender DL. The effect of preexercise carbohydrate status on resistance exercise performance. Int J Sport Nutr. 1997;7(3):185–96.

    Article  CAS  PubMed  Google Scholar 

  91. Langfort J, Zarzeczny R, Pilis W, Nazar K, Kaciuba-Uscitko H. The effect of a low-carbohydrate diet on performance, hormonal and metabolic responses to a 30-s bout of supramaximal exercise. Eur J Appl Physiol Occup Physiol. 1997;76(2):128–33.

    Article  CAS  PubMed  Google Scholar 

  92. Leveritt M, Abernethy PJ. Effects of carbohydrate restriction on strength performance. J Strength Cond Res. 1999;13:52–7.

    Google Scholar 

  93. Rockwell MS, Rankin JW, Dixon H. Effects of muscle glycogen on performance of repeated sprints and mechanisms of fatigue. Int J Sport Nutr Exerc Metab. 2003;13(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  94. Hatfield DL, Kraemer WJ, Volek JS, Rubin MR, Grebien B, Gomez AL, et al. The effects of carbohydrate loading on repetitive jump squat power performance. J Strength Cond Res. 2006;20(1):167–71.

    PubMed  Google Scholar 

  95. Lima-Silva AE, Pires FO, Bertuzzi R, Silva-Cavalcante MD, Oliveira RS, Kiss MA, et al. Effects of a low- or a high-carbohydrate diet on performance, energy system contribution, and metabolic responses during supramaximal exercise. Appl Physiol Nutr Metab. 2013;38(9):928–34.

    Article  CAS  PubMed  Google Scholar 

  96. Skein M, Duffield R, Kelly BT, Marino FE. The effects of carbohydrate intake and muscle glycogen content on self-paced intermittent-sprint exercise despite no knowledge of carbohydrate manipulation. Eur J Appl Physiol. 2012;112(8):2859–70.

    Article  CAS  PubMed  Google Scholar 

  97. Gejl KD, Hvid LG, Frandsen U, Jensen K, Sahlin K, Ørtenblad N. Muscle glycogen content modifies SR Ca2+ release rate in elite endurance athletes. Med Sci Sports Exerc. 2014;46(3):496–505.

    Article  CAS  PubMed  Google Scholar 

  98. Oliver JM, Almada AL, Van Eck LE, Shah M, Mitchell JB, Jones MT, et al. Ingestion of high molecular weight carbohydrate enhances subsequent repeated maximal power: a randomized controlled trial. PLoS ONE. 2016;11(9):e0163009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Cheng AJ, Chaillou T, Kamandulis S, Subocius A, Westerblad H, Brazaitis M, et al. Carbohydrates do not accelerate force recovery after glycogen-depleting followed by high-intensity exercise in humans. Scand J Med Sci Sports. 2020;30(6):998–1007.

    Article  PubMed  Google Scholar 

  100. Akermark C, Jacobs I, Rasmusson M, Karlsson J. Diet and muscle glycogen concentration in relation to physical performance in Swedish elite ice hockey players. Int J Sport Nutr. 1996;6(3):272–84.

    Article  CAS  PubMed  Google Scholar 

  101. Bangsbo J, Norregaard L, Thorsoe F. The effect of carbohydrate diet on intermittent exercise performance. Int J Sports Med. 1992;13(2):152–7.

    Article  CAS  PubMed  Google Scholar 

  102. Bendiksen M, Bischoff R, Randers MB, Mohr M, Rollo I, Suetta C, et al. The Copenhagen Soccer Test: physiological response and fatigue development. Med Sci Sports Exerc. 2012;44(8):1595–603.

    Article  PubMed  Google Scholar 

  103. Green HJ, Daub BD, Painter DC, Thomson JA. Glycogen depletion patterns during ice hockey performance. Med Sci Sports. 1978;10(4):289–93.

    PubMed  Google Scholar 

  104. Montgomery DL. Physiology of ice hockey. Sports Med. 1988;5(2):99–126.

    Article  CAS  PubMed  Google Scholar 

  105. Krustrup P, Ørtenblad N, Nielsen J, Nybo L, Gunnarsson TP, Iaia FM, et al. Maximal voluntary contraction force, SR function and glycogen resynthesis during the first 72 h after a high-level competitive soccer game. Eur J Appl Physiol. 2011;111(12):2987–95.

    Article  PubMed  Google Scholar 

  106. Pascoe DD, Gladden LB. Muscle glycogen resynthesis after short term, high intensity exercise and resistance exercise. Sports Med. 1996;21(2):98–118.

    Article  CAS  PubMed  Google Scholar 

  107. Jentjens R, Jeukendrup A. Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Med. 2003;33(2):117–44.

    Article  PubMed  Google Scholar 

  108. Jacobs I, Kaiser P, Tesch P. Muscle strength and fatigue after selective glycogen depletion in human skeletal muscle fibers. Eur J Appl Physiol Occup Physiol. 1981;46(1):47–53.

    Article  CAS  PubMed  Google Scholar 

  109. Karlsson J, Sjodin B, Jacobs I, Kaiser P. Relevance of muscle fibre type to fatigue in short intense and prolonged exercise in man. Ciba Found Symp. 1981;82:59–74.

    CAS  PubMed  Google Scholar 

  110. Nybo L. CNS fatigue and prolonged exercise: effect of glucose supplementation. Med Sci Sports Exerc. 2003;35(4):589–94.

    Article  CAS  PubMed  Google Scholar 

  111. Sahlin K, Katz A, Broberg S. Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise. Am J Physiol. 1990;259(5 Pt 1):C834–41.

    Article  CAS  PubMed  Google Scholar 

  112. Norman B, Sollevi A, Kaijser L, Jansson E. ATP breakdown products in human skeletal muscle during prolonged exercise to exhaustion. Clin Physiol. 1987;7(6):503–10.

    Article  CAS  PubMed  Google Scholar 

  113. Broberg S, Sahlin K. Adenine nucleotide degradation in human skeletal muscle during prolonged exercise. J Appl Physiol (1985). 1989;67(1):116–22.

    Article  CAS  Google Scholar 

  114. Sahlin K, Broberg S, Ren JM. Formation of inosine monophosphate (IMP) in human skeletal muscle during incremental dynamic exercise. Acta Physiol Scand. 1989;136(2):193–8.

    Article  CAS  PubMed  Google Scholar 

  115. Gollnick PD, Karlsson J, Piehl K, Saltin B. Selective glycogen depletion in skeletal muscle fibres of man following sustained contractions. J Physiol. 1974;241(1):59–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Meyer RA, Terjung RL. AMP deamination and IMP reamination in working skeletal muscle. Am J Physiol. 1980;239(1):C32–8.

    Article  CAS  PubMed  Google Scholar 

  117. Nelson CR, Debold EP, Fitts RH. Phosphate and acidosis act synergistically to depress peak power in rat muscle fibers. Am J Physiol Cell Physiol. 2014;307(10):C939–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bangsbo J, Graham T, Johansen L, Strange S, Christensen C, Saltin B. Elevated muscle acidity and energy production during exhaustive exercise in humans. Am J Physiol. 1992;263(4 Pt 2):R891–9.

    CAS  PubMed  Google Scholar 

  119. Sherman WM, Costill DL, Fink WJ, Miller JM. Effect of exercise-diet manipulation on muscle glycogen and its subsequent utilization during performance. Int J Sports Med. 1981;2(2):114–8.

    Article  CAS  PubMed  Google Scholar 

  120. Bosch AN, Dennis SC, Noakes TD. Influence of carbohydrate loading on fuel substrate turnover and oxidation during prolonged exercise. J Appl Physiol (1985). 1993;74(4):1921–7.

    Article  CAS  Google Scholar 

  121. Putman CT, Spriet LL, Hultman E, Lindinger MI, Lands LC, McKelvie RS, et al. Pyruvate dehydrogenase activity and acetyl group accumulation during exercise after different diets. Am J Physiol. 1993;265(5 Pt 1):E752–60.

    CAS  PubMed  Google Scholar 

  122. Hargreaves M, McConell G, Proietto J. Influence of muscle glycogen on glycogenolysis and glucose uptake during exercise in humans. J Appl Physiol (1985). 1995;78(1):288–92.

    Article  CAS  Google Scholar 

  123. Madsen K, Pedersen PK, Rose P, Richter EA. Carbohydrate supercompensation and muscle glycogen utilization during exhaustive running in highly trained athletes. Eur J Appl Physiol Occup Physiol. 1990;61(5–6):467–72.

    Article  CAS  PubMed  Google Scholar 

  124. Costill DL, Coyle E, Dalsky G, Evans W, Fink W, Hoopes D. Effects of elevated plasma FFA and insulin on muscle glycogen usage during exercise. J Appl Physiol Respir Environ Exerc Physiol. 1977;43(4):695–9.

    CAS  PubMed  Google Scholar 

  125. Hargreaves M. Muscle glycogen and metabolic regulation. Proc Nutr Soc. 2004;63(2):217–20.

    Article  CAS  PubMed  Google Scholar 

  126. Stellingwerff T, Spriet LL, Watt MJ, Kimber NE, Hargreaves M, Hawley JA, et al. Decreased PDH activation and glycogenolysis during exercise following fat adaptation with carbohydrate restoration. Am J Physiol Endocrinol Metab. 2006;290(2):E380–8.

    Article  CAS  PubMed  Google Scholar 

  127. Hespel P, Richter EA. Glucose uptake and transport in contracting, perfused rat muscle with different pre-contraction glycogen concentrations. J Physiol. 1990;427:347–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hespel P, Richter EA. Mechanism linking glycogen concentration and glycogenolytic rate in perfused contracting rat skeletal muscle. Biochem J. 1992;284(Pt 3):777–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Richter EA, Galbo H. High glycogen levels enhance glycogen breakdown in isolated contracting skeletal muscle. J Appl Physiol (1985). 1986;61(3):827–31.

    Article  CAS  Google Scholar 

  130. Spriet LL, Berardinucci L, Marsh DR, Campbell CB, Graham TE. Glycogen content has no effect on skeletal muscle glycogenolysis during short-term tetanic stimulation. J Appl Physiol (1985). 1990;68(5):1883–8.

    Article  CAS  Google Scholar 

  131. Vandenberghe K, Richter EA, Hespel P. Regulation of glycogen breakdown by glycogen level in contracting rat muscle. Acta Physiol Scand. 1999;165(3):307–14.

    Article  CAS  PubMed  Google Scholar 

  132. Klausen K, Sjogaard G. Glycogen stores and lactate accumulation in skeletal muscle of man during intense bicycle exercise. Scand J Sports Sci. 1980;2(1):7–12.

    Google Scholar 

  133. Boobis LH, Williams C, Wootton SA. Influence of sprint training on muscle metabolism during brief maximal exercise in man. J Physiol. 1983;342:36–7.

    Google Scholar 

  134. Ren JM, Broberg S, Sahlin K, Hultman E. Influence of reduced glycogen level on glycogenolysis during short-term stimulation in man. Acta Physiol Scand. 1990;139(3):467–74.

    Article  CAS  PubMed  Google Scholar 

  135. Spencer MK, Katz A. Role of glycogen in control of glycolysis and IMP formation in human muscle during exercise. Am J Physiol. 1991;260(6 Pt 1):E859–64.

    CAS  PubMed  Google Scholar 

  136. Greenhaff PL, Gleeson M, Maughan RJ. The effects of a glycogen loading regimen on acid-base status and blood lactate concentration before and after a fixed period of high intensity exercise in man. Eur J Appl Physiol Occup Physiol. 1988;57(2):254–9.

    Article  CAS  PubMed  Google Scholar 

  137. Greenhaff PL, Gleeson M, Maughan RJ. The effects of diet on muscle pH and metabolism during high intensity exercise. Eur J Appl Physiol Occup Physiol. 1988;57(5):531–9.

    Article  CAS  PubMed  Google Scholar 

  138. Spriet LL. New insights into the interaction of carbohydrate and fat metabolism during exercise. Sports Med. 2014;44(Suppl 1):S87-96.

    Article  PubMed  Google Scholar 

  139. Sahlin K, Harris RC. Control of lipid oxidation during exercise: role of energy state and mitochondrial factors. Acta Physiol (Oxf). 2008;194(4):283–91.

    Article  CAS  Google Scholar 

  140. Sahlin K, Sallstedt EK, Bishop D, Tonkonogi M. Turning down lipid oxidation during heavy exercise–what is the mechanism? J Physiol Pharmacol. 2008;59(Suppl 7):19–30.

    PubMed  Google Scholar 

  141. Hargreaves M. Exercise, muscle, and CHO metabolism. Scand J Med Sci Sports. 2015;25(Suppl 4):29–33.

    Article  PubMed  Google Scholar 

  142. Ørtenblad N, Macdonald WA, Sahlin K. Glycolysis in contracting rat skeletal muscle is controlled by factors related to energy state. Biochem J. 2009;420(2):161–8.

    Article  PubMed  CAS  Google Scholar 

  143. Newsholme EA, Start C. Regulation in metabolism. Toronto: Wiley; 1973.

    Google Scholar 

  144. Juel C, Pilegaard H, Nielsen JJ, Bangsbo J. Interstitial K(+) in human skeletal muscle during and after dynamic graded exercise determined by microdialysis. Am J Physiol Regul Integr Comp Physiol. 2000;278(2):R400–6.

    Article  CAS  PubMed  Google Scholar 

  145. Clausen T. Quantification of Na+, K+ pumps and their transport rate in skeletal muscle: functional significance. J Gen Physiol. 2013;142(4):327–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Nordsborg N, Mohr M, Pedersen LD, Nielsen JJ, Langberg H, Bangsbo J. Muscle interstitial potassium kinetics during intense exhaustive exercise: effect of previous arm exercise. Am J Physiol Regul Integr Comp Physiol. 2003;285(1):R143–8.

    Article  CAS  PubMed  Google Scholar 

  147. Mohr M, Nordsborg N, Nielsen JJ, Pedersen LD, Fischer C, Krustrup P, et al. Potassium kinetics in human muscle interstitium during repeated intense exercise in relation to fatigue. Pflugers Arch. 2004;448(4):452–6.

    Article  CAS  PubMed  Google Scholar 

  148. Cairns SP, Flatman JA, Clausen T. Relation between extracellular [K+], membrane potential and contraction in rat soleus muscle: modulation by the Na+-K+ pump. Pflugers Arch. 1995;430(6):909–15.

    Article  CAS  PubMed  Google Scholar 

  149. Sejersted OM, Sjogaard G. Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise. Physiol Rev. 2000;80(4):1411–81.

    Article  CAS  PubMed  Google Scholar 

  150. Ruff RL. Sodium channel slow inactivation and the distribution of sodium channels on skeletal muscle fibres enable the performance properties of different skeletal muscle fibre types. Acta Physiol Scand. 1996;156(3):159–68.

    Article  CAS  PubMed  Google Scholar 

  151. Pedersen TH, Clausen T, Nielsen OB. Loss of force induced by high extracellular [K+] in rat muscle: effect of temperature, lactic acid and beta2-agonist. J Physiol. 2003;551(Pt 1):277–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. de Paoli FV, Overgaard K, Pedersen TH, Nielsen OB. Additive protective effects of the addition of lactic acid and adrenaline on excitability and force in isolated rat skeletal muscle depressed by elevated extracellular K+. J Physiol. 2007;581(Pt 2):829–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Overgaard K, Nielsen OB. Activity-induced recovery of excitability in K(+)-depressed rat soleus muscle. Am J Physiol Regul Integr Comp Physiol. 2001;280(1):R48-55.

    Article  CAS  PubMed  Google Scholar 

  154. Leppik JA, Aughey RJ, Medved I, Fairweather I, Carey MF, McKenna MJ. Prolonged exercise to fatigue in humans impairs skeletal muscle Na+-K+-ATPase activity, sarcoplasmic reticulum Ca2+ release, and Ca2+ uptake. J Appl Physiol (1985). 2004;97(4):1414–23.

    Article  CAS  Google Scholar 

  155. Fowles JR, Green HJ, Tupling R, O’Brien S, Roy BD. Human neuromuscular fatigue is associated with altered Na+-K+-ATPase activity following isometric exercise. J Appl Physiol (1985). 2002;92(4):1585–93.

    Article  CAS  Google Scholar 

  156. Fraser SF, Li JL, Carey MF, Wang XN, Sangkabutra T, Sostaric S, et al. Fatigue depresses maximal in vitro skeletal muscle Na(+)-K(+)-ATPase activity in untrained and trained individuals. J Appl Physiol (1985). 2002;93(5):1650–9.

    Article  CAS  Google Scholar 

  157. Aughey RJ, Clark SA, Gore CJ, Townsend NE, Hahn AG, Kinsman TA, et al. Interspersed normoxia during live high, train low interventions reverses an early reduction in muscle Na+, K +ATPase activity in well-trained athletes. Eur J Appl Physiol. 2006;98(3):299–309.

    Article  CAS  PubMed  Google Scholar 

  158. Petersen AC, Murphy KT, Snow RJ, Leppik JA, Aughey RJ, Garnham AP, et al. Depressed Na+-K+-ATPase activity in skeletal muscle at fatigue is correlated with increased Na+-K+-ATPase mRNA expression following intense exercise. Am J Physiol Regul Integr Comp Physiol. 2005;289(1):R266–74.

    Article  CAS  PubMed  Google Scholar 

  159. Sandiford SD, Green HJ, Duhamel TA, Perco JG, Schertzer JD, Ouyang J. Inactivation of human muscle Na+-K+-ATPase in vitro during prolonged exercise is increased with hypoxia. J Appl Physiol (1985). 2004;96(5):1767–75.

    Article  CAS  Google Scholar 

  160. Aughey RJ, Murphy KT, Clark SA, Garnham AP, Snow RJ, Cameron-Smith D, et al. Muscle Na+-K+-ATPase activity and isoform adaptations to intense interval exercise and training in well-trained athletes. J Appl Physiol (1985). 2007;103(1):39–47.

    Article  CAS  Google Scholar 

  161. Jannas-Vela S, Brownell S, Petrick HL, Heigenhauser GJF, Spriet LL, Holloway GP. Assessment of Na+/K+ ATPase activity in small rodent and human skeletal muscle samples. Med Sci Sports Exerc. 2019;51(11):2403–9.

    Article  CAS  PubMed  Google Scholar 

  162. Juel C, Hostrup M, Bangsbo J. The effect of exercise and beta2-adrenergic stimulation on glutathionylation and function of the Na, K-ATPase in human skeletal muscle. Physiol Rep. 2015;3(8):e12515.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Juel C, Nordsborg NB, Bangsbo J. Purinergic effects on Na, K-ATPase activity differ in rat and human skeletal muscle. PLoS ONE. 2014;9(3):e91175.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Juel C, Nordsborg NB, Bangsbo J. Exercise-induced increase in maximal in vitro Na-K-ATPase activity in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2013;304(12):R1161–5.

    Article  CAS  PubMed  Google Scholar 

  165. Juel C. Maximal Na(+)-K(+)-ATPase activity is upregulated in association with muscle activity. J Appl Physiol (1985). 2012;112(12):2121–3.

    Article  CAS  Google Scholar 

  166. Dhar-Chowdhury P, Malester B, Rajacic P, Coetzee WA. The regulation of ion channels and transporters by glycolytically derived ATP. Cell Mol Life Sci. 2007;64(23):3069–83.

    Article  CAS  PubMed  Google Scholar 

  167. James JH, Wagner KR, King JK, Leffler RE, Upputuri RK, Balasubramaniam A, et al. Stimulation of both aerobic glycolysis and Na(+)-K(+)-ATPase activity in skeletal muscle by epinephrine or amylin. Am J Physiol. 1999;277(1):E176–86.

    CAS  PubMed  Google Scholar 

  168. Okamoto K, Wang W, Rounds J, Chambers EA, Jacobs DO. ATP from glycolysis is required for normal sodium homeostasis in resting fast-twitch rodent skeletal muscle. Am J Physiol Endocrinol Metab. 2001;281(3):E479–88.

    Article  CAS  PubMed  Google Scholar 

  169. Baekgaard Nielsen O, de Paoli FV, Riisager A, Pedersen TH. Chloride channels take center stage in acute regulation of excitability in skeletal muscle: implications for fatigue. Physiology (Bethesda). 2017;32(6):425–34.

    Google Scholar 

  170. Imbrici P, Altamura C, Pessia M, Mantegazza R, Desaphy JF, Camerino DC. ClC-1 chloride channels: state-of-the-art research and future challenges. Front Cell Neurosci. 2015;9:156.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Entman ML, Keslensky SS, Chu A, Van Winkle WB. The sarcoplasmic reticulum-glycogenolytic complex in mammalian fast twitch skeletal muscle. Proposed in vitro counterpart of the contraction-activated glycogenolytic pool. J Biol Chem. 1980;255(13):6245–52.

    Article  CAS  PubMed  Google Scholar 

  172. Xu KY, Becker LC. Ultrastructural localization of glycolytic enzymes on sarcoplasmic reticulum vesticles. J Histochem Cytochem. 1998;46(4):419–27.

    Article  CAS  PubMed  Google Scholar 

  173. Lees SJ, Chen YT, Williams JH. Glycogen debranching enzyme is associated with rat skeletal muscle sarcoplasmic reticulum. Acta Physiol Scand. 2004;181(2):239–45.

    Article  CAS  PubMed  Google Scholar 

  174. Lees SJ, Franks PD, Spangenburg EE, Williams JH. Glycogen and glycogen phosphorylase associated with sarcoplasmic reticulum: effects of fatiguing activity. J Appl Physiol (1985). 2001;91(4):1638–44.

    Article  CAS  Google Scholar 

  175. Laver DR. Regulation of ryanodine receptors from skeletal and cardiac muscle during rest and excitation. Clin Exp Pharmacol Physiol. 2006;33(11):1107–13.

    Article  CAS  PubMed  Google Scholar 

  176. Laver DR, Lenz GK, Lamb GD. Regulation of the calcium release channel from rabbit skeletal muscle by the nucleotides ATP, AMP, IMP and adenosine. J Physiol. 2001;537(Pt 3):763–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Popova OB, Baker MR, Tran TP, Le T, Serysheva II. Identification of ATP-binding regions in the RyR1 Ca(2)(+) release channel. PLoS ONE. 2012;7(11):e48725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ogawa H, Kurebayashi N, Yamazawa T, Murayama T. Regulatory mechanisms of ryanodine receptor/Ca(2+) release channel revealed by recent advancements in structural studies. J Muscle Res Cell Motil. 2020 Feb 10. Epub ahead of print.

  179. Duhamel TA, Perco JG, Green HJ. Manipulation of dietary carbohydrates after prolonged effort modifies muscle sarcoplasmic reticulum responses in exercising males. Am J Physiol Regul Integr Comp Physiol. 2006;291(4):R1100–10.

    Article  CAS  PubMed  Google Scholar 

  180. Goodman C, Blazev R, Stephenson G. Glycogen content and contractile responsiveness to T-system depolarization in skinned muscle fibres of the rat. Clin Exp Pharmacol Physiol. 2005;32(9):749–56.

    Article  CAS  PubMed  Google Scholar 

  181. Impey SG, Hearris MA, Hammond KM, Bartlett JD, Louis J, Close GL, et al. Fuel for the work required: a theoretical framework for carbohydrate periodization and the glycogen threshold hypothesis. Sports Med. 2018;48(5):1031–48.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Cuenda A, Nogues M, Henao F, Gutierrez-Merino C. Interaction between glycogen phosphorylase and sarcoplasmic reticulum membranes and its functional implications. J Biol Chem. 1995;270(20):11998–2004.

    Article  CAS  PubMed  Google Scholar 

  183. Favero TG. Sarcoplasmic reticulum Ca(2+) release and muscle fatigue. J Appl Physiol (1985). 1999;87(2):471–83.

    Article  CAS  Google Scholar 

  184. Shearer J, Graham TE. New perspectives on the storage and organization of muscle glycogen. Can J Appl Physiol. 2002;27(2):179–203.

    Article  CAS  PubMed  Google Scholar 

  185. Sacchetto R, Bovo E, Donella-Deana A, Damiani E. Glycogen- and PP1c-targeting subunit GM is phosphorylated at Ser48 by sarcoplasmic reticulum-bound Ca2+-calmodulin protein kinase in rabbit fast twitch skeletal muscle. J Biol Chem. 2005;280(8):7147–55.

    Article  CAS  PubMed  Google Scholar 

  186. Prats C, Gomez-Cabello A, Hansen AV. Intracellular compartmentalization of skeletal muscle glycogen metabolism and insulin signalling. Exp Physiol. 2011;96(4):385–90.

    Article  CAS  PubMed  Google Scholar 

  187. Graham TE. Glycogen: an overview of possible regulatory roles of the proteins associated with the granule. Appl Physiol Nutr Metab. 2009;34(3):488–92.

    Article  CAS  PubMed  Google Scholar 

  188. Graham TE, Yuan Z, Hill AK, Wilson RJ. The regulation of muscle glycogen: the granule and its proteins. Acta Physiol (Oxf). 2010;199(4):489–98.

    Article  CAS  Google Scholar 

  189. Hoffman NJ, Whitfield J, Janzen NR, Belhaj MR, Galic S, Murray-Segal L, et al. Genetic loss of AMPK-glycogen binding destabilises AMPK and disrupts metabolism. Mol Metab. 2020;41:101048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Janzen NR, Whitfield J, Hoffman NJ. Interactive roles for AMPK and glycogen from cellular energy sensing to exercise metabolism. Int J Mol Sci. 2018;19(11):3344.

    Article  PubMed Central  CAS  Google Scholar 

  191. McBride A, Ghilagaber S, Nikolaev A, Hardie DG. The glycogen-binding domain on the AMPK beta subunit allows the kinase to act as a glycogen sensor. Cell Metab. 2009;9(1):23–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. McBride A, Hardie DG. AMP-activated protein kinase–a sensor of glycogen as well as AMP and ATP? Acta Physiol (Oxf). 2009;196(1):99–113.

    Article  CAS  Google Scholar 

  193. Rauch HG, St Clair Gibson A, Lambert EV, Noakes TD. A signalling role for muscle glycogen in the regulation of pace during prolonged exercise. Br J Sports Med. 2005;39(1):34–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Karelis AD, Smith JW, Passe DH, Peronnet F. Carbohydrate administration and exercise performance: what are the potential mechanisms involved? Sports Med. 2010;40(9):747–63.

    Article  PubMed  Google Scholar 

  195. Williams JH, Batts TW, Lees S. Reduced muscle glycogen differentially affects exercise performance and muscle fatigue. Int Scholarly Res Notices. 2013;2013:371235

    Google Scholar 

  196. Matsui T, Soya M, Soya H. Endurance and brain glycogen: a clue toward understanding central fatigue. Adv Neurobiol. 2019;23:331–46.

    Article  PubMed  Google Scholar 

  197. Matsui T, Soya S, Okamoto M, Ichitani Y, Kawanaka K, Soya H. Brain glycogen decreases during prolonged exercise. J Physiol. 2011;589(Pt 13):3383–93.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the contribution to the current project from the Danish Ministry of Culture, the Danish Elite Sports Organization Team Danmark and by The Novo Nordisk Foundation grant to Team Danmark (the PRoKIT research network).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magni Mohr.

Ethics declarations

Funding

The work was supported by the Danish Ministry of Culture (Grant no. FPK.2016-0054), the Danish Elite Sports Organization Team Danmark and by The Novo Nordisk Foundation grant to Team Danmark.

Conflict of interest

No conflicts of interest to declare.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

JFV-L and MM conceived the article. JFV-L conducted the literature search and wrote the first manuscript drafts. All authors made substantial contributions to the conception of the manuscript including critical revisions and contributions. All authors read and approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vigh-Larsen, J.F., Ørtenblad, N., Spriet, L.L. et al. Muscle Glycogen Metabolism and High-Intensity Exercise Performance: A Narrative Review. Sports Med 51, 1855–1874 (2021). https://doi.org/10.1007/s40279-021-01475-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-021-01475-0

Navigation