Mental Fatigue Impairs Endurance Performance: A Physiological Explanation
- 1.4k Downloads
- 10 Citations
Abstract
Mental fatigue reflects a change in psychobiological state, caused by prolonged periods of demanding cognitive activity. It has been well documented that mental fatigue impairs cognitive performance; however, more recently, it has been demonstrated that endurance performance is also impaired by mental fatigue. The mechanism behind the detrimental effect of mental fatigue on endurance performance is poorly understood. Variables traditionally believed to limit endurance performance, such as heart rate, lactate accumulation and neuromuscular function, are unaffected by mental fatigue. Rather, it has been suggested that the negative impact of mental fatigue on endurance performance is primarily mediated by the greater perception of effort experienced by mentally fatigued participants. Pageaux et al. (Eur J Appl Physiol 114(5):1095–1105, 2014) first proposed that prolonged performance of a demanding cognitive task increases cerebral adenosine accumulation and that this accumulation may lead to the higher perception of effort experienced during subsequent endurance performance. This theoretical review looks at evidence to support and extend this hypothesis.
Notes
Acknowledgements
The authors would like to acknowledge the anonymous reviewers who contributed to earlier versions of this manuscript and improved both the quality and the content of the article.
Compliance with Ethics Standards
Funding
No sources of funding were used to assist in the preparation of this article.
Conflicts of interest
Kristy Martin, Romain Meeusen, Richard Keegan, Kevin G. Thompson and Ben Rattray declare that they have no conflicts of interest relevant to the content of this review.
References
- 1.Marcora SM, Staiano W, Manning V. Mental fatigue impairs physical performance in humans. J Appl Physiol. 2009;106(3):857–64. https://doi.org/10.1152/japplphysiol.91324.2008.PubMedCrossRefGoogle Scholar
- 2.Meijman TF. The theory of the stop-emotion: on the functionality of fatigue. In: Pogorski D, Karwowski W, editors. Ergonomics and safety for global business quality and production. Warsaw: CIOP; 2000. p. 45–50.Google Scholar
- 3.Holding D. Fatigue stress and fatigue in human performance. Durham: Wiley; 1983.Google Scholar
- 4.van der Linden D, Frese M, Meijman TF. Mental fatigue and the control of cognitive processes: effects on perseveration and planning. Acta Psychol (Amst). 2003;113:45–65. https://doi.org/10.1016/S0001-6918(02)00150-6.PubMedCrossRefGoogle Scholar
- 5.Boksem MA, Meijman TF, Lorist MM. Effects of mental fatigue on attention: an ERP study. Brain Res Cogn Brain Res. 2005;25:107–16. https://doi.org/10.1016/j.cogbrainres.2005.04.011.PubMedCrossRefGoogle Scholar
- 6.Lorist MM, Boksem MAS, Ridderinkhof KR. Impaired cognitive control and reduced cingulate activity during mental fatigue. Cogn Brain Res. 2005;24:199–205. https://doi.org/10.1016/j.cogbrainres.2005.01.018.CrossRefGoogle Scholar
- 7.Van Cutsem J, Marcora S, De Pauw K, Bailey S, Meeusen R, Roelands B. The effects of mental fatigue on physical performance: a systematic review. Sports Med. 2017;47(8):1569–88. https://doi.org/10.1007/s40279-016-0672-0.PubMedCrossRefGoogle Scholar
- 8.Pageaux B, Marcora S, Lepers L. Prolonged mental exertion does not alter neuromuscular function of the knee extensors. Med Sci Sports Exerc. 2013;45(12):2254–64.PubMedCrossRefGoogle Scholar
- 9.Pageaux B, Lepers R, Dietz KC, Marcora SM. Response inhibition impairs subsequent self-paced endurance performance. Eur J Appl Physiol. 2014;114(5):1095–105.PubMedCrossRefGoogle Scholar
- 10.MacMahon C, Schücker L, Hagemann N, Strauss B. Cognitive fatigue effects on physical performance during running. J Sport Exerc Psychol. 2014;36(4):375–81.PubMedCrossRefGoogle Scholar
- 11.Smith MR, Marcora SM, Coutts AJ. Mental fatigue impairs intermittent running performance. Med Sci Sports Exerc. 2015;47(8):1682–90.PubMedCrossRefGoogle Scholar
- 12.Smith MR, Coutts AJ, Merlini M, Deprez D, Lenoir M, Marcora SM. Mental fatigue impairs soccer-specific physical and technical performance. Med Sci Sports Exerc. 2016;48(2):267–76.PubMedCrossRefGoogle Scholar
- 13.Pageaux B, Marcora SM, Rozand V, Lepers R. Mental fatigue induced by prolonged self-regulation does not exacerbate central fatigue during subsequent whole-body endurance exercise. Front Hum Neurosci. 2015;9:67. https://doi.org/10.3389/fnhum.2015.00067.PubMedPubMedCentralCrossRefGoogle Scholar
- 14.Pageaux B, Lepers R. Fatigue induced by physical and mental exertion increases perception of effort and impairs subsequent endurance performance. Front Physiol. 2016;7:587. https://doi.org/10.3389/fphys.2016.00587.PubMedPubMedCentralCrossRefGoogle Scholar
- 15.Pageaux B. Perception of effort in exercise science: definition, measurement and perspectives. Eur J Sport Sci. 2016;16(8):885–94.PubMedCrossRefGoogle Scholar
- 16.Abbiss CR, Peiffer JJ, Meeusen R, Skorski S. Role of ratings of perceived exertion during self-paced exercise: what are we actually measuring? Sports Med. 2015;45(9):1235–43.PubMedCrossRefGoogle Scholar
- 17.Marcora SM. Perception of effort. In: Goldstein EB, editor. Encyclopedia of perception. Thousand Oaks: Sage; 2010. p. 380–3.Google Scholar
- 18.Borg G. Borg’s perceived exertion and pain scales. Champaign,: Human Kinetics; 1998.Google Scholar
- 19.Marcora SM. Do we really need a central governor to explain brain regulation of exercise performance? Eur J Appl Physiol. 2008;104(5):929–31. https://doi.org/10.1007/s00421-008-0818-3.PubMedCrossRefGoogle Scholar
- 20.Pageaux B. The psychobiological model of endurance performance: an effort-based decision-making theory to explain self-paced endurance performance. Sports Med. 2014;44(9):1319–20. https://doi.org/10.1007/s40279-014-0198-2.PubMedCrossRefGoogle Scholar
- 21.Wright RA. Brehm’s theory of motivation as a model of effort and cardiovascular response. In: Gollwitzer PM, Bargh JA, editors. The psychology of action: linking cognition and motivation to behavior. New York: Guilford; 1996. p. 424–53.Google Scholar
- 22.Marcora SM, Bosio A, de Morree HM. Locomotor muscle fatigue increases cardiorespiratory responses and reduces performance during intense cycling exercise independently from metabolic stress. Am J Physiol Regul Integr Comp Physiol. 2008;294:R874–83.PubMedCrossRefGoogle Scholar
- 23.Brehm JW, Self EA. The intensity of motivation. Annu Rev Psychol. 1989;40:109–31.PubMedCrossRefGoogle Scholar
- 24.Azevedo R, Silva-Cavalcante MD, Gualano B, Lima-Silva AE, Bertuzzi R. Effects of caffeine ingestion on endurance performance in mentally fatigued individuals. Eur J Appl Physiol. 2016;116(11–12):2293–303.PubMedCrossRefGoogle Scholar
- 25.Chaudhuri A, Behan PO. Fatigue in neurological disorders. Lancet. 2004;363(9413):978–88.PubMedCrossRefGoogle Scholar
- 26.Porkka-Heiskanen T. Adenosine in sleep and wakefulness. Ann Med. 1999;31:125–9.PubMedCrossRefGoogle Scholar
- 27.Scammell TE. Overview of sleep: the neurologic processes of the sleep-wake cycle. J Clin Psychiatry. 2015;76(5):e13.PubMedCrossRefGoogle Scholar
- 28.Dworak M, Diel P, Voss S, Hollmann W, Strüder HK. Intense exercise increases adenosine concentrations in rat brain: implications for a homeostatic sleep drive. Neuroscience. 2007;150(4):789–95.PubMedCrossRefGoogle Scholar
- 29.Jarvis MJ. Does caffeine intake enhance absolute levels of cognitive performance? Psychopharmacology. 1993;110(1–2):45–52.PubMedCrossRefGoogle Scholar
- 30.Meeusen R, Roelands B, Spriet LL. Caffeine, exercise and the brain. In: van Loon LJCMR, editor. Limits of human endurance. Basel: Karger Publishers; 2013. p. 1–12.Google Scholar
- 31.Landolt HP, Rétey JV, Tönz K, Gottselig JM, Khatami R, Buckelmüller I, et al. Caffeine attenuates waking and sleep electroencephalographic markers of sleep homeostasis in humans. Neuropsychopharmacology. 2004;29(10):1933–9. https://doi.org/10.1038/sj.npp.1300526.PubMedCrossRefGoogle Scholar
- 32.Dunwiddie TV, Masino SA. The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci. 2001;24(1):31–55.PubMedCrossRefGoogle Scholar
- 33.Moore KA, Nicoll RA, Schmitz D. Adenosine gates synaptic plasticity at hippocampal mossy fiber synapses. Proc Natl Acad Sci USA. 2003;100(24):14397–402.PubMedCrossRefGoogle Scholar
- 34.Myers S, Pugsley TA. Decrease in rat striatal dopamine synthesis and metabolism in vivo by metabolically stable adenosine receptor agonists. Brain Res. 1986;375:193–7.PubMedCrossRefGoogle Scholar
- 35.Cunha RA. Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem Int. 2001;38(2):107–25.PubMedCrossRefGoogle Scholar
- 36.Cunha RA. How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem. 2016;139(6):1019–55. https://doi.org/10.1111/jnc.13724.PubMedCrossRefGoogle Scholar
- 37.Wang Y, Venton BJ. Correlation of transient adenosine release and oxygen changes in the caudate-putamen. J Neurochem. 2017;140(1):13–23.PubMedCrossRefGoogle Scholar
- 38.Jackson EK, Kotermanski SE, Menshikova EV, Dubey RK, Jackson TC, Kochanek PM. Adenosine production by brain cells. J Neurochem. 2017;141(5):676–93.PubMedPubMedCentralCrossRefGoogle Scholar
- 39.Dunwiddie TV, Hoffer BJ. Adenine nucleotides and synaptic transmission in the in vitro rat hippocampus. Br J Pharmacol. 1980;69(1):59–68.PubMedPubMedCentralCrossRefGoogle Scholar
- 40.Sperlágh B, Vizi ES. The role of extracellular adenosine in chemical neurotransmission in the hippocampus and basal ganglia: pharmacological and clinical aspects. Curr Top Med Chem. 2011;11(8):1034–46. https://doi.org/10.2174/156802611795347564.PubMedPubMedCentralCrossRefGoogle Scholar
- 41.Ross AE, Venton BJ. Adenosine transiently modulates stimulated dopamine release in the caudate–putamen via A1 receptors. J Neurochem. 2015;132(1):51–60.PubMedCrossRefGoogle Scholar
- 42.Nguyen MD, Ross AE, Ryals M, Lee ST, Venton BJ. Clearance of rapid adenosine release is regulated by nucleoside transporters and metabolism. Pharmacol Res Perspect. 2015;3(6):e00189. https://doi.org/10.1002/prp2.189.PubMedPubMedCentralCrossRefGoogle Scholar
- 43.Elmenhorst D, Elmenhorst EM, Hennecke E, Kroll T, Matusch A, Aeschbach D, et al. Recovery sleep after extended wakefulness restores elevated A1 adenosine receptor availability in the human brain. Proc Natl Acad Sci USA. 2017;114(16):4243–8.PubMedCrossRefGoogle Scholar
- 44.Carter CS, Braver TS, Barch DM, Botvinick MM, Noll D, Cohen JD. Anterior cingulate cortex, error detection, and the online monitoring of performance. Science. 1998;280(5364):747–9.PubMedCrossRefGoogle Scholar
- 45.Pardo JV, Pardo PJ, Janer KW, Raichle ME. The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proc Natl Acad Sci USA. 1990;87(1):256–9.PubMedCrossRefGoogle Scholar
- 46.Etkin A, Egner T, Kalisch R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci. 2011;15(2):85–93.PubMedCrossRefGoogle Scholar
- 47.Posner MI, Rothbart MK, Sheese BE, Tang Y. The anterior cingulate gyrus and the mechanism of self-regulation. Cogn Affect Behav Neurosci. 2007;7(4):391–5.PubMedCrossRefGoogle Scholar
- 48.Croxson PL, Walton ME, O’Reilly JX, Behrens TE, Rushworth MF. Effort-based cost–benefit valuation and the human brain. J Neurosci Res. 2009;29(14):4531–41.Google Scholar
- 49.Parvizi J, Rangarajan V, Shirer WR, Desai N, Greicius MD. The will to persevere induced by electrical stimulation of the human cingulate gyrus. Neuron. 2013;80(6):1359–67.PubMedCrossRefGoogle Scholar
- 50.Williamson JW, McColl R, Mathews D, Mitchell JH, Raven PB, Morgan WP. Hypnotic manipulation of effort sense during dynamic exercise: cardiovascular responses and brain activation. J Appl Physiol. 2001;90(4):1392–9.PubMedCrossRefGoogle Scholar
- 51.Schweimer J, Hauber W. Dopamine D1 receptors in the anterior cingulate cortex regulate effort-based decision making. Learn Mem. 2006;13(6):777–82.PubMedPubMedCentralCrossRefGoogle Scholar
- 52.Fowler JC. Purine release and inhibition of synaptic transmission during hypoxia and hypoglycemia in rat hippocampal slices. Neurosci Lett. 1993;157:83–6.PubMedCrossRefGoogle Scholar
- 53.Lloyd HGE, Lindström K, Fredholm BB. Intracellular formation and release of adenosine from rat hippocampal slices evoked by electrical stimulation or energy depletion. Neurochem Int. 1993;23(2):173–85.PubMedCrossRefGoogle Scholar
- 54.Schrader J, Wahl M, Kuschinsky W, Kreutzberg GW. Increase of adenosine content in cerebral cortex of the cat during bicucullineinduced seizure. Pflugers Arch. 1980;387(3):245–51. https://doi.org/10.1007/BF00580977.PubMedCrossRefGoogle Scholar
- 55.Grafton ST, Mazziotta JC, Woods RP, Phelps ME. Human functional anatomy of visually guided finger movements. Brain. 1992;115(2):565–87.PubMedCrossRefGoogle Scholar
- 56.Gusnard DA, Raichle ME. Searching for a baseline: functional imaging and the resting human brain. Nature Rev Neurosci. 2001;2(10):685–94. https://doi.org/10.1038/35094500.CrossRefGoogle Scholar
- 57.Jonides J, Schumacher EH, Smith E, Lauber EJ, Awh E, Minoshima S, et al. Verbal working memory load affects regional brain activation as measured by PET. J Cogn Neurosci. 1997;9(4):462–75.PubMedCrossRefGoogle Scholar
- 58.Larrue V, Celsis P, Bes A, Marc-Vergnes JP. The functional anatomy of attention in humans: Cerebral blood flow changes induced by reading, naming, and the Stroop effect. J Cereb Blood Flow Metab. 1994;14(6):958–62.PubMedCrossRefGoogle Scholar
- 59.Cohen JD, Perlstein WM, Braver TS, Nystrom LE, Noll DC, Jonides J, et al. Temporal dynamics of brain activation during a working memory task. Nature. 1997;386:604–8.PubMedCrossRefGoogle Scholar
- 60.Pull I, McIlwain H. Output of [14C] adenine nucleotides and their derivatives from cerebral tissues. J Biochem. 1973;136:893–901.CrossRefGoogle Scholar
- 61.Lovatt D, Xu Q, Liu W, Takano T, Smith NA, Schnermann J, et al. Neuronal adenosine release, and not astrocytic ATP release, mediates feedback inhibition of excitatory activity. Proc Natl Acad Sci USA. 2012;109(16):6265–70. https://doi.org/10.1073/pnas.1120997109.PubMedCrossRefGoogle Scholar
- 62.Zhao YT, Tekkök S, Krnjevi K. 2-Deoxy-d-glucose-induced changes in membrane potential, input resistance, and excitatory postsynaptic potentials of CA1 hippocampal neurons. Can J Physiol Pharmacol. 1997;75:368–74.PubMedGoogle Scholar
- 63.Zhu PJ, Krnjevi K. Adenosine release is a major cause of failure of synaptic transmission during hypoglycaemia in rat hippocampal slices. Neurosci Lett. 1993;155:128–31.PubMedCrossRefGoogle Scholar
- 64.Baumeister RF, Bratslavsky E, Muraven M, Tice DM. Ego depletion: Is the active self a limited resource? J Pers Soc Psychol. 1998;74(5):1252–65.PubMedCrossRefGoogle Scholar
- 65.Baumeister RF, Heatherton TF. Self-regulation failure: an overview. Psychol Inq. 1996;7(1):1–15. https://doi.org/10.1207/s15327965pli0701_1.CrossRefGoogle Scholar
- 66.Muraven M, Baumeister RF. Self-regulation and depletion of limited resources: Does self-control resemble a muscle? Psychol Bull. 2000;126(2):247–59. https://doi.org/10.1037/0033-2909.126.2.247.PubMedCrossRefGoogle Scholar
- 67.Inzlicht M, Berkman E. Six questions for the resource model of control (and some answers). Soc Personal Psychol Compass. 2015;9(10):511–24. https://doi.org/10.1111/spc3.12200.PubMedPubMedCentralCrossRefGoogle Scholar
- 68.Inzlicht M, Schmeichel BJ, Macrae CN. Why self-control seems (but may not be) limited. Trends Cogn Sci. 2014;18(3):127–33.PubMedCrossRefGoogle Scholar
- 69.Kurzban R. Does the brain consume additional glucose during self-control tasks? Evol Psychol. 2010;8(2):244–59. https://doi.org/10.1177/147470491000800208.PubMedCrossRefGoogle Scholar
- 70.Gailliot MT, Baumeister RF, DeWall CN, Maner JK, Plant EA, Tice DM, et al. Self-control relies on glucose as a limited energy source: willpower is more than a metaphor. J Pers Soc Psychol. 2007;92(2):325–36. https://doi.org/10.1037/0022-3514.92.2.325.PubMedCrossRefGoogle Scholar
- 71.Molden DC, Hui CM, Scholer AA, Meier BP, Noreen EE, D’Agostino PR, et al. Motivational versus metabolic effects of carbohydrates on self-control. Psychol Sci. 2012;23(10):1137–44.PubMedCrossRefGoogle Scholar
- 72.Lange F, Eggert C. Sweet delusion. Glucose drinks fail to counteract ego depletion. Appetite. 2014;75:54–63. https://doi.org/10.1016/j.appet.2013.12.020.PubMedCrossRefGoogle Scholar
- 73.DeWall CN, Baumeister RF, Gailliot MT, Maner JK. Depletion makes the heart grow less helpful: helping as a function of self-regulatory energy and genetic relatedness. Pers Soc Psychol Bull. 2008;34(12):1653–62. https://doi.org/10.1177/0146167208323981.PubMedCrossRefGoogle Scholar
- 74.Boat R, Taylor IM, Hulston CJ. Self-control exertion and glucose supplementation prior to endurance performance. Psychol Sport Exerc. 2017;29:103–10. https://doi.org/10.1016/j.psychsport.2016.12.007.CrossRefGoogle Scholar
- 75.Blanchfield AW, Hardy J, De Morree HM, Staiano W, Marcora SM. Talking yourself out of exhaustion: the effects of self-talk on endurance performance. Med Sci Sports Exerc. 2014;46(5):998–1007. https://doi.org/10.1249/MSS.0000000000000184.PubMedCrossRefGoogle Scholar
- 76.Brown DM, Bray SR. Effects of mental fatigue on physical endurance performance and muscle activation are attenuated by monetary incentives. J Sport Exerc Psychol. 2018;39(6):385–96. https://doi.org/10.1123/jsep.2017-0187.CrossRefGoogle Scholar
- 77.Luethi MS, Friese M, Binder J, Boesiger P, Luechinger R, Rasch B. Motivational incentives lead to a strong increase in lateral prefrontal activity after self-control exertion. Soc Cogn Affect Neurosci. 2016;11:1618–26. https://doi.org/10.1093/scan/nsw073.PubMedPubMedCentralCrossRefGoogle Scholar
- 78.Stone M, Thomas K, Wilkinson M, Jones A, St Clair Gibson A, Thompson K. Effects of deception on exercise performance: implications for determinants of fatigue in humans. Med Sci Sports Exerc. 2012;44(3):534–41.PubMedCrossRefGoogle Scholar
- 79.Madsen PL, Hasselbalch SG, Hagemann LP, Olsen KS, Bulow J, Holm S, et al. Persistent resetting of the cerebral oxygen/glucose uptake ratio by brain activation: evidence obtained with the Kety–Schmidt technique. J Cereb Blood Flow Metab. 1995;15(3):485–91.PubMedCrossRefGoogle Scholar
- 80.McNay EC, McCarty RC, Gold PE. Fluctuations in brain glucose concentration during behavioral testing: dissociations between brain areas and between brain and blood. Neurobiol Learn Mem. 2001;75(3):325–37.PubMedCrossRefGoogle Scholar
- 81.Font L, Mingote S, Farrar AM, Pereira M, Worden L, Stopper C, et al. Intra-accumbens injections of the adenosine A2A agonist CGS 21680 affect effort-related choice behavior in rats. Psychopharmacology. 2008;199(4):515–26.PubMedPubMedCentralCrossRefGoogle Scholar
- 82.Mingote S, Font L, Farrar AM, Vontell R, Worden LT, Stopper CM, et al. Nucleus accumbens adenosine A2A receptors regulate exertion of effort by acting on the ventral striatopallidal pathway. J Neurosci. 2008;28(36):9037–46.PubMedPubMedCentralCrossRefGoogle Scholar
- 83.Davis JM, Zhao Z, Stock HS, Mehl KA, Buggy J, Hand GA. Central nervous system effects of caffeine and adenosine on fatigue. Am J Physiol Regul Integr Comp Physiol Rev. 2003;284(2):R399–404.CrossRefGoogle Scholar
- 84.Martin BJ. Effect of sleep deprivation on tolerance of prolonged exercise. Eur J Appl Physiol Occup Physiol. 1981;47:345–54.PubMedCrossRefGoogle Scholar
- 85.Oliver SJ, Costa RJ, Laing SJ, Bilzon JL, Walsh NP. One night of sleep deprivation decreases treadmill endurance performance. Eur J Appl Physiol. 2009;107(2):155–61.PubMedCrossRefGoogle Scholar
- 86.Temesi J, Arnal PJ, Davranche K, Bonnefoy R, Levy P, Verges S, et al. Does central fatigue explain reduced cycling after complete sleep deprivation? Med Sci Sports Exerc. 2013;45(12):2243–53. https://doi.org/10.1249/MSS.0b013e31829ce379.PubMedCrossRefGoogle Scholar
- 87.Graham TE. Caffeine and exercise: metabolism, endurance and performance. Sports Med. 2001;31(11):785–807.PubMedCrossRefGoogle Scholar
- 88.McCall AL, Millington WR, Wurtman RJ. Blood-brain barrier transport of caffeine: dose-related restriction of adenine transport. Life Sci. 1982;31:2709–15.PubMedCrossRefGoogle Scholar
- 89.Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev. 1999;51:83–133.PubMedGoogle Scholar
- 90.Okada M, Kiryu K, Kawata Y, Mizuno K, Wada K, Tasaki H, et al. Determination of the effects of caffeine and carbamazepine on striatal dopamine release by in vivo microdialysis. Eur J Pharmacol. 1997;324(8):181–8.CrossRefGoogle Scholar
- 91.McLellan TM, Bell DG, Kamimori GH. Caffeine improves physical performance during 24 h of active wakefulness. Aviat Space Environ Med. 2004;75(8):666–72.PubMedGoogle Scholar
- 92.Wesensten N, Belenky G, Kautz MA, Thorne DR, Reichardt RM, Balkin TJ. Maintaining alertness and performance during sleep deprivation: modafinil versus caffeine. Psychopharmacology. 2002;159(3):238–47.PubMedCrossRefGoogle Scholar
- 93.Kennedy DO, Scholey AB. A glucose-caffeine ‘energy drink’ ameliorates subjective and performance deficits during prolonged cognitive demand. Appetite. 2004;42(3):331–3. https://doi.org/10.1016/j.appet.2004.03.001.PubMedCrossRefGoogle Scholar
- 94.Doherty M, Smith PM, Hughes MG, Davison RCR. Caffeine lowers perceptual response and increases power output during high-intensity cycling. J Sport Sci. 2004;22:637–43. https://doi.org/10.1080/02640410310001655741.CrossRefGoogle Scholar
- 95.de Morree HM, Klein C, Marcora SM. Perception of effort reflects central motor command during movement execution. Psychophysiology. 2012;49:1242–53.PubMedCrossRefGoogle Scholar
- 96.Christensen MS, Lundbye-Jensen J, Geertsen SS, Petersen TH, Paulson OB, Nielsen JB. Premotor cortex modulates somatosensory cortex during voluntary movements without proprioceptive feedback. Nat Neurosci. 2007;10(4):417–9. https://doi.org/10.1038/nn1873.PubMedCrossRefGoogle Scholar
- 97.Poulet JF, Hedwig B. New insights into corollary discharges mediated by identified neural pathways. Trends Neurosci. 2007;30(1):14–21. https://doi.org/10.1016/j.tins.2006.11.005.PubMedCrossRefGoogle Scholar
- 98.de Morree HM, Klein C, Marcora SM. Cortical substrates of the effects of caffeine and time-on-task on perception of effort. J Appl Physiol. 2014;117(12):1514–23. https://doi.org/10.1152/japplphysiol.00898.2013.PubMedCrossRefGoogle Scholar
- 99.Marcora SM. Perception of effort during exercise is independent of afferent feedback from skeletal muscles, heart, and lungs. J Appl Physiol. 2009;106(6):2060–2.PubMedCrossRefGoogle Scholar
- 100.Duncan MJ, Al-Nakeeb Y, Scurr J. Perceived exertion is related to muscle activity during leg extension exercise. Res Sports Med. 2006;14(3):179–89. https://doi.org/10.1080/15438620600854728.PubMedCrossRefGoogle Scholar
- 101.Kalmar JM. The influence of caffeine on voluntary muscle activation. Med Sci Sports Exerc. 2005;37(12):2113–9.PubMedCrossRefGoogle Scholar
- 102.Tarnopolsky MA. Effect of caffeine on the neuromuscular system–potential as an ergogenic aid. Appl Physiol Nutr Metab. 2008;33(6):1284–9.PubMedCrossRefGoogle Scholar
- 103.Angius L, Pageaux B, Hopker J, Marcora SM, Mauger AR. Transcranial direct current stimulation improves isometric time to exhaustion of the knee extensors. Neuroscience. 2016;339:363–75.PubMedCrossRefGoogle Scholar
- 104.Takarada Y, Mima T, Abe M, Nakatsuka M, Taira M. Inhibition of the primary motor cortex can alter one’s ‘‘sense of effort”: effects of low-frequency rTMS. Neurosci Res. 2014;89:54–60.PubMedCrossRefGoogle Scholar
- 105.Patel R, Spreng RN, Turner GR. Functional brain changes following cognitive and motor skills training: a quantitative meta-analysis. Neurorehabilit Neural Repair. 2013;27(3):187–99.CrossRefGoogle Scholar
- 106.Janot JM, Steffen JP, Porcari JP, Maher MA. Heart rate responses and perceived exertion for beginner and recreational sport climbers during indoor climbing. J Exerc Physiol Online. 2000;3(1):1–7.Google Scholar
- 107.Martin K, Staiano W, Menaspà P, Hennessey T, Marcora S, Keegan R, et al. Superior inhibitory control and resistance to mental fatigue in professional road cyclists. PloS One. 2016;11(7):e0159907.PubMedPubMedCentralCrossRefGoogle Scholar
- 108.Walton ME, Kennerley SW, Bannerman DM, Phillips PE, Rushworth MF. Weighing up the benefits of work: behavioral and neural analyses of effort-related decision making. Neural Netw. 2006;19(8):1302–14.PubMedPubMedCentralCrossRefGoogle Scholar
- 109.Williamson JW, McColl R, Mathews D, Ginsburg M, Mitchell JH. Activation of the insular cortex is affected by the intensity of exercise. J Appl Physiol. 1999;87(3):1213–9.PubMedCrossRefGoogle Scholar
- 110.Martin K, Thompson KG, Keegan R, Ball N, Rattray B. Mental fatigue does not affect maximal anaerobic exercise performance. Eur J Appl Physiol. 2015;115(4):715–25. https://doi.org/10.1007/s00421-014-3052-1.PubMedCrossRefGoogle Scholar
- 111.Brown D, Bray S. Show me the money! Incentives attenuate effects of cognitive control exertion (mental fatigue) on physical endurance performance. J Exerc Mov Sport. 2016;48(1):149.Google Scholar
- 112.Winchester R, Turner LA, Thomas K, Ansley L, Thompson KG, Micklewright D, et al. Observer effects on the rating of perceived exertion and affect during exercise in recreationally active males. Percept Mot Skills. 2012;115(1):213–27.PubMedCrossRefGoogle Scholar
- 113.Williams EL, Jones HS, Sparks SA, Marchant DC, Midgley AW, Mc Naughton LR. Competitor presence reduces internal attentional focus and improves 16.1 km cycling time trial performance. J Sci Med Sport. 2015;18(4):486–91.PubMedCrossRefGoogle Scholar
- 114.Shei RJ, Thompson K, Chapman R, Raglin J, Mickleborough T. Using deception to establish a reproducible improvement in 4-km cycling time trial performance. Int J Sports Med. 2016;37(5):341–6.PubMedCrossRefGoogle Scholar
- 115.Stone MR, Thomas K, Wilkinson M, Stevenson E, Gibson ASC, Jones AM, et al. Exploring the performance reserve: effect of different magnitudes of power output deception on 4,000 m cycling time-trial performance. PloS One. 2017;12(3):e0173120.PubMedPubMedCentralCrossRefGoogle Scholar
- 116.Ferré S, Fuxe K, von Euler G, Johansson B, Fredholm BB. Adenosine-dopamine interactions in the brain. Neuroscience. 1992;51:501–12.PubMedCrossRefGoogle Scholar
- 117.Fredholm BB, Johansson B, Van der Ploeg I, Hu PS, Jin S. Neuromodulatory roles of purines. Drug Dev Res. 1993;28:349.CrossRefGoogle Scholar
- 118.Fredholm BB, Dunwiddie TV. How does adenosine inhibit transmitter release? Trends Pharmacol Sci. 1988;9:130.PubMedCrossRefGoogle Scholar
- 119.Durcan MJ, Morgan PF. Evidence for adenosine A2 receptor involvement in the hypomobility effects of adenosine analogues in mice. Eur J Pharmacol. 1989;168:285.PubMedCrossRefGoogle Scholar
- 120.Salamone JD, Steinpreis RE, McCullough LD, Smith P, Smith P, Smith P, Grebel D, Mahan K. Haloperidol and nucleus accumbens dopamine depletion suppress lever-pressing for food but increase free food consumption in a novel food-choice procedure. Psychopharmacology (Berl). 1991;104:515–21.CrossRefGoogle Scholar
- 121.Svenningsson P, Hall H, Sedvall G, Fredholm BB. Distribution of adenosine receptors in the postmortem human brain: an extended autoradiographic study. Synapse. 1997;27(4):322–35.PubMedCrossRefGoogle Scholar
- 122.Palomero-Gallagher N, Vogt BA, Schleicher A, Mayberg HS, Zilles K. Receptor architecture of human cingulate cortex: evaluation of the four-region neurobiological model. Hum Brain Mapp. 2009;30(8):2336–55.PubMedCrossRefGoogle Scholar
- 123.Matsui T, Soya S, Okamoto M, Ichitani Y, Kawanaka K, Soya H. Brain glycogen decreases during prolonged exercise. J Physiol. 2011;589(13):3383–93. https://doi.org/10.1113/jphysiol.2010.203570.PubMedPubMedCentralCrossRefGoogle Scholar
- 124.Öz G, Kumar A, Rao JP, Kodl CT, Chow L, Eberly LE, et al. Human brain glycogen metabolism during and after hypoglycemia. Diabetes. 2009;58(9):1978–85.PubMedPubMedCentralCrossRefGoogle Scholar
- 125.Blanco AM, Gómez-Boronat M, Pérez-Maceira J, Mancebo MJ, Aldegunde M. Brain glycogen supercompensation after different conditions of induced hypoglycemia and sustained swimming in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A Mol Integr Physiol. 2015;187:55–60.PubMedCrossRefGoogle Scholar
- 126.Canada SE, Weaver SA, Sharpe SN, Pederson BA. Brain glycogen supercompensation in the mouse after recovery from insulin-induced hypoglycemia. J Neurosci Res. 2011;89(4):585–91.PubMedPubMedCentralCrossRefGoogle Scholar
- 127.Folbergrová J, Katsura KI, Siesjö BK. Glycogen accumulated in the brain following insults is not degraded during a subsequent period of ischemia. J Neurol Sci. 1996;137(1):7–13.PubMedCrossRefGoogle Scholar
- 128.Ludyga S, Gronwald T, Hottenrott K. The athlete’s brain: cross-sectional evidence for neural efficiency during cycling exercise. Neural Plast. 2016;7(5):1–7.CrossRefGoogle Scholar
- 129.Kim W, Chang Y, Kim J, Seo J, Ryu K, Lee E, et al. An fMRI study of differences in brain activity among elite, expert, and novice archers at the moment of optimal aiming. Cogn Behav Neurol. 2014;27(4):173–82.PubMedCrossRefGoogle Scholar
- 130.Hawley JA. Adaptations of skeletal muscle to prolonged, intense endurance training. Clin Exp Pharmacol Physiol. 2002;29(3):218–22.PubMedCrossRefGoogle Scholar
- 131.Social Grimm P, Bias Desirability. In: Sheth JN, Malhotra NK, editors. Wiley international encyclopedia of marketing. Amdterdam: Wiley; 2010.Google Scholar
- 132.Paulhus DL. Two-component models of socially desirable responding. J Pers Soc Psychol. 1984;46(3):598–609.CrossRefGoogle Scholar
- 133.Podsakoff PM, MacKenzie SB, Lee JY, Podsakoff NP. Common method biases in behavioral research: a critical review of the literature and recommended remedies. J Appl Psychol. 2003;88(5):879–903. https://doi.org/10.1037/0021-9010.88.5.879.PubMedCrossRefGoogle Scholar
- 134.Antin J, Shaw A, editors. Social desirability bias and self-reports of motivation: a study of amazon mechanical turk in the US and India. In: SIGCHI conference on human factors in computing systems; 2012; New York: ACM.Google Scholar
- 135.Grossbard JR, Cumming SP, Standage M, Smith RE, Smoll FL. Social desirability and relations between goal orientations and competitive trait anxiety in young athletes. Psychol Sport Exerc. 2007;8(4):491–505. https://doi.org/10.1016/j.psychsport.2006.07.009.CrossRefGoogle Scholar
- 136.Newsholme EA, Blomstrand E. The plasma level of some amino acids and physical and mental fatigue. Experientia. 1996;52(5):413–5.PubMedCrossRefGoogle Scholar
- 137.Pires FO, Silva-Júnior FL, Brietzke C, Franco-Alvarenga PE, Pinheiro FA, de França NM, et al. Mental fatigue alters cortical activation and psychological responses, impairing performance in a distance-based cycling trial. Front Physiol. 2018;9:227. https://doi.org/10.3389/fphys.2018.00227.PubMedPubMedCentralCrossRefGoogle Scholar
- 138.Brown DM, Bray SR. Effects of mental fatigue on physical endurance performance and muscle activation are attenuated by monetary incentives. J Sport Exerc Psychol. 2017;39(6):385–96.PubMedCrossRefGoogle Scholar