Sports Medicine

, Volume 47, Issue 9, pp 1821–1845 | Cite as

Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations

  • Jairo H. Migueles
  • Cristina Cadenas-Sanchez
  • Ulf Ekelund
  • Christine Delisle Nyström
  • Jose Mora-Gonzalez
  • Marie Löf
  • Idoia Labayen
  • Jonatan R. Ruiz
  • Francisco B. Ortega
Systematic Review

Abstract

Background

Accelerometers are widely used to measure sedentary time, physical activity, physical activity energy expenditure (PAEE), and sleep-related behaviors, with the ActiGraph being the most frequently used brand by researchers. However, data collection and processing criteria have evolved in a myriad of ways out of the need to answer unique research questions; as a result there is no consensus.

Objectives

The purpose of this review was to: (1) compile and classify existing studies assessing sedentary time, physical activity, energy expenditure, or sleep using the ActiGraph GT3X/+ through data collection and processing criteria to improve data comparability and (2) review data collection and processing criteria when using GT3X/+ and provide age-specific practical considerations based on the validation/calibration studies identified.

Methods

Two independent researchers conducted the search in PubMed and Web of Science. We included all original studies in which the GT3X/+ was used in laboratory, controlled, or free-living conditions published from 1 January 2010 to the 31 December 2015.

Results

The present systematic review provides key information about the following data collection and processing criteria: placement, sampling frequency, filter, epoch length, non-wear-time, what constitutes a valid day and a valid week, cut-points for sedentary time and physical activity intensity classification, and algorithms to estimate PAEE and sleep-related behaviors. The information is organized by age group, since criteria are usually age-specific.

Conclusion

This review will help researchers and practitioners to make better decisions before (i.e., device placement and sampling frequency) and after (i.e., data processing criteria) data collection using the GT3X/+ accelerometer, in order to obtain more valid and comparable data.

PROSPERO registration number

CRD42016039991.

Keywords

Sedentary Time Vigorous Physical Activity Indirect Calorimetry Multivariate Adaptive Regression Spline Physical Activity Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We are deeply thankful to Patty Freedson, Professor (University of Massachusetts/Amherst, USA) and Catrine Tudor-Locke, PhD (University of Massachusetts/Amherst, USA), for their comments on an earlier draft. This is part of a PhD Thesis conducted in the Biomedicine Doctoral Studies at the University of Granada, Spain.

Compliance with ethical standards

Funding

This review was conducted under the umbrella of the ActiveBrains project (DEP2013-47540). Jairo H. Migueles is supported by a Grant from the Spanish Ministry of Education, Culture and Sport (FPU15/02645). Cristina Cadenas-Sanchez is supported by a Grant from the Spanish Ministry of Economy and Competitiveness (BES-2014-068829). Jose Mora-Gonzalez is supported by a Grant from the Spanish Ministry of Education, Culture and Sport (FPU14/06837). Francisco B. Ortega and Jonatan R. Ruiz are supported by Grants from the Spanish Ministry of Science and Innovation (RYC-2011-09011 and RYC-2010-05957, respectively). Ulf Ekelund is supported by Grants from the Research Council of Norway (249932/F20) and the UK Medical Research Council (MC_UU_12015/3). Additional funding was obtained from the University of Granada, Plan Propio de Investigación 2016, Excellence actions: Units of Excellence; Unit of Excellence on Exercise and Health (UCEES). In addition, funding was provided by the SAMID III network, RETICS, funded by the PN I + D+I 2017-2021 (Spain), ISCIII- Sub-Directorate General for Research Assessment and Promotion, the European Regional Development Fund (ERDF) (Ref. RD16/0022) and the EXERNET Research Network on Exercise and Health in Special Populations (DEP2005-00046/ACTI).

Conflict of interest

Jairo H. Migueles, Cristina Cadenas-Sanchez, Ulf Ekelund, Christine Delisle Nyström, Jose Mora-Gonzalez, Marie Löf, Idoia Labayen, Jonatan R. Ruiz, and Francisco B. Ortega declare that they have no conflicts of interest relevant to the content of this review.

Supplementary material

40279_2017_716_MOESM1_ESM.docx (244 kb)
Supplementary material 1 (DOCX 244 kb)
40279_2017_716_MOESM2_ESM.docx (131 kb)
Supplementary material 2 (DOCX 131 kb)
40279_2017_716_MOESM3_ESM.docx (185 kb)
Supplementary material 3 (DOCX 184 kb)

References

  1. 1.
    Warburton DER, Nicol CW, Bredin SSD. Health benefits of physical activity: the evidence. CMAJ. 2006;174:801–9.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Fletcher G, Balady G, Blair S, et al. Statement on exercise: benefits and recommendations for physical activity programs for all Americans. Circulation. 1996;94:857–62.PubMedCrossRefGoogle Scholar
  3. 3.
    Janssen I, Leblanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7:40.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Warren JM, Ekelund U, Besson H, et al. Assessment of physical activity—a review of methodologies with reference to epidemiological research: a report of the exercise physiology section of the European Association of Cardiovascular Prevention and Rehabilitation. Eur J Cardiovasc Prev Rehabil. 2010;17:127–39.PubMedCrossRefGoogle Scholar
  5. 5.
    Bassett DR, Rowlands A, Trost SG. Calibration and validation of wearable monitors. Med Sci Sports Exerc. 2012;44:32–8.CrossRefGoogle Scholar
  6. 6.
    Rothney MP, Brychta RJ, Meade NN, et al. Validation of the ActiGraph two-regression model for predicting energy expenditure. Med Sci Sports Exerc. 2010;42:1785–92.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Sasaki JE, John D, Freedson PS. Validation and comparison of ActiGraph activity monitors. J Sci Med Sport. 2011;14:411–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Baranowski T, Dworkin RJ, Cieslik CJ, et al. Reliability and validity of self-report of aerobic activity—Family Health Project. Res Q Exerc Sport. 1984;55:309–17.CrossRefGoogle Scholar
  9. 9.
    Sallis JF. Self-report measures of children’s physical activity. J Sch Health. 1991;61:215–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Sirard JR, Pate RR. Physical activity assessment in children and adolescents. Sports Med. 2001;31:439–54.PubMedCrossRefGoogle Scholar
  11. 11.
    Freedson PS, Melanson E, Sirard JR. Calibration of the computer science and applications, Inc. accelerometer. Med Sci Sports Exerc. 1998;30:777–81.PubMedCrossRefGoogle Scholar
  12. 12.
    Evenson KR, Catellier DJ, Gill K, et al. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26:1557–65.PubMedCrossRefGoogle Scholar
  13. 13.
    Hänggi JM, Phillips LRS, Rowlands AV. Validation of the GT3X ActiGraph in children and comparison with the GT1M ActiGraph. J Sci Med Sport. 2013;16:40–4. doi: 10.1016/j.jsams.2012.05.012.PubMedCrossRefGoogle Scholar
  14. 14.
    Copeland JL, Esliger DW. Accelerometer assessment of physical activity in active, healthy older adults. J Aging Phys Act. 2009;17:17–30.PubMedCrossRefGoogle Scholar
  15. 15.
    Chandler JL, Brazendale K, Beets MW, et al. Classification of physical activity intensities using a wrist-worn accelerometer in 8- to 12-year-old children. Pediatr Obes. 2015;11(2):120–7. doi: 10.1111/ijpo.12033.PubMedCrossRefGoogle Scholar
  16. 16.
    Sadeh A, Sharkey KM, Carskadon MA. Activity-based sleep-wake identification: an empirical test of methodological issues. Sleep. 1994;17(3):201–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Cole RJ, Kripke DF, Gruen W, et al. Automatic sleep/wake identification from wrist activity. Sleep. 1992;15:461–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Tudor-Locke C, Barreira TV, Schuna JM, et al. Fully automated waist-worn accelerometer algorithm for detecting children’s sleep-period time separate from 24-h physical activity or sedentary behaviors. Appl Physiol Nutr Metab. 2014;39:53–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Barreira TV, Schuna JM, Mire EF, et al. Identifying children’s nocturnal sleep using 24-h waist accelerometry. Med Sci Sports Exerc. 2015. doi: 10.1249/MSS.0000000000000486.Google Scholar
  20. 20.
    Crouter SE, Horton M, Bassett DR. Use of a two-regression model for estimating energy expenditure in children. Med Sci Sports Exerc. 2012;44:1177–85.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Trost SG, Ward DS, Moorehead SM, et al. Validity of the computer science and applications (CSA) activity monitor in children. Med Sci Sports Exerc. 1998;30:629–33.PubMedCrossRefGoogle Scholar
  22. 22.
    Hildebrand M, Van Hees VT, Hansen BH, et al. Age-group comparability of raw accelerometer output from wrist- and hip-worn monitors. Med Sci Sports Exerc. 2014;46(9):1816–24. doi: 10.1249/MSS.0000000000000289.PubMedCrossRefGoogle Scholar
  23. 23.
    Fairclough SJ, Noonan R, Rowlands AV, et al. Wear compliance and activity in children wearing wrist and hip-mounted accelerometers. Med Sci Sports Exerc. 2016;48(2):245–53. doi: 10.1249/MSS.0000000000000771.PubMedCrossRefGoogle Scholar
  24. 24.
    Staudenmayer J, He S, Hickey A, et al. Methods to estimate aspects of physical activity and sedentary behavior from high frequency wrist accelerometer measurements. J Appl Physiol. 2015. doi: 10.1152/japplphysiol.00026.2015.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Wijndaele K, Westgate K, Stephens SK, et al. Utilization and harmonization of adult accelerometry data. Med Sci Sports Exerc. 2015;47(10):2129–39.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Aguilar-Farias N, Brown WJ, Peeters GM. ActiGraph GT3X+ cut-points for identifying sedentary behaviour in older adults in free-living environments. J Sci Med Sport. 2014;17:293–6. doi: 10.1016/j.jsams.2013.07.002.PubMedCrossRefGoogle Scholar
  27. 27.
    Santos-Lozano A, Santín-Medeiros F, Cardon G, et al. Actigraph GT3X: validation and determination of physical activity intensity cut points. Int J Sports Med. 2013;34:975–82.PubMedCrossRefGoogle Scholar
  28. 28.
    Ellis K, Kerr J, Godbole S, et al. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers. Physiol Meas. 2014;35:2191–203.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kim Y, Lee JM, Peters BP, et al. Examination of different accelerometer cut-points for assessing sedentary behaviors in children. PLoS One. 2014;9:1–8.Google Scholar
  30. 30.
    Keadle SK, Shiroma EJ, Freedson PS, et al. Impact of accelerometer data processing decisions on the sample size, wear-time and physical activity level of a large cohort study. BMC Public Health. 2014;14(1):1210.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Cain KL, Sallis JF, Conway TL, et al. Using accelerometers in youth physical activity studies: a review of methods. J Phys Act Health. 2013;10:437–50.PubMedCrossRefGoogle Scholar
  32. 32.
    Booth A, Clarke M, Dooley G, et al. The nuts and bolts of PROSPERO: an international prospective register of systematic reviews. Syst Rev. 2012;1:2.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement (Reprinted from Annals of Internal Medicine). Phys Ther. 2009;89:873–80.PubMedGoogle Scholar
  34. 34.
    Johansson E, Ekelund U, Nero H, et al. Calibration and cross-validation of a wrist-worn ActiGraph in young preschoolers. Pediatr Obes. 2015;10(1):1–6. doi: 10.1111/j.2047-6310.2013.00213.x.PubMedCrossRefGoogle Scholar
  35. 35.
    Costa S, Barber SE, Cameron N, et al. Calibration and validation of the ActiGraph GT3X+ in 2–3 year olds. J Sci Med Sport. 2013;17:617–22. doi: 10.1016/j.jsams.2013.11.005.PubMedCrossRefGoogle Scholar
  36. 36.
    Tudor-Locke C, Barreira TV, Schuna JM, et al. Improving wear-time compliance with a 24-h waist-worn accelerometer protocol in the International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE). Int J Behav Nutr Phys Act. 2015;12(1):1–9.CrossRefGoogle Scholar
  37. 37.
    Crouter SE, Flynn JI, Bassett DR. Estimating physical activity in youth using a wrist accelerometer. Med Sci Sports Exerc. 2015;47:944–7.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Romanzini M, Petroski EL, Ohara D, et al. Calibration of ActiGraph GT3X, Actical and RT3 accelerometers in adolescents. Eur J Sport Sci. 2014;14(1):91–9. doi: 10.1080/17461391.2012.732614.PubMedCrossRefGoogle Scholar
  39. 39.
    Hjorth MF, Chaput JP, Damsgaard CT, et al. Measure of sleep and physical activity by a single accelerometer: can a waist-worn ActiGraph adequately measure sleep in children? Sleep Biol Rhythms. 2012;10:328–35.CrossRefGoogle Scholar
  40. 40.
    Aadland E, Ylvisåker E. Reliability of the ActiGraph GT3X+ accelerometer in adults under free-living conditions. PLoS One. 2015;10:e0134606. doi: 10.1371/journal.pone.0134606.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Ozemek C, Kirschner MM, Wilkerson BS, et al. Intermonitor reliability of the GT3X + accelerometer at hip, wrist and ankle sites during activities of daily living. Physiol Meas. 2014;35:129–38.PubMedCrossRefGoogle Scholar
  42. 42.
    Ellis K, Kerr J, Godbole S, et al. Hip and wrist accelerometer algorithms for free-living behavior classification. Med Sci Sports Exerc. 2016;48(5):933–40. doi: 10.1249/MSS.0000000000000840.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Stec MJ, Rawson ES. Estimation of resistance exercise energy expenditure using triaxial accelerometry. J Strength Cond Res. 2012;26:1413–22.PubMedCrossRefGoogle Scholar
  44. 44.
    Tudor-Locke C, Barreira TV, Schuna JM. Comparison of step outputs for waist and wrist accelerometer attachment sites. Med Sci Sports Exerc. 2014;47(4):839.CrossRefGoogle Scholar
  45. 45.
    Choi L, Ward SC, Schnelle JF, et al. Assessment of wear/nonwear-time classification algorithms for triaxial accelerometer. Med Sci Sports Exerc. 2012;44:2009–16.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Brønd C, Arvidsson D. Sampling frequency affects the processing of ActiGraph raw acceleration data to activity counts. J Appl Physiol. 2016;120(3):362–9. doi: 10.1152/japplphysiol.00628.2015.PubMedCrossRefGoogle Scholar
  47. 47.
    Toftager M, Kristensen PL, Oliver M, et al. Accelerometer data reduction in adolescents: effects on sample retention and bias. Int J Behav Nutr Phys Act. 2013;10:140.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Freedson PS, John D. Comment on “Estimating activity and sedentary behavior from an accelerometer on the hip and wrist”. Med Sci Sports Exerc. 2013;45:962–3.PubMedCrossRefGoogle Scholar
  49. 49.
    Aadland E, Ylvisåker E. Reliability of objectively measured sedentary time and physical activity in adults. PLoS One. 2015;10:e0133296. doi: 10.1371/journal.pone.0133296.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Donaldson SC, Montoye AHK, Tuttle MS, et al. Variability of objectively measured sedentary behavior. Med Sci Sports Exerc. 2016;48(4):755–61. doi: 10.1249/MSS.0000000000000828.PubMedCrossRefGoogle Scholar
  51. 51.
    Lyden K, Kozey Keadle SL, Staudenmayer JW, et al. Validity of two wearable monitors to estimate breaks from sedentary time. Med Sci Sports Exerc. 2012;44:2243–52.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ried-Larsen M, Brønd JC, Brage S, et al. Mechanical and free living comparisons of four generations of the ActiGraph activity monitor. Int J Behav Nutr Phys Act. 2012;9:1–10. doi: 10.1186/1479-5868-9-113.CrossRefGoogle Scholar
  53. 53.
    Cain KL, Conway TL, Adams MA, et al. Comparison of older and newer generations of ActiGraph accelerometers with the normal filter and the low frequency extension. Int J Behav Nutr Phys Act. 2013;10:51.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Cellini N, Buman MP, McDevitt EA, et al. Direct comparison of two actigraphy devices with polysomnographically recorded naps in healthy young adults. Chronobiol Int. 2013;30:691–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Wanner M, Martin BW, Meier F, et al. Effects of filter choice in GT3X accelerometer assessments of free-living activity. Med Sci Sports Exerc. 2013;45:170–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Barreira TV, Brouillette RM, Foil HC, et al. Comparison of older adults steps/day using NL-1000 pedometer and two GTX+ accelerometer filters. J Aging Phys Act. 2012;21:402–16.PubMedCrossRefGoogle Scholar
  57. 57.
    Jimmy G, Seiler R, Mäder U. Development and validation of GT3X accelerometer cut-off points in 5- to 9-year-old children based on indirect calorimetry measurements. Schweizerische Zeitschrift fur Sport und Sport. 2013;61:37–43.Google Scholar
  58. 58.
    Kahan D, Nicaise V, Reuben K. Convergent validity of four accelerometer cutpoints with direct observation of preschool children’s outdoor physical activity. Res Q Exerc Sport. 2013;84:59–67. doi: 10.1080/02701367.2013.762294.PubMedCrossRefGoogle Scholar
  59. 59.
    Aibar A, Bois JE, Zaragoza J, et al. Do epoch lengths affect adolescents’ compliance with physical activity guidelines? J Sports Med Phys Fit. 2014;54:255–63.Google Scholar
  60. 60.
    Peeters G, van Gellecum Y, Ryde G, et al. Is the pain of activity log-books worth the gain in precision when distinguishing wear and non-wear-time for tri-axial accelerometers? J Sci Med Sport. 2013;16:515–9. doi: 10.1016/j.jsams.2012.12.002.PubMedCrossRefGoogle Scholar
  61. 61.
    Troiano RP, Berrigan D, Dodd KW, et al. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40:181–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Choi L, Liu Z, Matthews E, et al. Validation of accelerometer wear and nonwear-time classification algorithm. Med Sci Sports Exerc. 2012;43:357–64.CrossRefGoogle Scholar
  63. 63.
    Katzmarzyk PT, Barreira TV, Broyles ST, et al. The International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE): design and methods. BMC Public Health. 2013;13:900–13.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Janssen X, Cliff DP, Reilly JJ, et al. Predictive validity and classification accuracy of ActiGraph energy expenditure equations and cut-points in young children. PLoS One. 2013;8(11):e79124–9.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Sirard JR, Trost SG, Pfeiffer KA, et al. Calibration and evaluation of an objective measure of physical activity in preschool children. J Phys Act Health. 2005;2:345–57.CrossRefGoogle Scholar
  66. 66.
    Reilly JJ, Coyle J, Kelly L, et al. An objective method for measurement of sedentary behavior in 3- to 4-year olds. Obes Res. 2003;11:1155–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Pate RR, Almeida MJ, McIver KL, et al. Validation and calibration of an accelerometer in preschool children. Obesity (Silver Spring). 2006;14:2000–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Puyau MR, Adolph AL, Vohra FA, et al. Validation and calibration of physical activity monitors in children. Obes Res. 2002;10:150–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Van Cauwenberghe E, Gubbels J, De Bourdeaudhuij I, et al. Feasibility and validity of accelerometer measurements to assess physical activity in toddlers. Int J Behav Nutr Phys Act. 2011;8:67.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Pulakka A, Cheung YB, Ashorn U, et al. Feasibility and validity of the ActiGraph GT3X accelerometer in measuring physical activity of Malawian toddlers. Acta Paediatr Int J Paediatr. 2013;102:1192–8.CrossRefGoogle Scholar
  71. 71.
    Butte NF, Wong WW, Lee JS, et al. Prediction of energy expenditure and physical activity in preschoolers. Med Sci Sports Exerc. 2014;46:1216–26.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Zhu Z, Chen P, Zhuang J. Intensity classification accuracy of accelerometer-measured physical activities in Chinese children and youth. Res Q Exerc Sport. 2013;84:S4–11. doi: 10.1080/02701367.2013.850919.PubMedCrossRefGoogle Scholar
  73. 73.
    Vanhelst J, Béghin L, Turck D, et al. New validated thresholds for various intensities of physical activity in adolescents using the ActiGraph accelerometer. Int J Rehabil Res. 2011;34:175–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Freedson P, Pober D, Janz KF. Calibration of accelerometer output for children. Med Sci Sports Exerc. 2005;37:523–30.CrossRefGoogle Scholar
  75. 75.
    Mattocks C, Leary S, Ness A, et al. Calibration of an accelerometer during free-living activities in children. Int J Pediatr Obes. 2007;2:218–26.PubMedCrossRefGoogle Scholar
  76. 76.
    Peterson NE, Sirard JR, Kulbok PA, et al. Validation of accelerometer thresholds and inclinometry for measurement of sedentary behavior in young adult university students. Res Nurs Health. 2015;38:492–8. doi: 10.1002/nur.21694.PubMedCrossRefGoogle Scholar
  77. 77.
    Rowlands AV, Rennie K, Kozarski R, et al. Children’s physical activity assessed with wrist- and hip-worn accelerometers. Med Sci Sports Exerc. 2014;2006:2308–16.CrossRefGoogle Scholar
  78. 78.
    Aittasalo M, Vähä-Ypyä H, Vasankari T, et al. Mean amplitude deviation calculated from raw acceleration data: a novel method for classifying the intensity of adolescents’ physical activity irrespective of accelerometer brand. BMC Sports Sci Med Rehabil. 2015;7:18. doi: 10.1186/s13102-015-0010-0.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Kozey-Keadle S, Libertine A, Lyden K, et al. Validation of wearable monitors for assessing sedentary behavior. Med Sci Sports Exerc. 2011;43:1561–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Vähä-Ypyä H, Vasankari T, Husu P, et al. A universal, accurate intensity-based classification of different physical activities using raw data of accelerometer. Clin Physiol Funct Imaging. 2015;35(1):64–70. doi: 10.1111/cpf.12127.PubMedCrossRefGoogle Scholar
  81. 81.
    Zakeri IF, Adolph AL, Puyau MR, et al. Cross-sectional time series and multivariate adaptive regression splines models using accelerometry and heart rate predict energy expenditure of preschoolers. J Nutr. 2013;143:114–22.PubMedCrossRefGoogle Scholar
  82. 82.
    Zhu Z, Chen P, Zhuang J. Predicting Chinese children and youth’s energy expenditure using ActiGraph accelerometers: a calibration and cross-validation study. Res Q Exerc Sport. 2013;84:S56–63. doi: 10.1080/02701367.2013.850989.PubMedCrossRefGoogle Scholar
  83. 83.
    Meredith-Jones K, Williams S, Galland B, et al. 24 h accelerometry: impact of sleep-screening methods on estimates of sedentary behaviour and physical activity while awake. J Sports Sci. 2015;414:1–7. doi: 10.1080/02640414.2015.1068438.Google Scholar
  84. 84.
    Rosenberger ME, Buman MP, Haskell WL, et al. Twenty-four hours of sleep, sedentary behavior, and physical activity with nine wearable devices. Med Sci Sports Exerc. 2016;48(3):457–65. doi: 10.1249/MSS.0000000000000778.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Kaplan RF, Wang Y, Loparo KA, et al. Performance evaluation of an automated single-channel sleep-wake detection algorithm. Nat Sci Sleep. 2014;6:113–22. doi: 10.2147/NSS.S71159.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Slater JA, Botsis T, Walsh J, et al. Assessing sleep using hip and wrist actigraphy. Sleep Biol Rhythms. 2015;13(2):172–8. doi: 10.1111/sbr.12103.CrossRefGoogle Scholar
  87. 87.
    Zinkhan M, Berger K, Hense S, et al. Agreement of different methods for assessing sleep characteristics: a comparison of two actigraphs, wrist and hip placement, and self-report with polysomnography. Sleep Med. 2014;15(9):1107–14. doi: 10.1016/j.sleep.2014.04.015.PubMedCrossRefGoogle Scholar
  88. 88.
    Trost SG, Mciver KL, Pate RR. Conducting accelerometer-based activity assessments in field-based research. Med Sci Sports Exerc. 2005;37:531–43.CrossRefGoogle Scholar
  89. 89.
    Tryon WW, Williams R. Fully proportional actigraphy: a new instrument. Behav Res Methods Instru Comput. 1996;28:392–403.CrossRefGoogle Scholar
  90. 90.
    Cavagna GA, Franzetti P. The determinants of the step frequency in walking in humans. J Physiol. 1986;373:235–42.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Cavagna GA, Willems PA, Franzetti P, et al. The two power limits conditioning step frequency in human running. J Physiol. 1991;437:95–108.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    John D, Miller R, Kozey-Keadle S, et al. Biomechanical examination of the “plateau phenomenon” in ActiGraph vertical activity counts. Physiol Meas. 2012;33:219–30.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Robusto KM, Trost SG. Comparison of three generations of ActiGraph™ activity monitors in children and adolescents. J Sports Sci. 2012;30:1429–35.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Grydeland M, Hansen BH, Ried-Larsen M, et al. Comparison of three generations of ActiGraph activity monitors under free-living conditions: do they provide comparable assessments of overall physical activity in 9-year old children? BMC Sports Sci Med Rehabil. 2014;6:26.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Treuth MS, Schmitz K, Catellier DJ, et al. Defining accelerometer thresholds for activity intensities in adolescent girls. Med Sci Sports Exerc. 2004;36:1259–66.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Ridgers ND, Salmon J, Ridley K, et al. Agreement between activPAL and ActiGraph for assessing children’s sedentary time. Int J Behav Nutr Phys Act. 2012;9:15.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Matthews CE, Chen KY, Freedson PS, et al. Amount of time spent in sedentary behaviors in the United States, 2003-2004. Am J Epidemiol. 2008;167:875–81.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Metzger JS, Catellier DJ, Evenson KR, et al. Patterns of objectively measured physical activity in the United States. Med Sci Sports Exerc. 2008;40:630–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Davis MG, Fox KR. Physical activity patterns assessed by accelerometry in older people. Eur J Appl Physiol. 2007;100:581–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Andersen LB, Harro M, Sardinha LB, et al. Physical activity and clustered cardiovascular risk in children: a cross-sectional study (The European Youth Heart Study). Yearb Sport Med. 2006;368:299–304.Google Scholar
  101. 101.
    Van Cauwenberghe E, Labarque V, Trost SG, et al. Calibration and comparison of accelerometer cut points in preschool children. Int J Pediatr Obes. 2011;6:e582–9.PubMedCrossRefGoogle Scholar
  102. 102.
    Grydeland M, Bergh IH, Bjelland M, et al. Correlates of weight status among Norwegian 11-year-olds: the HEIA study. BMC Public Health. 2012;12:1053.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Matthews C. Calibration for accelerometer output for adults. Med Sci Sports Exerc. 2005;S512:S512–22.CrossRefGoogle Scholar
  104. 104.
    Pruitt LA, Glynn NW, King AC, et al. Use of accelerometry to measure physical activity in older adults at risk for mobility disability. J Aging Phys Act. 2008;16:416–34.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Zisko N, Carlsen T, Salvesen Ø, et al. New relative intensity ambulatory accelerometer thresholds for elderly men and women: the Generation 100 study. BMC Geriatr. 2015;15:97.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Crouter SE, Churilla JR, Bassett DR. Estimating energy expenditure using accelerometers. Eur J Appl Physiol. 2006;98:601–12.PubMedCrossRefGoogle Scholar
  107. 107.
    Crouter SE, Kuffel E, Haas JD, et al. Refined two-regression model for the ActiGraph accelerometer. Med Sci Sports Exerc. 2010;42:1029–37.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Liu S, Gao RX, Freedson PS. Computational methods for estimating energy expenditure in human physical activities. Med Sci Sports Exerc. 2012;44:2138–46.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Schmitz KH, Treuth M, Hannan P, et al. Predicting energy expenditure from accelerometry counts in adolescents girls. Med Sci Sports Exerc. 2005;37:155–61.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Mâsse LC, Fuemmeler BF, Anderson CB, et al. Accelerometer data reduction: a comparison of four reduction algorithms on select outcome variables. Med Sci Sports Exerc. 2005;37(11 Suppl):S544–54.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Jairo H. Migueles
    • 1
  • Cristina Cadenas-Sanchez
    • 1
  • Ulf Ekelund
    • 2
    • 3
  • Christine Delisle Nyström
    • 4
  • Jose Mora-Gonzalez
    • 1
  • Marie Löf
    • 4
    • 5
  • Idoia Labayen
    • 6
  • Jonatan R. Ruiz
    • 1
    • 4
  • Francisco B. Ortega
    • 1
    • 4
  1. 1.PROFITH “PROmoting FITness and Health through physical activity” Research Group, Department of Physical Education and Sports, Faculty of Sport SciencesUniversity of GranadaGranadaSpain
  2. 2.Department of Sport MedicineNorwegian School of Sport SciencesOsloNorway
  3. 3.MRC Epidemiology Unit, Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
  4. 4.Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
  5. 5.Department of Clinical and Experimental Medicine, Faculty of the Health SciencesLinköping UniversityLinköpingSweden
  6. 6.Department of Nutrition and Food ScienceUniversity of the Basque Country, UPV-EHUVitoria-GasteizSpain

Personalised recommendations