Sports Medicine

, Volume 48, Issue 9, pp 2041–2051 | Cite as

Mental Fatigue Impairs Endurance Performance: A Physiological Explanation

  • Kristy MartinEmail author
  • Romain Meeusen
  • Kevin G. Thompson
  • Richard Keegan
  • Ben Rattray
Review Article


Mental fatigue reflects a change in psychobiological state, caused by prolonged periods of demanding cognitive activity. It has been well documented that mental fatigue impairs cognitive performance; however, more recently, it has been demonstrated that endurance performance is also impaired by mental fatigue. The mechanism behind the detrimental effect of mental fatigue on endurance performance is poorly understood. Variables traditionally believed to limit endurance performance, such as heart rate, lactate accumulation and neuromuscular function, are unaffected by mental fatigue. Rather, it has been suggested that the negative impact of mental fatigue on endurance performance is primarily mediated by the greater perception of effort experienced by mentally fatigued participants. Pageaux et al. (Eur J Appl Physiol 114(5):1095–1105, 2014) first proposed that prolonged performance of a demanding cognitive task increases cerebral adenosine accumulation and that this accumulation may lead to the higher perception of effort experienced during subsequent endurance performance. This theoretical review looks at evidence to support and extend this hypothesis.



The authors would like to acknowledge the anonymous reviewers who contributed to earlier versions of this manuscript and improved both the quality and the content of the article.

Compliance with Ethics Standards


No sources of funding were used to assist in the preparation of this article.

Conflicts of interest

Kristy Martin, Romain Meeusen, Richard Keegan, Kevin G. Thompson and Ben Rattray declare that they have no conflicts of interest relevant to the content of this review.


  1. 1.
    Marcora SM, Staiano W, Manning V. Mental fatigue impairs physical performance in humans. J Appl Physiol. 2009;106(3):857–64. Scholar
  2. 2.
    Meijman TF. The theory of the stop-emotion: on the functionality of fatigue. In: Pogorski D, Karwowski W, editors. Ergonomics and safety for global business quality and production. Warsaw: CIOP; 2000. p. 45–50.Google Scholar
  3. 3.
    Holding D. Fatigue stress and fatigue in human performance. Durham: Wiley; 1983.Google Scholar
  4. 4.
    van der Linden D, Frese M, Meijman TF. Mental fatigue and the control of cognitive processes: effects on perseveration and planning. Acta Psychol (Amst). 2003;113:45–65. Scholar
  5. 5.
    Boksem MA, Meijman TF, Lorist MM. Effects of mental fatigue on attention: an ERP study. Brain Res Cogn Brain Res. 2005;25:107–16. Scholar
  6. 6.
    Lorist MM, Boksem MAS, Ridderinkhof KR. Impaired cognitive control and reduced cingulate activity during mental fatigue. Cogn Brain Res. 2005;24:199–205. Scholar
  7. 7.
    Van Cutsem J, Marcora S, De Pauw K, Bailey S, Meeusen R, Roelands B. The effects of mental fatigue on physical performance: a systematic review. Sports Med. 2017;47(8):1569–88. Scholar
  8. 8.
    Pageaux B, Marcora S, Lepers L. Prolonged mental exertion does not alter neuromuscular function of the knee extensors. Med Sci Sports Exerc. 2013;45(12):2254–64.PubMedCrossRefGoogle Scholar
  9. 9.
    Pageaux B, Lepers R, Dietz KC, Marcora SM. Response inhibition impairs subsequent self-paced endurance performance. Eur J Appl Physiol. 2014;114(5):1095–105.PubMedCrossRefGoogle Scholar
  10. 10.
    MacMahon C, Schücker L, Hagemann N, Strauss B. Cognitive fatigue effects on physical performance during running. J Sport Exerc Psychol. 2014;36(4):375–81.PubMedCrossRefGoogle Scholar
  11. 11.
    Smith MR, Marcora SM, Coutts AJ. Mental fatigue impairs intermittent running performance. Med Sci Sports Exerc. 2015;47(8):1682–90.PubMedCrossRefGoogle Scholar
  12. 12.
    Smith MR, Coutts AJ, Merlini M, Deprez D, Lenoir M, Marcora SM. Mental fatigue impairs soccer-specific physical and technical performance. Med Sci Sports Exerc. 2016;48(2):267–76.PubMedCrossRefGoogle Scholar
  13. 13.
    Pageaux B, Marcora SM, Rozand V, Lepers R. Mental fatigue induced by prolonged self-regulation does not exacerbate central fatigue during subsequent whole-body endurance exercise. Front Hum Neurosci. 2015;9:67. Scholar
  14. 14.
    Pageaux B, Lepers R. Fatigue induced by physical and mental exertion increases perception of effort and impairs subsequent endurance performance. Front Physiol. 2016;7:587. Scholar
  15. 15.
    Pageaux B. Perception of effort in exercise science: definition, measurement and perspectives. Eur J Sport Sci. 2016;16(8):885–94.PubMedCrossRefGoogle Scholar
  16. 16.
    Abbiss CR, Peiffer JJ, Meeusen R, Skorski S. Role of ratings of perceived exertion during self-paced exercise: what are we actually measuring? Sports Med. 2015;45(9):1235–43.PubMedCrossRefGoogle Scholar
  17. 17.
    Marcora SM. Perception of effort. In: Goldstein EB, editor. Encyclopedia of perception. Thousand Oaks: Sage; 2010. p. 380–3.Google Scholar
  18. 18.
    Borg G. Borg’s perceived exertion and pain scales. Champaign,: Human Kinetics; 1998.Google Scholar
  19. 19.
    Marcora SM. Do we really need a central governor to explain brain regulation of exercise performance? Eur J Appl Physiol. 2008;104(5):929–31. Scholar
  20. 20.
    Pageaux B. The psychobiological model of endurance performance: an effort-based decision-making theory to explain self-paced endurance performance. Sports Med. 2014;44(9):1319–20. Scholar
  21. 21.
    Wright RA. Brehm’s theory of motivation as a model of effort and cardiovascular response. In: Gollwitzer PM, Bargh JA, editors. The psychology of action: linking cognition and motivation to behavior. New York: Guilford; 1996. p. 424–53.Google Scholar
  22. 22.
    Marcora SM, Bosio A, de Morree HM. Locomotor muscle fatigue increases cardiorespiratory responses and reduces performance during intense cycling exercise independently from metabolic stress. Am J Physiol Regul Integr Comp Physiol. 2008;294:R874–83.PubMedCrossRefGoogle Scholar
  23. 23.
    Brehm JW, Self EA. The intensity of motivation. Annu Rev Psychol. 1989;40:109–31.PubMedCrossRefGoogle Scholar
  24. 24.
    Azevedo R, Silva-Cavalcante MD, Gualano B, Lima-Silva AE, Bertuzzi R. Effects of caffeine ingestion on endurance performance in mentally fatigued individuals. Eur J Appl Physiol. 2016;116(11–12):2293–303.PubMedCrossRefGoogle Scholar
  25. 25.
    Chaudhuri A, Behan PO. Fatigue in neurological disorders. Lancet. 2004;363(9413):978–88.PubMedCrossRefGoogle Scholar
  26. 26.
    Porkka-Heiskanen T. Adenosine in sleep and wakefulness. Ann Med. 1999;31:125–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Scammell TE. Overview of sleep: the neurologic processes of the sleep-wake cycle. J Clin Psychiatry. 2015;76(5):e13.PubMedCrossRefGoogle Scholar
  28. 28.
    Dworak M, Diel P, Voss S, Hollmann W, Strüder HK. Intense exercise increases adenosine concentrations in rat brain: implications for a homeostatic sleep drive. Neuroscience. 2007;150(4):789–95.PubMedCrossRefGoogle Scholar
  29. 29.
    Jarvis MJ. Does caffeine intake enhance absolute levels of cognitive performance? Psychopharmacology. 1993;110(1–2):45–52.PubMedCrossRefGoogle Scholar
  30. 30.
    Meeusen R, Roelands B, Spriet LL. Caffeine, exercise and the brain. In: van Loon LJCMR, editor. Limits of human endurance. Basel: Karger Publishers; 2013. p. 1–12.Google Scholar
  31. 31.
    Landolt HP, Rétey JV, Tönz K, Gottselig JM, Khatami R, Buckelmüller I, et al. Caffeine attenuates waking and sleep electroencephalographic markers of sleep homeostasis in humans. Neuropsychopharmacology. 2004;29(10):1933–9. Scholar
  32. 32.
    Dunwiddie TV, Masino SA. The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci. 2001;24(1):31–55.PubMedCrossRefGoogle Scholar
  33. 33.
    Moore KA, Nicoll RA, Schmitz D. Adenosine gates synaptic plasticity at hippocampal mossy fiber synapses. Proc Natl Acad Sci USA. 2003;100(24):14397–402.PubMedCrossRefGoogle Scholar
  34. 34.
    Myers S, Pugsley TA. Decrease in rat striatal dopamine synthesis and metabolism in vivo by metabolically stable adenosine receptor agonists. Brain Res. 1986;375:193–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Cunha RA. Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem Int. 2001;38(2):107–25.PubMedCrossRefGoogle Scholar
  36. 36.
    Cunha RA. How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem. 2016;139(6):1019–55. Scholar
  37. 37.
    Wang Y, Venton BJ. Correlation of transient adenosine release and oxygen changes in the caudate-putamen. J Neurochem. 2017;140(1):13–23.PubMedCrossRefGoogle Scholar
  38. 38.
    Jackson EK, Kotermanski SE, Menshikova EV, Dubey RK, Jackson TC, Kochanek PM. Adenosine production by brain cells. J Neurochem. 2017;141(5):676–93.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Dunwiddie TV, Hoffer BJ. Adenine nucleotides and synaptic transmission in the in vitro rat hippocampus. Br J Pharmacol. 1980;69(1):59–68.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Sperlágh B, Vizi ES. The role of extracellular adenosine in chemical neurotransmission in the hippocampus and basal ganglia: pharmacological and clinical aspects. Curr Top Med Chem. 2011;11(8):1034–46. Scholar
  41. 41.
    Ross AE, Venton BJ. Adenosine transiently modulates stimulated dopamine release in the caudate–putamen via A1 receptors. J Neurochem. 2015;132(1):51–60.PubMedCrossRefGoogle Scholar
  42. 42.
    Nguyen MD, Ross AE, Ryals M, Lee ST, Venton BJ. Clearance of rapid adenosine release is regulated by nucleoside transporters and metabolism. Pharmacol Res Perspect. 2015;3(6):e00189. Scholar
  43. 43.
    Elmenhorst D, Elmenhorst EM, Hennecke E, Kroll T, Matusch A, Aeschbach D, et al. Recovery sleep after extended wakefulness restores elevated A1 adenosine receptor availability in the human brain. Proc Natl Acad Sci USA. 2017;114(16):4243–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Carter CS, Braver TS, Barch DM, Botvinick MM, Noll D, Cohen JD. Anterior cingulate cortex, error detection, and the online monitoring of performance. Science. 1998;280(5364):747–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Pardo JV, Pardo PJ, Janer KW, Raichle ME. The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proc Natl Acad Sci USA. 1990;87(1):256–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Etkin A, Egner T, Kalisch R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci. 2011;15(2):85–93.PubMedCrossRefGoogle Scholar
  47. 47.
    Posner MI, Rothbart MK, Sheese BE, Tang Y. The anterior cingulate gyrus and the mechanism of self-regulation. Cogn Affect Behav Neurosci. 2007;7(4):391–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Croxson PL, Walton ME, O’Reilly JX, Behrens TE, Rushworth MF. Effort-based cost–benefit valuation and the human brain. J Neurosci Res. 2009;29(14):4531–41.Google Scholar
  49. 49.
    Parvizi J, Rangarajan V, Shirer WR, Desai N, Greicius MD. The will to persevere induced by electrical stimulation of the human cingulate gyrus. Neuron. 2013;80(6):1359–67.PubMedCrossRefGoogle Scholar
  50. 50.
    Williamson JW, McColl R, Mathews D, Mitchell JH, Raven PB, Morgan WP. Hypnotic manipulation of effort sense during dynamic exercise: cardiovascular responses and brain activation. J Appl Physiol. 2001;90(4):1392–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Schweimer J, Hauber W. Dopamine D1 receptors in the anterior cingulate cortex regulate effort-based decision making. Learn Mem. 2006;13(6):777–82.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Fowler JC. Purine release and inhibition of synaptic transmission during hypoxia and hypoglycemia in rat hippocampal slices. Neurosci Lett. 1993;157:83–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Lloyd HGE, Lindström K, Fredholm BB. Intracellular formation and release of adenosine from rat hippocampal slices evoked by electrical stimulation or energy depletion. Neurochem Int. 1993;23(2):173–85.PubMedCrossRefGoogle Scholar
  54. 54.
    Schrader J, Wahl M, Kuschinsky W, Kreutzberg GW. Increase of adenosine content in cerebral cortex of the cat during bicucullineinduced seizure. Pflugers Arch. 1980;387(3):245–51. Scholar
  55. 55.
    Grafton ST, Mazziotta JC, Woods RP, Phelps ME. Human functional anatomy of visually guided finger movements. Brain. 1992;115(2):565–87.PubMedCrossRefGoogle Scholar
  56. 56.
    Gusnard DA, Raichle ME. Searching for a baseline: functional imaging and the resting human brain. Nature Rev Neurosci. 2001;2(10):685–94. Scholar
  57. 57.
    Jonides J, Schumacher EH, Smith E, Lauber EJ, Awh E, Minoshima S, et al. Verbal working memory load affects regional brain activation as measured by PET. J Cogn Neurosci. 1997;9(4):462–75.PubMedCrossRefGoogle Scholar
  58. 58.
    Larrue V, Celsis P, Bes A, Marc-Vergnes JP. The functional anatomy of attention in humans: Cerebral blood flow changes induced by reading, naming, and the Stroop effect. J Cereb Blood Flow Metab. 1994;14(6):958–62.PubMedCrossRefGoogle Scholar
  59. 59.
    Cohen JD, Perlstein WM, Braver TS, Nystrom LE, Noll DC, Jonides J, et al. Temporal dynamics of brain activation during a working memory task. Nature. 1997;386:604–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Pull I, McIlwain H. Output of [14C] adenine nucleotides and their derivatives from cerebral tissues. J Biochem. 1973;136:893–901.CrossRefGoogle Scholar
  61. 61.
    Lovatt D, Xu Q, Liu W, Takano T, Smith NA, Schnermann J, et al. Neuronal adenosine release, and not astrocytic ATP release, mediates feedback inhibition of excitatory activity. Proc Natl Acad Sci USA. 2012;109(16):6265–70. Scholar
  62. 62.
    Zhao YT, Tekkök S, Krnjevi K. 2-Deoxy-d-glucose-induced changes in membrane potential, input resistance, and excitatory postsynaptic potentials of CA1 hippocampal neurons. Can J Physiol Pharmacol. 1997;75:368–74.PubMedGoogle Scholar
  63. 63.
    Zhu PJ, Krnjevi K. Adenosine release is a major cause of failure of synaptic transmission during hypoglycaemia in rat hippocampal slices. Neurosci Lett. 1993;155:128–31.PubMedCrossRefGoogle Scholar
  64. 64.
    Baumeister RF, Bratslavsky E, Muraven M, Tice DM. Ego depletion: Is the active self a limited resource? J Pers Soc Psychol. 1998;74(5):1252–65.PubMedCrossRefGoogle Scholar
  65. 65.
    Baumeister RF, Heatherton TF. Self-regulation failure: an overview. Psychol Inq. 1996;7(1):1–15. Scholar
  66. 66.
    Muraven M, Baumeister RF. Self-regulation and depletion of limited resources: Does self-control resemble a muscle? Psychol Bull. 2000;126(2):247–59. Scholar
  67. 67.
    Inzlicht M, Berkman E. Six questions for the resource model of control (and some answers). Soc Personal Psychol Compass. 2015;9(10):511–24. Scholar
  68. 68.
    Inzlicht M, Schmeichel BJ, Macrae CN. Why self-control seems (but may not be) limited. Trends Cogn Sci. 2014;18(3):127–33.PubMedCrossRefGoogle Scholar
  69. 69.
    Kurzban R. Does the brain consume additional glucose during self-control tasks? Evol Psychol. 2010;8(2):244–59. Scholar
  70. 70.
    Gailliot MT, Baumeister RF, DeWall CN, Maner JK, Plant EA, Tice DM, et al. Self-control relies on glucose as a limited energy source: willpower is more than a metaphor. J Pers Soc Psychol. 2007;92(2):325–36. Scholar
  71. 71.
    Molden DC, Hui CM, Scholer AA, Meier BP, Noreen EE, D’Agostino PR, et al. Motivational versus metabolic effects of carbohydrates on self-control. Psychol Sci. 2012;23(10):1137–44.PubMedCrossRefGoogle Scholar
  72. 72.
    Lange F, Eggert C. Sweet delusion. Glucose drinks fail to counteract ego depletion. Appetite. 2014;75:54–63. Scholar
  73. 73.
    DeWall CN, Baumeister RF, Gailliot MT, Maner JK. Depletion makes the heart grow less helpful: helping as a function of self-regulatory energy and genetic relatedness. Pers Soc Psychol Bull. 2008;34(12):1653–62. Scholar
  74. 74.
    Boat R, Taylor IM, Hulston CJ. Self-control exertion and glucose supplementation prior to endurance performance. Psychol Sport Exerc. 2017;29:103–10. Scholar
  75. 75.
    Blanchfield AW, Hardy J, De Morree HM, Staiano W, Marcora SM. Talking yourself out of exhaustion: the effects of self-talk on endurance performance. Med Sci Sports Exerc. 2014;46(5):998–1007. Scholar
  76. 76.
    Brown DM, Bray SR. Effects of mental fatigue on physical endurance performance and muscle activation are attenuated by monetary incentives. J Sport Exerc Psychol. 2018;39(6):385–96. Scholar
  77. 77.
    Luethi MS, Friese M, Binder J, Boesiger P, Luechinger R, Rasch B. Motivational incentives lead to a strong increase in lateral prefrontal activity after self-control exertion. Soc Cogn Affect Neurosci. 2016;11:1618–26. Scholar
  78. 78.
    Stone M, Thomas K, Wilkinson M, Jones A, St Clair Gibson A, Thompson K. Effects of deception on exercise performance: implications for determinants of fatigue in humans. Med Sci Sports Exerc. 2012;44(3):534–41.PubMedCrossRefGoogle Scholar
  79. 79.
    Madsen PL, Hasselbalch SG, Hagemann LP, Olsen KS, Bulow J, Holm S, et al. Persistent resetting of the cerebral oxygen/glucose uptake ratio by brain activation: evidence obtained with the Kety–Schmidt technique. J Cereb Blood Flow Metab. 1995;15(3):485–91.PubMedCrossRefGoogle Scholar
  80. 80.
    McNay EC, McCarty RC, Gold PE. Fluctuations in brain glucose concentration during behavioral testing: dissociations between brain areas and between brain and blood. Neurobiol Learn Mem. 2001;75(3):325–37.PubMedCrossRefGoogle Scholar
  81. 81.
    Font L, Mingote S, Farrar AM, Pereira M, Worden L, Stopper C, et al. Intra-accumbens injections of the adenosine A2A agonist CGS 21680 affect effort-related choice behavior in rats. Psychopharmacology. 2008;199(4):515–26.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Mingote S, Font L, Farrar AM, Vontell R, Worden LT, Stopper CM, et al. Nucleus accumbens adenosine A2A receptors regulate exertion of effort by acting on the ventral striatopallidal pathway. J Neurosci. 2008;28(36):9037–46.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Davis JM, Zhao Z, Stock HS, Mehl KA, Buggy J, Hand GA. Central nervous system effects of caffeine and adenosine on fatigue. Am J Physiol Regul Integr Comp Physiol Rev. 2003;284(2):R399–404.CrossRefGoogle Scholar
  84. 84.
    Martin BJ. Effect of sleep deprivation on tolerance of prolonged exercise. Eur J Appl Physiol Occup Physiol. 1981;47:345–54.PubMedCrossRefGoogle Scholar
  85. 85.
    Oliver SJ, Costa RJ, Laing SJ, Bilzon JL, Walsh NP. One night of sleep deprivation decreases treadmill endurance performance. Eur J Appl Physiol. 2009;107(2):155–61.PubMedCrossRefGoogle Scholar
  86. 86.
    Temesi J, Arnal PJ, Davranche K, Bonnefoy R, Levy P, Verges S, et al. Does central fatigue explain reduced cycling after complete sleep deprivation? Med Sci Sports Exerc. 2013;45(12):2243–53. Scholar
  87. 87.
    Graham TE. Caffeine and exercise: metabolism, endurance and performance. Sports Med. 2001;31(11):785–807.PubMedCrossRefGoogle Scholar
  88. 88.
    McCall AL, Millington WR, Wurtman RJ. Blood-brain barrier transport of caffeine: dose-related restriction of adenine transport. Life Sci. 1982;31:2709–15.PubMedCrossRefGoogle Scholar
  89. 89.
    Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev. 1999;51:83–133.PubMedGoogle Scholar
  90. 90.
    Okada M, Kiryu K, Kawata Y, Mizuno K, Wada K, Tasaki H, et al. Determination of the effects of caffeine and carbamazepine on striatal dopamine release by in vivo microdialysis. Eur J Pharmacol. 1997;324(8):181–8.CrossRefGoogle Scholar
  91. 91.
    McLellan TM, Bell DG, Kamimori GH. Caffeine improves physical performance during 24 h of active wakefulness. Aviat Space Environ Med. 2004;75(8):666–72.PubMedGoogle Scholar
  92. 92.
    Wesensten N, Belenky G, Kautz MA, Thorne DR, Reichardt RM, Balkin TJ. Maintaining alertness and performance during sleep deprivation: modafinil versus caffeine. Psychopharmacology. 2002;159(3):238–47.PubMedCrossRefGoogle Scholar
  93. 93.
    Kennedy DO, Scholey AB. A glucose-caffeine ‘energy drink’ ameliorates subjective and performance deficits during prolonged cognitive demand. Appetite. 2004;42(3):331–3. Scholar
  94. 94.
    Doherty M, Smith PM, Hughes MG, Davison RCR. Caffeine lowers perceptual response and increases power output during high-intensity cycling. J Sport Sci. 2004;22:637–43. Scholar
  95. 95.
    de Morree HM, Klein C, Marcora SM. Perception of effort reflects central motor command during movement execution. Psychophysiology. 2012;49:1242–53.PubMedCrossRefGoogle Scholar
  96. 96.
    Christensen MS, Lundbye-Jensen J, Geertsen SS, Petersen TH, Paulson OB, Nielsen JB. Premotor cortex modulates somatosensory cortex during voluntary movements without proprioceptive feedback. Nat Neurosci. 2007;10(4):417–9. Scholar
  97. 97.
    Poulet JF, Hedwig B. New insights into corollary discharges mediated by identified neural pathways. Trends Neurosci. 2007;30(1):14–21. Scholar
  98. 98.
    de Morree HM, Klein C, Marcora SM. Cortical substrates of the effects of caffeine and time-on-task on perception of effort. J Appl Physiol. 2014;117(12):1514–23. Scholar
  99. 99.
    Marcora SM. Perception of effort during exercise is independent of afferent feedback from skeletal muscles, heart, and lungs. J Appl Physiol. 2009;106(6):2060–2.PubMedCrossRefGoogle Scholar
  100. 100.
    Duncan MJ, Al-Nakeeb Y, Scurr J. Perceived exertion is related to muscle activity during leg extension exercise. Res Sports Med. 2006;14(3):179–89. Scholar
  101. 101.
    Kalmar JM. The influence of caffeine on voluntary muscle activation. Med Sci Sports Exerc. 2005;37(12):2113–9.PubMedCrossRefGoogle Scholar
  102. 102.
    Tarnopolsky MA. Effect of caffeine on the neuromuscular system–potential as an ergogenic aid. Appl Physiol Nutr Metab. 2008;33(6):1284–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Angius L, Pageaux B, Hopker J, Marcora SM, Mauger AR. Transcranial direct current stimulation improves isometric time to exhaustion of the knee extensors. Neuroscience. 2016;339:363–75.PubMedCrossRefGoogle Scholar
  104. 104.
    Takarada Y, Mima T, Abe M, Nakatsuka M, Taira M. Inhibition of the primary motor cortex can alter one’s ‘‘sense of effort”: effects of low-frequency rTMS. Neurosci Res. 2014;89:54–60.PubMedCrossRefGoogle Scholar
  105. 105.
    Patel R, Spreng RN, Turner GR. Functional brain changes following cognitive and motor skills training: a quantitative meta-analysis. Neurorehabilit Neural Repair. 2013;27(3):187–99.CrossRefGoogle Scholar
  106. 106.
    Janot JM, Steffen JP, Porcari JP, Maher MA. Heart rate responses and perceived exertion for beginner and recreational sport climbers during indoor climbing. J Exerc Physiol Online. 2000;3(1):1–7.Google Scholar
  107. 107.
    Martin K, Staiano W, Menaspà P, Hennessey T, Marcora S, Keegan R, et al. Superior inhibitory control and resistance to mental fatigue in professional road cyclists. PloS One. 2016;11(7):e0159907.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Walton ME, Kennerley SW, Bannerman DM, Phillips PE, Rushworth MF. Weighing up the benefits of work: behavioral and neural analyses of effort-related decision making. Neural Netw. 2006;19(8):1302–14.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Williamson JW, McColl R, Mathews D, Ginsburg M, Mitchell JH. Activation of the insular cortex is affected by the intensity of exercise. J Appl Physiol. 1999;87(3):1213–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Martin K, Thompson KG, Keegan R, Ball N, Rattray B. Mental fatigue does not affect maximal anaerobic exercise performance. Eur J Appl Physiol. 2015;115(4):715–25. Scholar
  111. 111.
    Brown D, Bray S. Show me the money! Incentives attenuate effects of cognitive control exertion (mental fatigue) on physical endurance performance. J Exerc Mov Sport. 2016;48(1):149.Google Scholar
  112. 112.
    Winchester R, Turner LA, Thomas K, Ansley L, Thompson KG, Micklewright D, et al. Observer effects on the rating of perceived exertion and affect during exercise in recreationally active males. Percept Mot Skills. 2012;115(1):213–27.PubMedCrossRefGoogle Scholar
  113. 113.
    Williams EL, Jones HS, Sparks SA, Marchant DC, Midgley AW, Mc Naughton LR. Competitor presence reduces internal attentional focus and improves 16.1 km cycling time trial performance. J Sci Med Sport. 2015;18(4):486–91.PubMedCrossRefGoogle Scholar
  114. 114.
    Shei RJ, Thompson K, Chapman R, Raglin J, Mickleborough T. Using deception to establish a reproducible improvement in 4-km cycling time trial performance. Int J Sports Med. 2016;37(5):341–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Stone MR, Thomas K, Wilkinson M, Stevenson E, Gibson ASC, Jones AM, et al. Exploring the performance reserve: effect of different magnitudes of power output deception on 4,000 m cycling time-trial performance. PloS One. 2017;12(3):e0173120.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Ferré S, Fuxe K, von Euler G, Johansson B, Fredholm BB. Adenosine-dopamine interactions in the brain. Neuroscience. 1992;51:501–12.PubMedCrossRefGoogle Scholar
  117. 117.
    Fredholm BB, Johansson B, Van der Ploeg I, Hu PS, Jin S. Neuromodulatory roles of purines. Drug Dev Res. 1993;28:349.CrossRefGoogle Scholar
  118. 118.
    Fredholm BB, Dunwiddie TV. How does adenosine inhibit transmitter release? Trends Pharmacol Sci. 1988;9:130.PubMedCrossRefGoogle Scholar
  119. 119.
    Durcan MJ, Morgan PF. Evidence for adenosine A2 receptor involvement in the hypomobility effects of adenosine analogues in mice. Eur J Pharmacol. 1989;168:285.PubMedCrossRefGoogle Scholar
  120. 120.
    Salamone JD, Steinpreis RE, McCullough LD, Smith P, Smith P, Smith P, Grebel D, Mahan K. Haloperidol and nucleus accumbens dopamine depletion suppress lever-pressing for food but increase free food consumption in a novel food-choice procedure. Psychopharmacology (Berl). 1991;104:515–21.CrossRefGoogle Scholar
  121. 121.
    Svenningsson P, Hall H, Sedvall G, Fredholm BB. Distribution of adenosine receptors in the postmortem human brain: an extended autoradiographic study. Synapse. 1997;27(4):322–35.PubMedCrossRefGoogle Scholar
  122. 122.
    Palomero-Gallagher N, Vogt BA, Schleicher A, Mayberg HS, Zilles K. Receptor architecture of human cingulate cortex: evaluation of the four-region neurobiological model. Hum Brain Mapp. 2009;30(8):2336–55.PubMedCrossRefGoogle Scholar
  123. 123.
    Matsui T, Soya S, Okamoto M, Ichitani Y, Kawanaka K, Soya H. Brain glycogen decreases during prolonged exercise. J Physiol. 2011;589(13):3383–93. Scholar
  124. 124.
    Öz G, Kumar A, Rao JP, Kodl CT, Chow L, Eberly LE, et al. Human brain glycogen metabolism during and after hypoglycemia. Diabetes. 2009;58(9):1978–85.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Blanco AM, Gómez-Boronat M, Pérez-Maceira J, Mancebo MJ, Aldegunde M. Brain glycogen supercompensation after different conditions of induced hypoglycemia and sustained swimming in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A Mol Integr Physiol. 2015;187:55–60.PubMedCrossRefGoogle Scholar
  126. 126.
    Canada SE, Weaver SA, Sharpe SN, Pederson BA. Brain glycogen supercompensation in the mouse after recovery from insulin-induced hypoglycemia. J Neurosci Res. 2011;89(4):585–91.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Folbergrová J, Katsura KI, Siesjö BK. Glycogen accumulated in the brain following insults is not degraded during a subsequent period of ischemia. J Neurol Sci. 1996;137(1):7–13.PubMedCrossRefGoogle Scholar
  128. 128.
    Ludyga S, Gronwald T, Hottenrott K. The athlete’s brain: cross-sectional evidence for neural efficiency during cycling exercise. Neural Plast. 2016;7(5):1–7.CrossRefGoogle Scholar
  129. 129.
    Kim W, Chang Y, Kim J, Seo J, Ryu K, Lee E, et al. An fMRI study of differences in brain activity among elite, expert, and novice archers at the moment of optimal aiming. Cogn Behav Neurol. 2014;27(4):173–82.PubMedCrossRefGoogle Scholar
  130. 130.
    Hawley JA. Adaptations of skeletal muscle to prolonged, intense endurance training. Clin Exp Pharmacol Physiol. 2002;29(3):218–22.PubMedCrossRefGoogle Scholar
  131. 131.
    Social Grimm P, Bias Desirability. In: Sheth JN, Malhotra NK, editors. Wiley international encyclopedia of marketing. Amdterdam: Wiley; 2010.Google Scholar
  132. 132.
    Paulhus DL. Two-component models of socially desirable responding. J Pers Soc Psychol. 1984;46(3):598–609.CrossRefGoogle Scholar
  133. 133.
    Podsakoff PM, MacKenzie SB, Lee JY, Podsakoff NP. Common method biases in behavioral research: a critical review of the literature and recommended remedies. J Appl Psychol. 2003;88(5):879–903. Scholar
  134. 134.
    Antin J, Shaw A, editors. Social desirability bias and self-reports of motivation: a study of amazon mechanical turk in the US and India. In: SIGCHI conference on human factors in computing systems; 2012; New York: ACM.Google Scholar
  135. 135.
    Grossbard JR, Cumming SP, Standage M, Smith RE, Smoll FL. Social desirability and relations between goal orientations and competitive trait anxiety in young athletes. Psychol Sport Exerc. 2007;8(4):491–505. Scholar
  136. 136.
    Newsholme EA, Blomstrand E. The plasma level of some amino acids and physical and mental fatigue. Experientia. 1996;52(5):413–5.PubMedCrossRefGoogle Scholar
  137. 137.
    Pires FO, Silva-Júnior FL, Brietzke C, Franco-Alvarenga PE, Pinheiro FA, de França NM, et al. Mental fatigue alters cortical activation and psychological responses, impairing performance in a distance-based cycling trial. Front Physiol. 2018;9:227. Scholar
  138. 138.
    Brown DM, Bray SR. Effects of mental fatigue on physical endurance performance and muscle activation are attenuated by monetary incentives. J Sport Exerc Psychol. 2017;39(6):385–96.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Canberra Research Institute for Sport and ExerciseCanberraAustralia
  2. 2.Vrije Universiteit Brussel Human Performance Research GroupBrusselsBelgium
  3. 3.New South Wales Institute of SportSydneyAustralia

Personalised recommendations