Skip to main content
Log in

Strength and Power Training in Rehabilitation: Underpinning Principles and Practical Strategies to Return Athletes to High Performance

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Injuries have a detrimental impact on team and individual athletic performance. Deficits in maximal strength, rate of force development (RFD), and reactive strength are commonly reported following several musculoskeletal injuries. This article first examines the available literature to identify common deficits in fundamental physical qualities following injury, specifically strength, rate of force development and reactive strength. Secondly, evidence-based strategies to target a resolution of these residual deficits will be discussed to reduce the risk of future injury. Examples to enhance practical application and training programmes have also been provided to show how these can be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Drew MK, Raysmith BP, Charlton PC. Injuries impair the chance of successful performance by sportspeople: a systematic review. Br J Sports Med. 2017;51(16):1209–14.

    Article  PubMed  Google Scholar 

  2. Hagglund M, et al. Injuries affect team performance negatively in professional football: an 11-year follow-up of the UEFA Champions League injury study. Br J Sports Med. 2013;47(12):738–42.

    Article  PubMed  Google Scholar 

  3. Williams S, et al. Time loss injuries compromise team success in Elite Rugby Union: a 7-year prospective study. Br J Sports Med. 2016;50(11):651.

    Article  PubMed  Google Scholar 

  4. Windt J, et al. Does player unavailability affect football teams’ match physical outputs? A two-season study of the UEFA champions league. J Sci Med Sport. 2018;21(5):525–32.

    Article  PubMed  Google Scholar 

  5. Esteve E, et al. Preseason adductor squeeze strength in 303 Spanish Male Soccer Athletes: a cross-sectional study. Orthop J Sports Med. 2018;6(1):2325967117747275.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hägglund M, Waldén M, Ekstrand J. Risk factors for lower extremity muscle injury in professional soccer: the UEFA injury study. Am J Sports Med. 2012;41(2):327–35.

    Article  PubMed  Google Scholar 

  7. Arnason A, et al. Risk factors for injuries in football. Am J Sports Med. 2004;32(1 Suppl):5s–16s.

    Article  PubMed  Google Scholar 

  8. Hagglund M, Walden M, Ekstrand J. Previous injury as a risk factor for injury in elite football: a prospective study over two consecutive seasons. Br J Sports Med. 2006;40(9):767–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fulton J, et al. Injury risk is altered by previous injury: a systematic review of the literature and presentation of causative neuromuscular factors. Int J Sports Phys Ther. 2014;9(5):583–95.

    PubMed  PubMed Central  Google Scholar 

  10. Toohey LA, et al. Is subsequent lower limb injury associated with previous injury? A systematic review and meta-analysis. Br J Sports Med. 2017;51(23):1670–8.

    Article  PubMed  Google Scholar 

  11. Jacobsson J, Timpka T. Classification of prevention in sports medicine and epidemiology. Sports Med. 2015;45(11):1483–7.

    Article  PubMed  Google Scholar 

  12. Bourne MN, et al. An evidence-based framework for strengthening exercises to prevent hamstring injury. Sports Med. 2017.

  13. Delahunt E, Fitzpatrick H, Blake C. Pre-season adductor squeeze test and HAGOS function sport and recreation subscale scores predict groin injury in Gaelic football players. Phys Ther Sport. 2017;23:1–6.

    Article  PubMed  Google Scholar 

  14. O’Neill S, Watson PJ, Barry S. A Delphi study of risk factors for Achilles tendinopathy-opinions of world tendon experts. Int J Sports Phys Ther. 2016;11(5):684–97.

    PubMed  PubMed Central  Google Scholar 

  15. Neal BS, Lack SD. Risk factors for patellofemoral pain: a systematic review and meta-analysis. Br J Sports Med. 2019;53:270–81.

    Article  PubMed  Google Scholar 

  16. Anderson MJ, et al. A systematic summary of systematic reviews on the topic of the anterior cruciate ligament. Orthop J Sports Med. 2016;4(3):2325967116634074.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Thorborg K, et al. Eccentric and isometric hip adduction strength in male soccer players with and without adductor-related groin pain: an assessor-blinded comparison. Orthop J Sports Med. 2014;2(2):2325967114521778.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nunes GS, Barton CJ, Serrao FV. Hip rate of force development and strength are impaired in females with patellofemoral pain without signs of altered gluteus medius and maximus morphology. J Sci Med Sport. 2017.

  19. Angelozzi M, et al. Rate of force development as an adjunctive outcome measure for return-to-sport decisions after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2012;42(9):772–80.

    Article  PubMed  Google Scholar 

  20. Wang HK, et al. Evoked spinal reflexes and force development in elite athletes with middle-portion Achilles tendinopathy. J Orthop Sports Phys Ther. 2011;41(10):785–94.

    Article  PubMed  Google Scholar 

  21. Cobian DG, et al. Knee extensor rate of torque development before and after arthroscopic partial meniscectomy, with analysis of neuromuscular mechanisms. J Orthop Sports Phys Ther. 2017;47(12):945–56.

    Article  PubMed  Google Scholar 

  22. Kline PW, et al. Impaired quadriceps rate of torque development and knee mechanics after anterior cruciate ligament reconstruction with patellar tendon autograft. Am J Sports Med. 2015;43(10):2553–8.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Opar DA, et al. Rate of torque and electromyographic development during anticipated eccentric contraction is lower in previously strained hamstrings. Am J Sports Med. 2013;41(1):116–25.

    Article  PubMed  Google Scholar 

  24. Doherty C, et al. Coordination and symmetry patterns during the drop vertical jump, 6-months after first-time lateral ankle sprain. J Orthop Res. 2015;33(10):1537–44.

    Article  PubMed  Google Scholar 

  25. Doherty C, et al. Recovery from a first-time lateral ankle sprain and the predictors of chronic ankle instability: a prospective cohort analysis. Am J Sports Med. 2016;44(4):995–1003.

    Article  PubMed  Google Scholar 

  26. King E. et al. Whole-body biomechanical differences between limbs exist 9 months after ACL reconstruction across jump/landing tasks. Scand J Med Sci Sports. 2018.

  27. Gore SJ, Franklyn-Miller A. Is stiffness related to athletic groin pain? Scand J Med Sci Sports. 2018;28(6):1681–90.

    Article  CAS  PubMed  Google Scholar 

  28. Debenham JR, et al. Achilles tendinopathy alters stretch shortening cycle behaviour during a sub-maximal hopping task. J Sci Med Sport. 2016;19(1):69–73.

    Article  PubMed  Google Scholar 

  29. Maquirriain J. Leg stiffness changes in athletes with Achilles tendinopathy. Int J Sports Med. 2012;33(7):567–71.

    Article  CAS  PubMed  Google Scholar 

  30. Pruyn EC, et al. Relationship between leg stiffness and lower body injuries in professional Australian football. J Sports Sci. 2012;30(1):71–8.

    Article  PubMed  Google Scholar 

  31. Lorimer AV, Hume PA. Stiffness as a risk factor for achilles tendon injury in running athletes. Sports Med. 2016;46(12):1921–38.

    Article  PubMed  Google Scholar 

  32. O’Malley E, et al. Countermovement jump and isokinetic dynamometry as measures of rehabilitation status after anterior cruciate ligament reconstruction. J Athletes Train. 2018;53(7):687–95.

    Article  Google Scholar 

  33. Pratt KA, Sigward SM. Detection of knee power deficits following ACL reconstruction using wearable sensors. J Orthop Sports Phys Ther. 2018;48:1–24.

    Article  Google Scholar 

  34. Lee DW, et al. Single-leg vertical jump test as a functional test after anterior cruciate ligament reconstruction. Knee. 2018;25(6):1016–26.

    Article  PubMed  Google Scholar 

  35. Morin JB, Samozino P. Interpreting power-force-velocity profiles for individualized and specific training. Int J Sports Physiol Perform. 2016;11(2):267–72.

    Article  PubMed  Google Scholar 

  36. Lorenz DS, Reiman MP. Performance enhancement in the terminal phases of rehabilitation. Sports Health. 2011;3(5):470–80.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Macdonald B et al. The single-leg Roman chair hold is more effective than the Nordic hamstring curl in improving hamstring strength-endurance in Gaelic footballers with previous hamstring injury. J Strength Cond Res. 2018.

  38. Beyer R, et al. Heavy slow resistance versus eccentric training as treatment for achilles tendinopathy: a randomized controlled trial. Am J Sports Med. 2015;43(7):1704–11.

    Article  PubMed  Google Scholar 

  39. Lack S, et al. Proximal muscle rehabilitation is effective for patellofemoral pain: a systematic review with meta-analysis. Br J Sports Med. 2015;49(21):1365–76.

    Article  PubMed  Google Scholar 

  40. Presland JD, et al. The effect of Nordic hamstring exercise training volume on biceps femoris long head architectural adaptation. Scand J Med Sci Sports. 2018;28(7):1775–83.

    Article  CAS  PubMed  Google Scholar 

  41. Newton RU, Kraemer WJ. Developing explosive muscular power: implications for a mixed methods training strategy. Strength Cond J. 1994;16(5):20–31.

    Article  Google Scholar 

  42. Kawamori N, Haff GG. The optimal training load for the development of muscular power. J Strength Cond Res. 2004;18(3):675–84.

    PubMed  Google Scholar 

  43. Cormie P, McGuigan MR, Newton RU. Adaptations in athletic performance after ballistic power versus strength training. Med Sci Sports Exerc. 2010;42(8):1582–98.

    Article  PubMed  Google Scholar 

  44. Suchomel TJ, et al. The importance of muscular strength: training considerations. Sports Med. 2018;48:765.

    Article  PubMed  Google Scholar 

  45. Rodríguez-Rosell D, et al. Physiological and methodological aspects of rate of force development assessment in human skeletal muscle. Clin Physiol Funct Imaging. 2018;38(5):743–62.

    Article  PubMed  Google Scholar 

  46. Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power: part 1—biological basis of maximal power production. Sports Med. 2011;41(1):17–38.

    Article  PubMed  Google Scholar 

  47. Hornsby WG, et al. What is the impact of muscle hypertrophy on strength and sport performance? Strength Cond J. 2018;40(6):99–111.

    Article  Google Scholar 

  48. Taber CB, et al. Exercise-induced myofibrillar hypertrophy is a contributory cause of gains in muscle strength. Sports Med. 2019;49(7):993–7.

    Article  PubMed  Google Scholar 

  49. Hughes DC, Ellefsen S, Baar K. Adaptations to endurance and strength training. Cold Spring Harb Perspect Med. 2017;8(6).

  50. Haff GG, Stone MH. Methods of developing power with special reference to football players. Strength Cond J. 2015;37(6):2–16.

    Article  Google Scholar 

  51. Henneman E, Somjen G, Carpenter DO. Excitability and inhibitability of motoneurons of different sizes. J Neurophysiol. 1965;28(3):599–620.

    Article  CAS  PubMed  Google Scholar 

  52. Clark BC, et al. The power of the mind: the cortex as a critical determinant of muscle strength/weakness. J Neurophysiol. 2014;112(12):3219–26.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Stone MH, et al. The importance of isometric maximum strength and peak rate-of-force development in sprint cycling. J Strength Cond Res. 2004;18(4):878–84.

    PubMed  Google Scholar 

  54. Aagaard P, et al. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol (1985). 2002;93(4):1318–26.

    Article  Google Scholar 

  55. Haff GG, Nimphius S. Training principles for power. Strength Cond Res. 2012;34(6):2–12.

    Article  Google Scholar 

  56. Taber C, et al. Roles of maximal strength and rate of force development in maximizing muscular power. Strength Cond Res. 2016;38(1):71–8.

    Article  Google Scholar 

  57. Crewther BT, et al. Baseline strength can influence the ability of salivary free testosterone to predict squat and sprinting performance. J Strength Cond Res. 2012;26(1):261–8.

    Article  PubMed  Google Scholar 

  58. Comfort P, Thomas C. Changes in dynamic strength index in response to strength training. Sports. 2018;6:176.

    Article  PubMed Central  Google Scholar 

  59. James LP, et al. The impact of strength level on adaptations to combined weightlifting, plyometric, and ballistic training. Scand J Med Sci Sports. 2018;28(5):1494–505.

    Article  CAS  PubMed  Google Scholar 

  60. Bohm S, Mersmann F, Arampatzis A. Human tendon adaptation in response to mechanical loading: a systematic review and meta-analysis of exercise intervention studies on healthy adults. Sports Med Open. 2015;1(1):7.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kidgell DJ, et al. Corticospinal responses following strength training: a systematic review and meta-analysis. Eur J Neurosci. 2017;46(11):2648–61.

    Article  PubMed  Google Scholar 

  62. Watson SL, et al. High-intensity resistance and impact training improves bone mineral density and physical function in postmenopausal women with osteopenia and osteoporosis: the LIFTMOR randomized controlled trial. J Bone Miner Res. 2018;33(2):211–20.

    Article  PubMed  Google Scholar 

  63. Magnusson SP, Kjaer M. The impact of loading, unloading, ageing and injury on the human tendon. J Physiol. 2019;597(5):1283–98.

    Article  CAS  PubMed  Google Scholar 

  64. Goodman CA, Hornberger TA, Robling AG. Bone and skeletal muscle: key players in mechanotransduction and potential overlapping mechanisms. Bone. 2015;80:24–36.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Grzelak P, et al. Hypertrophied cruciate ligament in high performance weightlifters observed in magnetic resonance imaging. Int Orthop. 2012;36(8):1715–9.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ploutz L, et al. Effect of resistance training on muscle use during exercise. J Appl Physiol. 1994;76:1675–81.

    Article  CAS  PubMed  Google Scholar 

  67. Stone M, Stone M, Sands W. Principles and practice or resistance training. New York: Human Kinetics; 2007.

    Google Scholar 

  68. Ploutz LL, et al. Effect of resistance training on muscle use during exercise. J Appl Physiol (1985). 1994;76(4):1675–81.

    Article  CAS  Google Scholar 

  69. Baroni BM et al. Hamstring-to-quadriceps torque ratios of professional male soccer players: a systematic review. J Strength Cond Res. 2018.

  70. Grindem H, et al. Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware–Oslo ACL cohort study. Br J Sports Med. 2016;50(13):804–8.

    Article  PubMed  Google Scholar 

  71. Bourne MN, et al. Eccentric knee flexor strength and risk of hamstring injuries in Rugby Union: a prospective study. Am J Sports Med. 2015;43(11):2663–70.

    Article  PubMed  Google Scholar 

  72. Kyritsis P, et al. Likelihood of ACL graft rupture: not meeting six clinical discharge criteria before return to sport is associated with a four times greater risk of rupture. Br J Sports Med. 2016;50(15):946–51.

    Article  PubMed  Google Scholar 

  73. Adams D, et al. Current concepts for anterior cruciate ligament reconstruction: a criterion-based rehabilitation progression. J Orthop Sports Phys Ther. 2012;42(7):601–14.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ardern CL, et al. 2016 Consensus statement on return to sport from the First World Congress in Sports Physical Therapy, Bern. Br J Sports Med. 2016;50(14):853.

    Article  PubMed  Google Scholar 

  75. Grindem H, et al. How does a combined preoperative and postoperative rehabilitation programme influence the outcome of ACL reconstruction 2 years after surgery? A comparison between patients in the Delaware–Oslo ACL Cohort and the Norwegian National Knee Ligament Registry. Br J Sports Med. 2015;49(6):385–9.

    Article  CAS  PubMed  Google Scholar 

  76. Lauersen JB, Bertelsen DM, Andersen LB. The effectiveness of exercise interventions to prevent sports injuries: a systematic review and meta-analysis of randomised controlled trials. Br J Sports Med. 2014;48(11):871.

    Article  PubMed  Google Scholar 

  77. Malone S, et al. Can the workload-injury relationship be moderated by improved strength, speed and repeated-sprint qualities? J Sci Med Sport. 2019;22(1):29–34.

    Article  PubMed  Google Scholar 

  78. Holden S, Barton CJ. ‘What should I prescribe?’: time to improve reporting of resistance training programmes to ensure accurate translation and implementation. Br J Sports Med. 2018;53:264–5.

    Article  PubMed  Google Scholar 

  79. Holden S, et al. How can we implement exercise therapy for patellofemoral pain if we don’t know what was prescribed? A systematic review. Br J Sports Med. 2018;52(6):385.

    PubMed  Google Scholar 

  80. Murphy M, et al. Rate of improvement of pain and function in mid-portion achilles tendinopathy with loading protocols: a systematic review and longitudinal meta-analysis. Sports Med. 2018;48(8):1875–91.

    Article  PubMed  Google Scholar 

  81. Malliaras P, et al. Achilles and patellar tendinopathy loading programmes: a systematic review comparing clinical outcomes and identifying potential mechanisms for effectiveness. Sports Med. 2013;43(4):267–86.

    Article  PubMed  Google Scholar 

  82. Ishoi L, et al. Large eccentric strength increase using the Copenhagen Adduction exercise in football: a randomized controlled trial. Scand J Med Sci Sports. 2016;26(11):1334–42.

    Article  CAS  PubMed  Google Scholar 

  83. Yousefzadeh A, et al. The effect of therapeutic exercise on long-standing adductor-related groin pain in athletes: modified Holmich protocol. Rehabil Res Pract. 2018;2018:10.

    Google Scholar 

  84. Sonnery-Cottet B, Saithna A. Arthrogenic muscle inhibition after ACL reconstruction: a scoping review of the efficacy of interventions. Br J Sports Med. 2019;53(5):289–98.

    Article  PubMed  Google Scholar 

  85. Hopkins JT, Ingersoll CD. Arthrogenic muscle inhibition: a limiting factor in joint rehabilitation. J Sport Rehabil. 2000;9(2):135–59.

    Article  Google Scholar 

  86. Rice DA, McNair PJ. Quadriceps arthrogenic muscle inhibition: neural mechanisms and treatment perspectives. Semin Arthritis Rheum. 2010;40(3):250–66.

    Article  PubMed  Google Scholar 

  87. Pietrosimone BG, et al. Neural excitability alterations after anterior cruciate ligament reconstruction. J Athl Train. 2015;50(6):665–74.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Roy JS, et al. Beyond the joint: the role of central nervous system reorganizations in chronic musculoskeletal disorders. J Orthop Sports Phys Ther. 2017;47(11):817–21.

    PubMed  Google Scholar 

  89. Chang WJ, et al. Altered primary motor cortex structure, organization, and function in chronic pain: a systematic review and meta-analysis. J Pain. 2018;19(4):341–59.

    Article  PubMed  Google Scholar 

  90. Te M, et al. Primary motor cortex organization is altered in persistent patellofemoral pain. Pain Med. 2017;18(11):2224–34.

    Article  PubMed  Google Scholar 

  91. Fyfe JJ, et al. The role of neuromuscular inhibition in hamstring strain injury recurrence. J Electromyogr Kinesiol. 2013;23(3):523–30.

    Article  PubMed  Google Scholar 

  92. Brockett CL, Morgan DL, Proske U. Predicting hamstring strain injury in elite athletes. Med Sci Sports Exerc. 2004;36(3):379–87.

    Article  PubMed  Google Scholar 

  93. Roig M, et al. The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: a systematic review with meta-analysis. Br J Sports Med. 2009;43(8):556–68.

    Article  CAS  PubMed  Google Scholar 

  94. Silder A, et al. MR observations of long-term musculotendon remodeling following a hamstring strain injury. Skelet Radiol. 2008;37(12):1101–9.

    Article  Google Scholar 

  95. Bourne MN, et al. Eccentric knee flexor weakness in elite female footballers 1–10 years following anterior cruciate ligament reconstruction. Phys Ther Sport. 2019;37:144–9.

    Article  PubMed  Google Scholar 

  96. Brughelli M, et al. Contralateral leg deficits in kinetic and kinematic variables during running in Australian rules football players with previous hamstring injuries. J Strength Cond Res. 2010;24(9):2539–44.

    Article  PubMed  Google Scholar 

  97. Lord C, et al. Greater loss of horizontal force after a repeated-sprint test in footballers with a previous hamstring injury. J Sci Med Sport. 2019;22(1):16–21.

    Article  PubMed  Google Scholar 

  98. Charlton PC, et al. Knee flexion not hip extension strength is persistently reduced following hamstring strain injury in Australian Football athletes: implications for Periodic Health Examinations. J Sci Med Sport. 2018;21(10):999–1003.

    Article  PubMed  Google Scholar 

  99. Rathleff MS, et al. Is hip strength a risk factor for patellofemoral pain? A systematic review and meta-analysis. Br J Sports Med. 2014;48(14):1088.

    Article  CAS  PubMed  Google Scholar 

  100. Rio E, et al. Tendon neuroplastic training: changing the way we think about tendon rehabilitation: a narrative review. Br J Sports Med. 2016;50(4):209–15.

    Article  PubMed  Google Scholar 

  101. O’Neill S, Barry S, Watson P. Plantarflexor strength and endurance deficits associated with mid-portion Achilles tendinopathy: the role of soleus. Phys Ther Sport. 2019;37:69–76.

    Article  PubMed  Google Scholar 

  102. Thorborg K. Why hamstring eccentrics are hamstring essentials. Br J Sports Med. 2012;46(7):463–5.

    Article  PubMed  Google Scholar 

  103. Kristensen J, Franklyn-Miller A. Resistance training in musculoskeletal rehabilitation: a systematic review. Br J Sports Med. 2012;46(10):719.

    Article  PubMed  Google Scholar 

  104. Booth J, et al. Exercise for chronic musculoskeletal pain: a biopsychosocial approach. Musculoskelet Care. 2017;15(4):413–21.

    Article  Google Scholar 

  105. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687–708.

    Article  Google Scholar 

  106. Mersmann F, Bohm S, Arampatzis A. Imbalances in the development of muscle and tendon as risk factor for tendinopathies in youth athletes: a review of current evidence and concepts of prevention. Front Physiol. 2017;8:987.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Schoenfeld BJ, et al. Strength and hypertrophy adaptations between low- vs high-load resistance training: a systematic review and meta-analysis. J Strength Cond Res. 2017;31(12):3508–23.

    Article  PubMed  Google Scholar 

  108. Schoenfeld BJ, Grgic J, Krieger J. How many times per week should a muscle be trained to maximize muscle hypertrophy? A systematic review and meta-analysis of studies examining the effects of resistance training frequency. J Sports Sci. 2018;37:1–10.

    Google Scholar 

  109. Hughes L, et al. Blood flow restriction training in clinical musculoskeletal rehabilitation: a systematic review and meta-analysis. Br J Sports Med. 2017;51(13):1003.

    Article  PubMed  Google Scholar 

  110. Kidgell DJ, et al. Increased cross-education of muscle strength and reduced corticospinal inhibition following eccentric strength training. Neuroscience. 2015;300:566–75.

    Article  CAS  PubMed  Google Scholar 

  111. Cirer-Sastre R, Beltrán-Garrido JV, Corbi F. Contralateral effects after unilateral strength training: a meta-analysis comparing training loads. J Sports Sci Med. 2017;16(2):180–6.

    PubMed  PubMed Central  Google Scholar 

  112. Vaegter HB. Exercising non-painful muscles can induce hypoalgesia in individuals with chronic pain. Scand J Pain. 2017;15:60–1.

    Article  PubMed  Google Scholar 

  113. Naugle KM, Fillingim RB, Riley I. A meta-analytic review of the hypoalgesic effects of exercise. J Pain. 2012;13(12):1139–50.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Rio E, et al. Isometric contractions are more analgesic than isotonic contractions for patellar tendon pain: an in-season randomized clinical trial. Clin J Sport Med. 2017;27(3):253–9.

    Article  PubMed  Google Scholar 

  115. Rio E et al. isometric exercise to reduce pain in patellar tendinopathy in-season; is it effective “on the road?”. Clin J Sport Med. 2017.

  116. O’Neill S, et al. Acute sensory and motor response to 45-s heavy isometric holds for the plantar flexors in patients with Achilles tendinopathy. Knee Surg Sports Traumatol Arthrosc. 2018;27(9):2765–73.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Riel H, Vicenzino B. The effect of isometric exercise on pain in individuals with plantar fasciopathy: a randomized crossover trial. Scand J Med Sci Sports. 2018;28(12):2643–50.

    Article  PubMed  Google Scholar 

  118. Lemley KJ, Hunter SK, Bement MK. Conditioned pain modulation predicts exercise-induced hypoalgesia in healthy adults. Med Sci Sports Exerc. 2015;47(1):176–84.

    Article  PubMed  Google Scholar 

  119. Naugle KM, et al. Physical activity behavior predicts endogenous pain modulation in older adults. Pain. 2017;158(3):383–90.

    Article  PubMed  Google Scholar 

  120. Naugle KM, et al. Isometric exercise as a test of pain modulation: effects of experimental pain test, psychological variables, and sex. Pain Med. 2014;15(4):692–701.

    Article  PubMed  Google Scholar 

  121. Sluka KA, Frey-Law L, Hoeger Bement M. Exercise-induced pain and analgesia? Underlying mechanisms and clinical translation. Pain. 2018;159(Suppl 1):S91–7.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Coombes BK, Tucker K. Achilles and patellar tendinopathy display opposite changes in elastic properties: a shear wave elastography study. Scand J Med Sci Sports. 2018;28(3):1201–8.

    Article  CAS  PubMed  Google Scholar 

  123. Oranchuk DJ, et al. Isometric training and long-term adaptations; effects of muscle length, intensity and intent: a systematic review. Scand J Med Sci Sports. 2019;29(4):484–503.

    Article  PubMed  Google Scholar 

  124. Alegre LM, et al. Effects of isometric training on the knee extensor moment-angle relationship and vastus lateralis muscle architecture. Eur J Appl Physiol. 2014;114(11):2437–46.

    Article  PubMed  Google Scholar 

  125. Kubo K, et al. Effects of isometric training at different knee angles on the muscle-tendon complex in vivo. Scand J Med Sci Sports. 2006;16(3):159–67.

    Article  CAS  PubMed  Google Scholar 

  126. Noorkoiv M, Nosaka K, Blazevich AJ. Neuromuscular adaptations associated with knee joint angle-specific force change. Med Sci Sports Exerc. 2014;46(8):1525–37.

    Article  PubMed  Google Scholar 

  127. de Ruiter CJ, et al. Knee angle-dependent oxygen consumption during isometric contractions of the knee extensors determined with near-infrared spectroscopy. J Appl Physiol (1985). 2005;99(2):579–86.

    Article  Google Scholar 

  128. Huang H, et al. Isokinetic angle-specific moments and ratios characterizing hamstring and quadriceps strength in anterior cruciate ligament deficient knees. Sci Rep. 2017;7(1):7269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Eitzen I, et al. Anterior cruciate ligament-deficient potential copers and noncopers reveal different isokinetic quadriceps strength profiles in the early stage after injury. Am J Sports Med. 2010;38(3):586–93.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Rio E, et al. Isometric exercise induces analgesia and reduces inhibition in patellar tendinopathy. Br J Sports Med. 2015;49(19):1277–83.

    Article  PubMed  Google Scholar 

  131. Maffiuletti NA, et al. Rate of force development: physiological and methodological considerations. Eur J Appl Physiol. 2016;116(6):1091–116.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Brazier J, et al. Lower extremity stiffness: considerations for testing, performance enhancement, and injury risk. J Strength Cond Res. 2019;33(4):1156–66.

    Article  PubMed  Google Scholar 

  133. Andersen LL, et al. Early and late rate of force development: differential adaptive responses to resistance training? Scand J Med Sci Sports. 2010;20(1):e162–9.

    Article  CAS  PubMed  Google Scholar 

  134. Tillin NA, Pain MT, Folland JP. Short-term training for explosive strength causes neural and mechanical adaptations. Exp Physiol. 2012;97(5):630–41.

    Article  PubMed  Google Scholar 

  135. Balshaw TG, et al. Training-specific functional, neural, and hypertrophic adaptations to explosive- vs. sustained-contraction strength training. J Appl Physiol (1985). 2016;120(11):1364–73.

    Article  Google Scholar 

  136. Butler RJ, Crowell HP 3rd, Davis IM. Lower extremity stiffness: implications for performance and injury. Clin Biomech (Bristol, Avon). 2003;18(6):511–7.

    Article  Google Scholar 

  137. Suchomel TJ, Comfort P, Lake JP. Enhancing the force–velocity profile of athletes using weightlifting derivatives. Strength Cond J. 2017;39(1):10–20.

    Article  Google Scholar 

  138. Jiménez-Reyes P, et al. Effectiveness of an individualized training based on force–velocity profiling during jumping. Front Physiol. 2016;7:677.

    PubMed  Google Scholar 

  139. Mendiguchia J, et al. Field monitoring of sprinting power-force-velocity profile before, during and after hamstring injury: two case reports. J Sports Sci. 2016;34(6):535–41.

    Article  CAS  PubMed  Google Scholar 

  140. Aagaard P. Spinal and supraspinal control of motor function during maximal eccentric muscle contraction: Effects of resistance training. J Sport Health Sci. 2018;7(3):282–93.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Nishikawa K. Eccentric contraction: unraveling mechanisms of force enhancement and energy conservation. J Exp Biol. 2016;219(2):189.

    Article  PubMed  Google Scholar 

  142. Wagle JP, et al. Accentuated eccentric loading for training and performance: a review. Sports Med. 2017;47(12):2473–95.

    Article  PubMed  Google Scholar 

  143. Harden M, et al. An evaluation of supramaximally loaded eccentric leg press exercise. J Strength Cond Res. 2018;32(10):2708–14.

    Article  PubMed  Google Scholar 

  144. Tallent J, et al. Enhanced corticospinal excitability and volitional drive in response to shortening and lengthening strength training and changes following detraining. Front Physiol. 2017;8:57.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Beattie K, et al. The relationship between maximal strength and reactive strength. Int J Sports Physiol Perform. 2017;12(4):548–53.

    Article  PubMed  Google Scholar 

  146. Flanagan EP, Comyns TM. The use of contact time and the reactive strength index to optimize fast stretch-shortening cycle training. Strength Cond J. 2008;30(5):32–8.

    Article  Google Scholar 

  147. Pedley JS, et al. Drop jump: a technical model for scientific application. Strength Cond J. 2017;39(5):36–44.

    Article  Google Scholar 

  148. McBride JM, McCaulley GO, Cormie P. Influence of preactivity and eccentric muscle activity on concentric performance during vertical jumping. J Strength Cond Res. 2008;22(3):750–7.

    Article  PubMed  Google Scholar 

  149. Asadi A, et al. The effects of plyometric training on change-of-direction ability: a meta-analysis. Int J Sports Physiol Perform. 2016;11(5):563–73.

    Article  PubMed  Google Scholar 

  150. Lum D, et al. Effects of intermittent sprint and plyometric training on endurance running performance. J Sport Health Sci. 2019;8(5):471–7.

    Article  PubMed  Google Scholar 

  151. Butler RJ, Crowell I, Davis IM. Lower extremity stiffness: implications for performance and injury. Clin Biomech. 2003;18(6):511–7.

    Article  Google Scholar 

  152. Child S, et al. Mechanical properties of the achilles tendon aponeurosis are altered in athletes with achilles tendinopathy. Am J Sports Med. 2010;38(9):1885–93.

    Article  PubMed  Google Scholar 

  153. Obst SJ, et al. Are the mechanical or material properties of the achilles and patellar tendons altered in tendinopathy? A systematic review with meta-analysis. Sports Med. 2018;48(9):2179–98.

    Article  PubMed  Google Scholar 

  154. Turner AN, Jeffreys I. The stretch-shortening cycle: proposed mechanisms and methods for enhancement. Strength Cond J. 2010;32(4):87–99.

    Article  Google Scholar 

  155. Maloney SJ, et al. Unilateral stiffness interventions augment vertical stiffness and change of direction speed. J Strength Cond Res. 2019;33(2):372–9.

    Article  PubMed  Google Scholar 

  156. Maloney SJ, et al. Do stiffness and asymmetries predict change of direction performance? J Sports Sci. 2017;35(6):547–56.

    PubMed  Google Scholar 

  157. Lepley LK, Palmieri-Smith R. Effect of eccentric strengthening after anterior cruciate ligament reconstruction on quadriceps strength. J Sport Rehabil. 2013;22(2):150–6.

    Article  PubMed  Google Scholar 

  158. van der Horst N, et al. The preventive effect of the nordic hamstring exercise on hamstring injuries in amateur soccer players: a randomized controlled trial. Am J Sports Med. 2015;43(6):1316–23.

    Article  PubMed  Google Scholar 

  159. Arnason A, et al. Prevention of hamstring strains in elite soccer: an intervention study. Scand J Med Sci Sports. 2008;18(1):40–8.

    Article  CAS  PubMed  Google Scholar 

  160. Petersen J, et al. Preventive effect of eccentric training on acute hamstring injuries in men’s soccer: a cluster-randomized controlled trial. Am J Sports Med. 2011;39(11):2296–303.

    Article  PubMed  Google Scholar 

  161. Geremia JM, et al. Effects of high loading by eccentric triceps surae training on Achilles tendon properties in humans. Eur J Appl Physiol. 2018;118(8):1725–36.

    Article  CAS  PubMed  Google Scholar 

  162. Aune AAG, et al. Acute and chronic effects of foam rolling vs eccentric exercise on ROM and force output of the plantar flexors. J Sports Sci. 2018;37:1–8.

    Google Scholar 

  163. Ghigiarelli JJ, et al. The effects of a 7-week heavy elastic band and weight chain program on upper-body strength and upper-body power in a sample of division 1-AA football players. J Strength Cond Res. 2009;23(3):756–64.

    Article  PubMed  Google Scholar 

  164. Ardern CL, et al. Return to sport following anterior cruciate ligament reconstruction surgery: a systematic review and meta-analysis of the state of play. Br J Sports Med. 2011;45(7):596–606.

    Article  PubMed  Google Scholar 

  165. Burgi CR, et al. Which criteria are used to clear patients to return to sport after primary ACL reconstruction? A scoping review. Br J Sports Med. 2019;53(18):1154–61.

    Article  PubMed  Google Scholar 

  166. Comfort P, McMahon JJ, Suchomel TJ. Optimizing squat technique—revisited. Strength Cond J. 9000. (Publish Ahead of Print).

  167. Kiely J. Periodization theory: confronting an inconvenient truth. Sports Med. 2018;48(4):753–64.

    Article  PubMed  Google Scholar 

  168. Cunanan AJ, et al. The general adaptation syndrome: a foundation for the concept of periodization. Sports Med. 2018;48(4):787–97.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Maestroni.

Ethics declarations

Conflict of interest

Luca Maestroni, Paul Read, Chris Bishop and Anthony Turner declare that they have no conflict of interest.

Funding

No financial support was received for the preparation of this manuscript

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maestroni, L., Read, P., Bishop, C. et al. Strength and Power Training in Rehabilitation: Underpinning Principles and Practical Strategies to Return Athletes to High Performance. Sports Med 50, 239–252 (2020). https://doi.org/10.1007/s40279-019-01195-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-019-01195-6

Navigation