Advertisement

Sports Medicine

, Volume 49, Issue 5, pp 669–682 | Cite as

Training Considerations for Optimising Endurance Development: An Alternate Concurrent Training Perspective

  • Kenji DomaEmail author
  • Glen B. Deakin
  • Mortiz Schumann
  • David J. Bentley
Review Article

Abstract

Whilst the “acute hypothesis” was originally coined to describe the detrimental effects of concurrent training on strength development, similar physiological processes may occur when endurance training adaptations are compromised. There is a growing body of research indicating that typical resistance exercises impair neuromuscular function and endurance performance during periods of resistance training-induced muscle damage. Furthermore, recent evidence suggests that the attenuating effects of resistance training-induced muscle damage on endurance performance are influenced by exercise intensity, exercise mode, exercise sequence, recovery and contraction velocity of resistance training. By understanding the influence that training variables have on the level of resistance training-induced muscle damage and its subsequent attenuating effects on endurance performance, concurrent training programs could be prescribed in such a way that minimises fatigue between modes of training and optimises the quality of endurance training sessions. Therefore, this review will provide considerations for concurrent training prescription for endurance development based on scientific evidence. Furthermore, recommendations will be provided for future research by identifying training variables that may impact on endurance development as a result of concurrent training.

Notes

Compliance with Ethical Standards

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of Interest

Kenji Doma, Glen Deakin, Mortiz Schumann and David Bentley declare that they have no conflicts of interest relevant to the content of this review.

References

  1. 1.
    Fry RW, Morton AR, Keast D. Periodisation of training stress: a review. Can J Sport Sci. 1992;17(3):234–40.Google Scholar
  2. 2.
    Bird SP, Mabon T, Pryde M, Feebrey S, Cannon J. Triphasic multinutrient supplementation during acute resistance exercise improves session volume load and reduces muscle damage in strength-trained athletes. Nutr Res. 2013;33(5):376–87.  https://doi.org/10.1016/j.nutres.2013.03.002.Google Scholar
  3. 3.
    Hakkinen K, Pakarinen A, Alen M, Kauhanen H, Komi PV. Daily hormonal and neuromuscular responses to intensive strength training in 1 week. Int J Sports Med. 1988;9(6):422–8.  https://doi.org/10.1055/s-2007-1025044.Google Scholar
  4. 4.
    Michaut A, Pousson M, Ballay Y, Van Hoecke J. Effects of an eccentric exercise session short-term recovery of muscle contractility. J Soc Biol. 2000;194(3–4):171–6.Google Scholar
  5. 5.
    Scott KE, Rozenek R, Russo AC, Crussemeyer JA, Lacourse MG. Effects of delayed onset muscle soreness on selected physiological responses to submaximal running. J Strength Cond Res. 2003;17(4):652–8.Google Scholar
  6. 6.
    Bentley DJ, Smith PA, Davie AJ, Zhou S. Muscle activation of the knee extensors following high intensity endurance exercise in cyclists. Eur J Appl Physiol. 2000;81(4):297–302.Google Scholar
  7. 7.
    Bentley DJ, Zhou S, Davie AJ. The effect of endurance exercise on muscle force generating capacity of the lower limbs. J Sci Med Sport. 1998;1(3):179–88.Google Scholar
  8. 8.
    Doma K, Deakin G. The acute effect of concurrent training on running performance over 6 days. Res Q Exerc Sport. 2015.  https://doi.org/10.1080/02701367.2015.1053104.Google Scholar
  9. 9.
    Doma K, Deakin GB. The effects of intensity and type of resistance training on muscle force generation capacity immediately- and 6 h post-training. J Sci Med Sport. 2011;14(1):e110.Google Scholar
  10. 10.
    Doma K, Deakin GB. The effects of combined strength and endurance training on running performance the following day. Int J Sport Health Sci. 2013;11:1–9.Google Scholar
  11. 11.
    Doma K, Deakin GB. The effects of strength training and endurance training order on running economy and performance. Appl Physiol Nutr Metab. 2013;38(6):651–6.  https://doi.org/10.1139/apnm-2012-0362.Google Scholar
  12. 12.
    Doma K, Deakin GB. The acute effects intensity and volume of strength training on running performance. Eur J Sports Sci. 2014;14(2):107–15.  https://doi.org/10.1080/17461391.2012.726653.Google Scholar
  13. 13.
    Doma K, Schumann M, Sinclair WH, Leicht AS, Deakin GB, Hakkinen K. The repeated bout effect of typical lower body strength training sessions on sub-maximal running performance and hormonal response. Eur J Appl Physiol. 2015;115(8):1789–99.  https://doi.org/10.1007/s00421-015-3159-z.Google Scholar
  14. 14.
    Gee TI, French DN, Howatson G, Payton SJ, Berger NJ, Thompson KG. Does a bout of strength training affect 2,000 m rowing ergometer performance and rowing-specific maximal power 24 h later? Eur J Appl Physiol. 2011;111(11):2653–62.  https://doi.org/10.1007/s00421-011-1878-3.Google Scholar
  15. 15.
    Doma K, Deakin GB, Bentley DJ. Implications of impaired endurance performance following single bouts of resistance training: an alternate concurrent training perspective. Sports Med. 2017;47(11):2187–200.  https://doi.org/10.1007/s40279-017-0758-3.Google Scholar
  16. 16.
    Craig BW, Lucas J, Pohlman R. The effecxts of running, weightlifting and a combination of both on growth hormone release. J Appl Sport Sci Res. 1991;5:198–203.Google Scholar
  17. 17.
    Chtara M, Chaouachi A, Levin GT, Chaouachi M, Chamari K, Amri M, et al. Effect of concurrent endurance and circuit resistance training sequence on muscular strength and power development. J Strength Cond Res. 2008;22(4):1037–45.  https://doi.org/10.1519/JSC.0b013e31816a4419.Google Scholar
  18. 18.
    Gravelle BL, Blessing DL. Physiological adaptation in women concurrently training for strength and endurance. J Strength Cond Res. 2000;14(1):5–13.Google Scholar
  19. 19.
    Nelson AG, Arnall DA, Loy SF, Silvester LJ, Conlee RK. Consequences of combining strength and endurance training regimens. Phys Ther. 1990;70(5):287–94.Google Scholar
  20. 20.
    Kraemer WJ, Patton JF, Gordon SE, Harman EA, Deschenes MR, Reynolds K, et al. Compatability of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J Appl Physiol. 1995;78(3):976–89.Google Scholar
  21. 21.
    Sale DG, Jacobs I, MacDougall JD, Garner S. Comparison of two regimens of concurrent strength and endurance training. Med Sci Sports Exerc. 1990;22(3):348–56.Google Scholar
  22. 22.
    Robineau J, Babault N, Piscione J, Lacome M, Andre-Xavier B. The specific training effects of concurrent aerobic and strength exercises depends on recovery duration. J Strength Cond Res. 2016;30(3):672–83.  https://doi.org/10.1519/JSC.0000000000000798.Google Scholar
  23. 23.
    Chtara M, Chamari K, Chaouachi M, Chaouachi A, Koubaa D, Feki Y, et al. Effects of intra-session concurrent endurance and strength training sequence on aerobic performance and capacity. Br J Sports Med. 2005;39(8):555–60.  https://doi.org/10.1136/bjsm.2004.015248.Google Scholar
  24. 24.
    Deakin BD. Concurrent training in endurance athletes: the acute effects on muscle recovery capacity, physiological, hormonal and gene expression responses post-exercise. Lismore: Southern Cross University; 2004.Google Scholar
  25. 25.
    Palmer CD, Sleivert GG. Running economy is impaired following a single bout of resistance exercise. J Sci Med Sport. 2001;4(4):447–59.Google Scholar
  26. 26.
    Paschalis V, Koutedakis Y, Baltzopoulos V, Mougios V, Jamurtas AZ, Theoharis V. The effects of muscle damage on running economy in healthy males. Int J Sports Med. 2005;26(10):827–31.  https://doi.org/10.1055/s-2005-837461.Google Scholar
  27. 27.
    Twist C, Eston R. The effects of exercise-induced muscle damage on maximal intensity intermittent exercise performance. Eur J Appl Physiol Occup Physiol. 2005;94(5–6):652–8.  https://doi.org/10.1007/s00421-005-1357-9.Google Scholar
  28. 28.
    Fyfe JJ, Bishop DJ, Stepto NK. Interference between concurrent resistance and endurance exercise: molecular bases and the role of individual training variables. Sports Med. 2014;44(6):743–62.  https://doi.org/10.1007/s40279-014-0162-1.Google Scholar
  29. 29.
    Kraemer WJ, Adams K, Cafarelli E, Dudley GA, Dooly C, Feigenbaum MS, et al. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2002;34(2):364–80.Google Scholar
  30. 30.
    American College of Sports Medicine. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687–708.  https://doi.org/10.1249/mss.0b013e3181915670.Google Scholar
  31. 31.
    Abboud GJ, Greer BK, Campbell SC, Panton LB. Effects of load-volume on EPOC after acute bouts of resistance training in resistance-trained men. J Strength Cond Res. 2013;27(7):1936–41.  https://doi.org/10.1519/JSC.0b013e3182772eed.Google Scholar
  32. 32.
    Moran-Navarro R, Perez CE, Mora-Rodriguez R, de la Cruz-Sanchez E, Gonzalez-Badillo JJ, Sanchez-Medina L, et al. Time course of recovery following resistance training leading or not to failure. Eur J Appl Physiol. 2017;117(12):2387–99.  https://doi.org/10.1007/s00421-017-3725-7.Google Scholar
  33. 33.
    Weakley JJS, Till K, Read DB, Roe GAB, Darrall-Jones J, Phibbs PJ, et al. The effects of traditional, superset, and tri-set resistance training structures on perceived intensity and physiological responses. Eur J Appl Physiol. 2017;117(9):1877–89.  https://doi.org/10.1007/s00421-017-3680-3.Google Scholar
  34. 34.
    Hasenoehrl T, Wessner B, Tschan H, Vidotto C, Crevenna R, Csapo R. Eccentric resistance training intensity may affect the severity of exercise induced muscle damage. J Sports Med Phys Fit. 2017;57(9):1195–204.  https://doi.org/10.23736/S0022-4707.16.06476-8.Google Scholar
  35. 35.
    Draganidis D, Chatzinikolaou A, Jamurtas AZ, Carlos Barbero J, Tsoukas D, Theodorou AS, et al. The time-frame of acute resistance exercise effects on football skill performance: the impact of exercise intensity. J Sports Sci. 2013;31(7):714–22.  https://doi.org/10.1080/02640414.2012.746725.Google Scholar
  36. 36.
    Freitas TT, Calleja-Gonzalez J, Alarcon F, Alcaraz PE. Acute effects of two different resistance circuit training protocols on performance and perceived exertion in semiprofessional basketball players. J Strength Cond Res. 2016;30(2):407–14.  https://doi.org/10.1519/JSC.0000000000001123.Google Scholar
  37. 37.
    Doma K, Leicht A, Sinclair W, Schumann M, Damas F, Burt D, et al. Impact of exercise-induced muscle damage on performance test outcomes in elite female basketball players. J Strength Cond Res. 2018;32(6):1731–8.  https://doi.org/10.1519/JSC.0000000000002244.Google Scholar
  38. 38.
    Chen TC, Nosaka K, Lin MJ, Chen HL, Wu CJ. Changes in running economy at different intensities following downhill running. J Sports Sci. 2009;27(11):1137–44.  https://doi.org/10.1080/02640410903062027.Google Scholar
  39. 39.
    Chen TC, Nosaka K, Tu JH. Changes in running economy following downhill running. J Sports Sci. 2007;25(1):55–63.  https://doi.org/10.1080/02640410600718228.Google Scholar
  40. 40.
    Connolly DA, Sayers SP, McHugh MP. Treatment and prevention of delayed onset muscle soreness. J Strength Cond Res. 2003;17(1):197–208.Google Scholar
  41. 41.
    Abernethy PJ, Thayer R, Taylor AW. Acute and chronic responses of skeletal muscle to endurance and sprint exercise. A review. Sports Med. 1990;10(6):365–89.Google Scholar
  42. 42.
    Beneke R, von Duvillard SP. Determination of maximal lactate steady state response in selected sports events. Med Sci Sports Exerc. 1996;28(2):241–6.Google Scholar
  43. 43.
    Roecker K, Striegel H, Dickhuth HH. Heart-rate recommendations: transfer between running and cycling exercise? Int J Sports Med. 2003;24(3):173–8.  https://doi.org/10.1055/s-2003-39087.Google Scholar
  44. 44.
    Fontana P, Boutellier U, Knopfli-Lenzin C. Time to exhaustion at maximal lactate steady state is similar for cycling and running in moderately trained subjects. Eur J Appl Physiol. 2009;107(2):187–92.  https://doi.org/10.1007/s00421-009-1111-9.Google Scholar
  45. 45.
    Thomas TR, Ziogas G, Smith T, Zhang Q, Londeree BR. Physiological and perceived exertion responses to six modes of submaximal exercise. Res Q Exerc Sport. 1995;66(3):239–46.  https://doi.org/10.1080/02701367.1995.10608838.Google Scholar
  46. 46.
    Hill DW, Vingren JL. Maximal accumulated oxygen deficit in running and cycling. Appl Physiol Nutr Metab. 2011;36(6):831–8.  https://doi.org/10.1139/h11-108.Google Scholar
  47. 47.
    Casuso RA, Aragon-Vela J, Huertas JR, Ruiz-Ariza A, Martinez-Lopez EJ. Comparison of the inflammatory and stress response between sprint interval swimming and running. Scand J Med Sci Sports. 2018;28(4):1371–8.  https://doi.org/10.1111/sms.13046.Google Scholar
  48. 48.
    Gergley JC. Comparison of two lower-body modes of endurance training on lower-body strength development while concurrently training. J Strength Cond Res. 2009;23(3):979–87.  https://doi.org/10.1519/JSC.0b013e3181a0629d.Google Scholar
  49. 49.
    Pasquet B, Carpentier A, Duchateau J, Hainaut K. Muscle fatigue during concentric and eccentric contractions. Muscle Nerve. 2000;23(11):1727–35.Google Scholar
  50. 50.
    Silva RF, Cadore EL, Kothe G, Guedes M, Alberton CL, Pinto SS, et al. Concurrent training with different aerobic exercises. Int J Sports Med. 2012;33(8):627–34.  https://doi.org/10.1055/s-0031-1299698.Google Scholar
  51. 51.
    Kleindienst FI, Michel KJ, Schwarz J, Krabbe B. Comparison of kinematic and kinetic parameters between the locomotion patterns in nordic walking, walking and running. Sportverletz Sportschaden. 2006;20(1):25–30.  https://doi.org/10.1055/s-2006-926592.Google Scholar
  52. 52.
    Dolezal BA, Potteiger JA. Concurrent resistance and endurance training influence basal metabolic rate in nondieting individuals. J Appl Physiol. 1998;85(2):695–700.Google Scholar
  53. 53.
    Glowacki SP, Martin SE, Maurer A, Baek W, Green HJ, Crouse SF. Effects of resistance, endurance, and concurrent exercise on training outcomes in men. Med Sci Sports Exerc. 2004;36(12):2119–27.Google Scholar
  54. 54.
    Hennessy LC, Watson AWS. The interference effects of training for strength and endurance simultaneously. J Strength Cond Res. 1994;8(1):12–9.Google Scholar
  55. 55.
    de Souza EO, Tricoli V, Roschel H, Brum PC, Bacurau AV, Ferreira JC, et al. Molecular adaptations to concurrent training. Int J Sports Med. 2013;34(3):207–13.  https://doi.org/10.1055/s-0032-1312627.Google Scholar
  56. 56.
    Gorostiaga EM, Izquierdo M, Iturralde P, Ruesta M, Ibáñez J. Effects of heavy resistance training on maximal and explosive force production, endurance and serum hormones in adolescent handball players. Eur J Appl Physiol. 1999;80(5):485–93.Google Scholar
  57. 57.
    Rusko H, Bosco CC. Metabolic response of endurance athletes to training with added load. Eur J Appl Physiol Occup Physiol. 1987;56(4):412–8.Google Scholar
  58. 58.
    Kraemer WJ, Vescovi JD, Volek JS, Nindl BC, Newton RU, Patton JF, et al. Effects of concurrent resistance and aerobic training on load-bearing performance and the army physical fitness test. Mil Med. 2004;169(12):994–9.Google Scholar
  59. 59.
    Schumann M, Mykkanen OP, Doma K, Mazzolari R, Nyman K, Hakkinen K. Effects of endurance training only versus same-session combined endurance and strength training on physical performance and serum hormone concentrations in recreational endurance runners. Appl Physiol Nutr Metab. 2015;40(1):28–36.  https://doi.org/10.1139/apnm-2014-0262.Google Scholar
  60. 60.
    Psilander N, Frank P, Flockhart M, Sahlin K. Adding strength to endurance training does not enhance aerobic capacity in cyclists. Scand J Med Sci Sports. 2015;25(4):e353–9.  https://doi.org/10.1111/sms.12338.Google Scholar
  61. 61.
    Levin GT, McGuigan MR, Laursen PB. Effect of concurrent resistance and endurance training on physiologic and performance parameters of well-trained endurance cyclists. J Strength Cond Res. 2009;23(8):2280–6.  https://doi.org/10.1519/JSC.0b013e3181b990c2.Google Scholar
  62. 62.
    Burt D, Lamb K, Nicholas C, Twist C. Effects of repeated bouts of squatting exercise on sub-maximal endurance running performance. Eur J Appl Physiol. 2013;113(2):285–93.  https://doi.org/10.1007/s00421-012-2437-2.Google Scholar
  63. 63.
    Doma K, Schumann M, Leicht AS, Heilbronn BE, Damas F, Burt D. The repeated bout effect of traditional resistance exercises on running performance across 3 bouts. Appl Physiol Nutr Metab. 2017;42(9):978–85.  https://doi.org/10.1139/apnm-2017-0214.Google Scholar
  64. 64.
    Hayter KJ, Doma K, Schumann M, Deakin GB. The comparison of cold-water immersion and cold air therapy on maximal cycling performance and recovery markers following strength exercises. PeerJ. 2016;4:e1841.  https://doi.org/10.7717/peerj.1841.Google Scholar
  65. 65.
    Doncaster GG, Twist C. Exercise-induced muscle damage from bench press exercise impairs arm cranking endurance performance. Eur J Appl Physiol. 2012;112(12):4135–42.  https://doi.org/10.1007/s00421-012-2404-y.Google Scholar
  66. 66.
    Molina R, Denadai BS. Muscle damage slows oxygen uptake kinetics during moderate-intensity exercise performed at high pedal rate. Appl Physiol Nutr Metab. 2011;36(6):848–55.  https://doi.org/10.1139/h11-109.Google Scholar
  67. 67.
    Joyce S, Sabapathy S, Bulmer AC, Minahan C. The effect of prior eccentric exercise on heavy-intensity cycling: the role of gender and oral contraceptives. Eur J Appl Physiol. 2014;114(5):995–1003.  https://doi.org/10.1007/s00421-014-2832-y.Google Scholar
  68. 68.
    Baranauskiene N, Kilikeviciene S, Stasiule L, Civinskiene G, Stasiulis A. Gender differences in residual effect of prior drop jumps on oxygen uptake during heavy cycling exercise. Medicina (Kaunas). 2017;53(5):331–8.  https://doi.org/10.1016/j.medici.2017.10.001.Google Scholar
  69. 69.
    Twist C, Eston RG. The effect of exercise-induced muscle damage on perceived exertion and cycling endurance performance. Eur J Appl Physiol. 2009;105(4):559–67.  https://doi.org/10.1007/s00421-008-0935-z.Google Scholar
  70. 70.
    Chaves CP, Simao R, Miranda H, Ribeiro J, Soares J, Salles B, et al. Influence of exercise order on muscle damage during moderate-intensity resistance exercise and recovery. Res Sports Med. 2013;21(2):176–86.  https://doi.org/10.1080/15438627.2012.738439.Google Scholar
  71. 71.
    Meneghel AJ, Verlengia R, Crisp AH, Aoki MS, Nosaka K, da Mota GR, et al. Muscle damage of resistance-trained men after two bouts of eccentric bench press exercise. J Strength Cond Res. 2014;28(10):2961–6.  https://doi.org/10.1519/JSC.0000000000000494.Google Scholar
  72. 72.
    Leveritt M, Abernethy PJ, Barry BK, Logan PA. Concurrent strength and endurance training. A review. Sports Med. 1999;28(6):413–27.Google Scholar
  73. 73.
    Schumann M, Pelttari P, Doma K, Karavirta L, Hakkinen K. Neuromuscular adaptations to same-session combined endurance and strength training in recreational endurance runners. Int J Sports Med. 2016;37(14):1136–43.  https://doi.org/10.1055/s-0042-112592.Google Scholar
  74. 74.
    Collins MA, Snow TK. Are adaptations to combined endurance and strength training affected by the sequence of training? J Sports Sci. 1993;11(6):485–91.  https://doi.org/10.1080/02640419308730017.Google Scholar
  75. 75.
    Eddens L, van Someren K, Howatson G. The role of intra-session exercise sequence in the interference effect: a systematic review with meta-analysis. Sports Med. 2018;48(1):177–88.  https://doi.org/10.1007/s40279-017-0784-1.Google Scholar
  76. 76.
    Legaz Arrese A, Serrano Ostariz E, Jcasajus Mallen JA, Munguia Izquierdo D. The changes in running performance and maximal oxygen uptake after long-term training in elite athletes. J Sports Med Phys Fit. 2005;45(4):435–40.Google Scholar
  77. 77.
    Borgen NT. Running performance, VO2max, and running economy: the widespread issue of endogenous selection bias. Sports Med. 2018;48(5):1049–58.  https://doi.org/10.1007/s40279-017-0789-9.Google Scholar
  78. 78.
    Waldman HS, Heatherly AJ, Waddell AF, Krings BM, O’Neal EK. Five-kilometer time trial reliability of a nonmotorized treadmill and comparison of physiological and perceptual responses vs. a motorized treadmill. J Strength Cond Res. 2018;32(5):1455–61.  https://doi.org/10.1519/jsc.0000000000001993.Google Scholar
  79. 79.
    Doma K, Deakin BD, Leicht A, Sealey RM. The reliabiliity of running economy among trained distance runners and field-based players. J Exerc Sci Fit. 2012;10(2):90–6.  https://doi.org/10.1016/j.jesf.2012.10.006.Google Scholar
  80. 80.
    Hakkinen K, Komi PV, Alen M. Effect of explosive type strength training on isometric force- and relaxation-time, electromyographic and muscle fibre characteristics of leg extensor muscles. Acta Physiol Scand. 1985;125(4):587–600.Google Scholar
  81. 81.
    Housh DJ, Housh TJ, Johnson GO, Chu WK. Hypertrophic response to unilateral concentric isokinetic resistance training. J Appl Physiol. 1992;73(1):65–70.Google Scholar
  82. 82.
    Ballor DL, Becque MD, Katch VL. Metabolic responses during hydraulic resistance exercise. Med Sci Sports Exerc. 1987;19(4):363–7.Google Scholar
  83. 83.
    Burd NA, Andrews RJ, West DW, Little JP, Cochran AJ, Hector AJ, et al. Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J Physiol. 2012;590(Pt 2):351–62.  https://doi.org/10.1113/jphysiol.2011.221200.Google Scholar
  84. 84.
    Crewther B, Keogh J, Cronin J, Cook C. Possible stimuli for strength and power adaptation: acute hormonal responses. Sports Med. 2006;36(3):215–38.Google Scholar
  85. 85.
    Keogh JW, Wilson GJ, Weatherby RP. A cross-sectional comparison of different resistance training techniques in the bench press. J Strength Cond Res. 1999;13(3):247–58.Google Scholar
  86. 86.
    Keeler LK, Finkelstein LH, Miller W, Fernhall B. Early-phase adaptations of traditional-speed vs. superslow resistance training on strength and aerobic capacity in sedentary individuals. J Strength Cond Res. 2001;15(3):309–14.Google Scholar
  87. 87.
    Lavender AP, Nosaka K. Changes in fluctuation of isometric force following eccentric and concentric exercise of the elbow flexors. Eur J Appl Physiol Occup Physiol. 2006;96(3):235–40.  https://doi.org/10.1007/s00421-005-0069-5.Google Scholar
  88. 88.
    Muthalib M, Lee H, Millet GY, Ferrari M, Nosaka K. Comparison between maximal lengthening and shortening contractions for biceps brachii muscle oxygenation and hemodynamics. J Appl Physiol. 2010;109(3):710–20.  https://doi.org/10.1152/japplphysiol.01297.2009.Google Scholar
  89. 89.
    Morgan DL, Allen DG. Early events in stretch-induced muscle damage. J Appl Physiol. 1999;87(6):2007–15.Google Scholar
  90. 90.
    Proske U, Morgan DL. Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol. 2001;537(Pt 2):333–45.Google Scholar
  91. 91.
    Chapman D, Newton M, Sacco P, Nosaka K. Greater muscle damage induced by fast versus slow velocity eccentric exercise. Int J Sports Med. 2006;27(8):591–8.  https://doi.org/10.1055/s-2005-865920.Google Scholar
  92. 92.
    Chapman DW, Newton M, McGuigan M, Nosaka K. Effect of lengthening contraction velocity on muscle damage of the elbow flexors. Med Sci Sports Exerc. 2008;40(5):926–33.  https://doi.org/10.1249/MSS.0b013e318168c82d.Google Scholar
  93. 93.
    Dolezal BA, Potteiger JA, Jacobsen DJ, Benedict SH. Muscle damage and resting metabolic rate after acute resistance exercise with an eccentric overload. Med Sci Sports Exerc. 2000;32(7):1202–7.Google Scholar
  94. 94.
    Hackney KJ, Engels HJ, Gretebeck RJ. Resting energy expenditure and delayed-onset muscle soreness after full-body resistance training with an eccentric concentration. J Strength Cond Res. 2008;22(5):1602–9.  https://doi.org/10.1519/JSC.0b013e31818222c5.Google Scholar
  95. 95.
    Izquierdo M, Ibanez J, Hakkinen K, Kraemer WJ, Larrion JL, Gorostiaga EM. Once weekly combined resistance and cardiovascular training in healthy older men. Med Sci Sports Exerc. 2004;36(3):435–43.Google Scholar
  96. 96.
    Baar K. Training for endurance and strength: lessons from cell signaling. Med Sci Sports Exerc. 2006;38(11):1939–44.  https://doi.org/10.1249/01.mss.0000233799.62153.19.Google Scholar
  97. 97.
    Drummond MJ, Vehrs PR, Schaalje GB, Parcell AC. Aerobic and resistance exercise sequence affects excess postexercise oxygen consumption. J Strength Cond Res. 2005;19(2):332–7.  https://doi.org/10.1519/R-14353.1.Google Scholar
  98. 98.
    Ronnestad BR, Hansen EA, Raastad T. In-season strength maintenance training increases well-trained cyclists’ performance. Eur J Appl Physiol. 2010;110(6):1269–82.  https://doi.org/10.1007/s00421-010-1622-4.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.James Cook Drive, Rehab Sciences Building (DB-43)James Cook UniversityTownsvilleAustralia
  2. 2.James Cook UniversityCairnsAustralia
  3. 3.German Sport UniversityCologneGermany
  4. 4.Flinders University, Social Health SciencesAdelaideAustralia

Personalised recommendations