Skip to main content
Log in

Relative Proximity of Critical Power and Metabolic/Ventilatory Thresholds: Systematic Review and Meta-Analysis

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

A Letter to the Editor to this article was published on 24 June 2021

A Letter to the Editor to this article was published on 24 June 2021

Abstract

Background

Critical power (CP) has been redefined as the new ‘gold standard’ that represents the boundary between the heavy- and severe-exercise intensity domains and hence the maximal metabolic steady state (MMSS). However, several other “thresholds”, for instance, the maximal lactate steady state [MLSS], ventilatory thresholds [VT1, VT2] and respiratory compensation point [RCP]) have been considered synonymous with CP.

Objective

This study aimed to systematically review the scientific literature and perform a meta-analysis to determine the degree of correspondence/difference between CP and MLSS, VT1, VT2 and RCP.

Methods

A literature search on 2 databases (Scopus and Web of Science) was conducted on October 2, 2019. After analyzing 356 resultant articles, studies were included if they met the following inclusion criteria: (a) studies were randomized controlled trials, (b) studies included interrelations between CP and VT1, VT2, MLSS, RCP. Articles were excluded if they constituted duplicate articles or did not meet the inclusion criteria. Nine studies met the inclusion criteria and were included in this meta-analysis. This resulted in 104 participants. A random effects weighted meta-analysis with correlation coefficients was used to pool the results.

Results

The pooled correlation coefficient of CP and all thresholds analyzed was r = 0.73 (p > 0.00001). The subgroup analysis for each threshold with CP demonstrated significant correlation coefficients of r = 0.80 (95% CI [0.40; 1.21], Z = 3.90, p = 0.0001) for CP & RCP; r = 0.77 (CI 95% = [0.36; 1.18], Z = 3.71, p = 0.0002) for CP & MLSS; r = 0.76 (CI 95% = [0.31; 1.21], Z = 3.32, p = 0.0009) for CP & VT1. However, CP & VT2r = 0.39 (CI 95% = [− 0.37; 1.15], Z = 1.01, p = 0.31) were not significantly correlated. Despite the significant correlations between CP and VT1, MLSS and RCP these variables and VT2 under- (VT1, 30%; MLSS, 11%) or over-estimated (RCP, 6%; VT2, 21%) CP.

Conclusion

Regardless of the presence of significant correlations among CP and ventilatory or metabolic thresholds CP differs significantly from each. Thus, logically, if CP represents the best estimate of the heavy-severe exercise intensity transition none of the thresholds considered (i.e., VT1, VT2, MLSS, RCP), at least as determined in the studies analyzed herein, should be considered synonymous with such.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author on request.

References

  1. Hill AV. The physiological basis of athletic records. Nature. 1925;116:544–8.

    Google Scholar 

  2. Monod H, Scherrer J. Capacity for static work in a synergistic muscular group in man. C R Seances Soc Biol Fil. 1957;151(7):1358–62.

    CAS  PubMed  Google Scholar 

  3. Poole DC, Ward SA, Gardner GW, Whipp BJ. Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics. 1988;31:1265–79.

    CAS  PubMed  Google Scholar 

  4. Poole DC, Burnley M, Vanhatalo A, Rossiter HB, Jones AM. Critical power: an important fatigue threshold in exercise physiology. Med Sci Sports Exerc. 2016;48(11):2320–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Jones AM, Carter H. The effect of endurance training on parameters of aerobic fitness. Sports Med. 2000;29(6):373–86.

    CAS  PubMed  Google Scholar 

  6. Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1986;60(6):2020–7.

    CAS  PubMed  Google Scholar 

  7. Jones AM, Wilkerson DP, DiMenna F, Fulford J, Poole DC. Muscle metabolic responses to exercise above and below the ‘‘critical power’’ assessed using 31P-MRS. Am J Physiol Regul Integr Comp Physiol. 2008;294(2):585–93.

    Google Scholar 

  8. Poole DC, Jones AM. Oxygen uptake kinetics. Compr Physiol. 2012;2(2):933–96.

    PubMed  Google Scholar 

  9. Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol Respir Environ Exerc Physiol. 1984;56(4):831–8.

    CAS  PubMed  Google Scholar 

  10. Jones AM, Burnley M, Black MI, Poole DC, Vanhatalo A. The maximal metabolic steady state: redefining the ‘gold standard’. Physiol Rep. 2019;7(10):e14098.

    PubMed  PubMed Central  Google Scholar 

  11. Broxterman RM, Ade CJ, Craig JC, Wilcox SL, Schlup SJ, Barstow TJ. The relationship between critical speed and the respiratory compensation point: coincidence or equivalence. Eur J Sport Sci. 2015;15(7):631–9.

    CAS  PubMed  Google Scholar 

  12. Pringle JS, Jones AM. Maximal lactate steady state, critical power and EMG during cycling. Eur J Appl Physiol. 2002;88(3):214–26.

    CAS  PubMed  Google Scholar 

  13. Carita RA, Greco CC, Denadai BS. Maximal lactate steady state and critical power in well-trained cyclists. Rev Bras Med Esporte. 2009;15(5):370–3.

    Google Scholar 

  14. Mattioni Maturana F, Keir DA, McLay KM, Murias JM. Can measures of the Critical Power precisely estimate the máximal metabolic steady-state? Appl Physiol Nutr Metab. 2016;41(11):1197–203.

    CAS  PubMed  Google Scholar 

  15. Greco CC, Caritá RA, Dekerle J, Denadai BS. Effect of aerobic training status on both maximal lactate steady state and critical power. Appl Physiol Nutr Metab. 2012;37(4):736–43.

    CAS  PubMed  Google Scholar 

  16. Svedahl K, MacIntosh BR. Anaerobic threshold: the concept and methods of measurement. Can J Appl Physiol. 2003;28(2):299–323.

    CAS  PubMed  Google Scholar 

  17. Dekerle J, Baron B, Dupont L, Vanvelcenaher J, Pelayo P. Maximal lactate steady state, respiratory compensation threshold and critical power. Eur J Appl Physiol. 2003;89(3–4):281–8.

    CAS  PubMed  Google Scholar 

  18. Bergstrom HC, Housh TJ, Zuniga JM, Traylor DA, Camic CL, Lewis RW, et al. The relationships among critical power determined from a 3-min all-out test, respiratory compensation point, gas exchange threshold, and ventilatory threshold. Res Q Exerc Sport. 2013;84(2):232–8.

    PubMed  Google Scholar 

  19. Nakamura FY, Okuno NM, Perandini LAB, de Oliveira FR, Bucheit M, Simões HG. Perceived exertion threshold: comparison with ventilatory thersholds and critical power. Sci Sport. 2009;24:196–201.

    Google Scholar 

  20. Caen K, Vermeire K, Bourgois JG, Boone J. Exercise thresholds on trial: are they really equivalent? Med Sci Sports Exerc. 2018;50(6):1277–84.

    PubMed  Google Scholar 

  21. Leo JA, Sabapathy S, Simmonds MJ, Cross TJ. The respiratory compensation point is not a valid surrogate for critical power. Med Sci Sports Exerc. 2017;49(7):1452–60.

    PubMed  Google Scholar 

  22. Jenkins DG, Quigley BM. Blood lactate in trained cyclists during cycle ergometry at critical power. Eur J Appl Physiol Occup Physiol. 1990;61(3–4):278–83.

    CAS  PubMed  Google Scholar 

  23. Bishop D, Jenkins DG, Howard A. The critical power function isdependent on the duration of the predictive exercise tests chosen. Int J Sports Med. 1998;19(2):125–9.

    CAS  PubMed  Google Scholar 

  24. Beneke R. Anaerobic threshold, individual anaerobic threshold, and maximal lactate steady state in rowing. Med Sci Sports Exerc. 1995;27(6):863–7.

    CAS  PubMed  Google Scholar 

  25. Jorfeldt L, Juhlin-Dannfelt A, Karlsson J. Lactate release in relation to tissue lactate in human skeletal muscle during exercise. J Appl Physiol Respir Environ Exerc Physiol. 1978;44(3):350–2.

    CAS  PubMed  Google Scholar 

  26. Wasserman K, McIlroy MB. Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. Am J Cardiol. 1964;14:844–52.

    CAS  PubMed  Google Scholar 

  27. Whipp BJ. The hyperpnea of dynamic muscular exercise. Exerc Sport Sci Rev. 1977;5:295–311.

    CAS  PubMed  Google Scholar 

  28. Vallier JM, Bigard AX, Carré F, Eclache JP, Mercier J. Détermination des seuils lactiques et ventilatoires. Position de la société française de médecine du sport. Sci Sports. 2000;15:133–40.

    Google Scholar 

  29. Keir DA, Fontana FY, Robertson TC, Murias JM, Paterson DH, Kowalchuk JM, et al. Exercise intensity thresholds: indentifying the boundaries of sustainable performance. Med Sci Sports Exerc. 2015;47(9):1932–40.

    PubMed  Google Scholar 

  30. Broxterman RM, Craig JC, Richardson RS. The respiratory compensation point and the deoxygenation break point are not valid surrogates for critical power and maximum lactate steady state. Med Sci Sports Exerc. 2018;50(11):2379–82.

    PubMed  Google Scholar 

  31. Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. PLoS Med. 2009;6(7):e1000097.

    PubMed  PubMed Central  Google Scholar 

  32. de Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother. 2009;55(2):129–33.

    PubMed  Google Scholar 

  33. Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713–21.

    PubMed  Google Scholar 

  34. Baz-Valle E, Fontes-Villalba M, Santos-Concejero J. Total number of sets as a training volumen quantification method for muscle hypertrophy: a systematic review. J Strength Cond Res. Post. 2018. https://doi.org/10.1519/JSC.0000000000002776.

    Article  Google Scholar 

  35. González-Mohíno F, Santos-Concejero J, Yustres I, González-Ravé JM. The effects of interval and continuous training on the oxygen cost of running in recreational runners: a systematic review and meta-analysis. Sport Med. 2020;50(2):283–94.

    Google Scholar 

  36. Review Manager (RevMan) [Windows 10] (2014) Version 5.3. Copenhagen: the Nordic Cochrane Centre, The Cochrane Collaboration

  37. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62(10):e1–34.

    PubMed  Google Scholar 

  38. Barker T, Poole DC, Noble ML, Barstow TJ. Human critical power–oxygen uptake relationship at different pedalling frequencies. Exp Physiol. 2006;91(3):621–32.

    PubMed  Google Scholar 

  39. Keir DA, Pogliaghi S, Murias JM. The respiratory compensation point and the deoxygenation break point are valid surrogates for critical power and maximum lactate steady state. Med Sci Sports Exerc. 2018;50(11):2375–8.

    PubMed  Google Scholar 

  40. Buchfuhrer MJ, Hansen JE, Robinson TE, Sue DY, Wasserman K, Whipp BJ. Optimizing the exercise protocol for cardiopulmonary assessment. J Appl Physiol Respir Environ Exerc Physiol. 1983;55(5):1558–64.

    CAS  PubMed  Google Scholar 

  41. Honig CR, Gayeski TEJ, Groebe K. Myoglobin and oxygen gradients. In: Crystal RG, West JB, Weibel ER, Barnes PJ, editors. The lung: scientific foundations. New York: Raven Press; 1997. p. 1925–34.

    Google Scholar 

  42. Richardson RS, Noyszewski EA, Kendrick KF, Leigh JS, Wagner PD. Myoglobin O2 desaturation during exercise. Evidence of limited O2 transport. J Clin Invest. 1995;96(4):1916–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Voter WA, Gayeski TE. Determination of myoglobin saturation of frozen specimens using a reflecting cryospectrophotometer. Am J Physiol. 1995;269(4–2):1328–41.

    Google Scholar 

  44. Gayeski TE, Connett RJ, Honig CR. Oxygen transport in rest-work transition illustrates new functions for myoglobin. Am J Physiol. 1985;248(6–2):914–21.

    Google Scholar 

  45. Brooks GA. Anaerobic threshold: review of the concept and directions for future research. Med Sci Sports Exerc. 1985;17(1):22–34.

    CAS  PubMed  Google Scholar 

  46. Moritani T, Nagata A, deVries HA, Muro M. Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics. 1981;24(5):339–50.

    CAS  PubMed  Google Scholar 

  47. Poole DC, Schaffartzik W, Knight D, Derion T, Kenned B, Guy HJ, et al. Contribution of exercising legs to the slow component of oxygen uptake kinetics in humans. J Appl Physiol (1985). 1991;71(4):1245–60.

    CAS  Google Scholar 

  48. Jones AM, Poole DC. Physiological demands of endurance exercise. In: Maughan RJ, editor. Olympic textbook of science in sport. Chichester (UK): Blackwell Publishing; 2009. p. 43–55.

    Google Scholar 

  49. Poole DC, Ward SA, Whipp BJ. The effects of training on the metabolic and respiratory profile of high-intensity cycle ergometer exercise. Eur J Appl Physiol Occup Physiol. 1990;59(6):421–9.

    CAS  PubMed  Google Scholar 

  50. Reybrouck T, Ghesquiere J, Cattaert A, Fagard R, Amery A. Ventilatory thresholds during short- and long-term exercise. J Appl Physiol Respir Environ Exerc Physiol. 1983;55(6):1694–700.

    CAS  PubMed  Google Scholar 

  51. Whipp BJ. Control of exercise hyperpnes. In: Hornbein TF, editor. Regulation of breathing. New York: Dekker; 1981. p. 1069–138.

    Google Scholar 

  52. Dempsey JA, Hanson PG, Henderson KS. Exercise-induced arterial hypoxaemia in healthy human subjects at sea level. J Physiol. 1984;355:161–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Dempsey JA, McKenzie DC, Haverkamp HC, Eldridge MW. Update in the understanding of respiratory limitations to exercise performance in fit, active adults. Chest. 2008;134(3):613–22.

    PubMed  Google Scholar 

  54. Amann M, Blain GM, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA. Implications of group III and IV muscle afferents for high-intensity endurance exercise performance in humans. J Physiol. 2011;589(21):5299–309.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Vanhatalo A, Black MI, DiMenna FJ, Blackwell JR, Schmidt JF, Thompson C, et al. The mechanistic bases of the power-time relationship: muscle metabolic responses and relationships to muscle fibre type. J Physiol. 2016;594(15):4407–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Rausch SM, Whipp BJ, Wasserman K, Huszczuk A. Role of the carotid bodies in the respiratory compensation for the metabolic acidosis of exercise in humans. J Physiol. 1991;444:567–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Forster HV, Haouzi P, Dempsey JA. Control of breathing during exercise. Compr Physiol. 2012;2(1):743–77.

    PubMed  Google Scholar 

  58. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10.

    CAS  PubMed  Google Scholar 

  59. Bulbulian R, Wilcox AR, Darabos BL. Anaerobic contribution to distance running performance of trained cross-country athletes. Med Sci Sports Exerc. 1986;18(1):107–13.

    CAS  PubMed  Google Scholar 

  60. Poole DC. Measurements of the anaerobic work capacity in a group of highly trained runners. Med Sci Sports Exerc. 1986;18(6):703–5.

    CAS  PubMed  Google Scholar 

  61. Gaesser GA, Carnevale TJ, Garfinkel A, Walter DO, Womack CJ. Estimation of critical power with nonlinear and linear models. Med Sci Sports Exerc. 1995;27(10):1430–8.

    CAS  PubMed  Google Scholar 

  62. Burnley M, Doust JH, Vanhatalo A. A 3-min all-out test to determine peak oxygen uptake and the maximal steady state. Med Sci Sports Exerc. 2006;38(11):1995–2003.

    PubMed  Google Scholar 

  63. Vanhatalo A, Doust JH, Burnley M. Determination of critical power using a 3-min all-out cycling test. Med Sci Sports Exerc. 2007;39(3):548–55.

    PubMed  Google Scholar 

  64. Vanhatalo A, Doust JH, Burnley M. A 3-min all-out cycling test is sensitive to a change in critical power. Med Sci Sports Exerc. 2008;40(9):1693–9.

    PubMed  Google Scholar 

  65. Vanhatalo A, Doust JH, Burnley M. Robustness of a 3 min all-out cycling test to manipulations of power profile and cadence in humans. Exp Physiol. 2008;93(3):383–90.

    PubMed  Google Scholar 

  66. Broxterman RM, Ade CJ, Poole DC, Harms CA, Barstow TJ. A single test for the determination of parameters of the speed-time relationship for running. Respir Physiol Neurobiol. 2013;185(2):380–5.

    CAS  PubMed  Google Scholar 

  67. Poole DC, Gaesser GA. Response of ventilatory and lactate thresholds to continuous and interval training. J Appl Physiol. 1985;58(4):1115–21.

    CAS  PubMed  Google Scholar 

  68. Gaesser GA, Wilson LA. Effects of continuous and Interval training on the parameters of the power endurance time relationship for high intensity exercise. Int. J. Sports Med. 1988;9(6):417–21.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors met the authorship criteria for this journal and each author made a significant contribution to the final version of this paper.

Corresponding author

Correspondence to José Mª González-Ravé.

Ethics declarations

Funding

No sources of funding were used in the preparation of this article.

Conflict of Interest

Miguel Ángel Galán-Rioja, Fernando González-Mohíno, David C. Poole and José María González-Ravé declare that they have no conflicts of interest relevant to the content of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galán-Rioja, M.Á., González-Mohíno, F., Poole, D.C. et al. Relative Proximity of Critical Power and Metabolic/Ventilatory Thresholds: Systematic Review and Meta-Analysis. Sports Med 50, 1771–1783 (2020). https://doi.org/10.1007/s40279-020-01314-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-020-01314-8

Navigation