Advertisement

Sports Medicine

, Volume 47, Issue 4, pp 735–756 | Cite as

The Effect of Dietary Nitrate Supplementation on Endurance Exercise Performance in Healthy Adults: A Systematic Review and Meta-Analysis

  • Nicholas F. McMahon
  • Michael D. Leveritt
  • Toby G. Pavey
Systematic Review

Abstract

Background

Recent research into the use of dietary nitrates and their role in vascular function has led to it becoming progressively more popular amongst athletes attempting to enhance performance.

Objective

The objective of this review was to perform a systematic review and meta-analysis of the literature to evaluate the effect of dietary nitrate (NO3 ) supplementation on endurance exercise performance. An additional aim was to determine whether the performance outcomes are affected by potential moderator variables.

Data sources

Relevant databases such as Cochrane Library, Embase, PubMed, Ovid, Scopus and Web of Science were searched for the following search terms ‘nitrates OR nitrate OR beetroot OR table beet OR garden beet OR red beet AND exercise AND performance’ from inception to October 2015.

Study selection

Studies were included if a placebo versus dietary nitrate-only supplementation protocol was able to be compared, and if a quantifiable measure of exercise performance was ≥30 s (for a single bout of exercise or the combined total for multiple bouts).

Study appraisal and synthesis

The literature search identified 1038 studies, with 47 (76 trials) meeting the inclusion criteria. Data from the 76 trials were extracted for inclusion in the meta-analysis. A fixed-effects meta-analysis was conducted for time trial (TT) (n = 28), time to exhaustion (TTE) (n = 22) and graded-exercise test (GXT) (n = 8) protocols. Univariate meta-regression was used to assess potential moderator variables (exercise type, dose duration, NO3 type, study quality, fitness level and percentage nitrite change).

Results

Pooled analysis identified a trivial but non-significant effect in favour of dietary NO3 supplementation [effect size (ES) = −0.10, 95 % Cl = −0.27 to 0.06, p > 0.05]. TTE trials had a small to moderate statistically significant effect in favour of dietary NO3 supplementation (ES = 0.33, 95 % Cl = 0.15–0.50, p < 0.01). GXT trials had a small but non-significant effect in favour of dietary NO3 supplementation in GXT performance measures (ES = 0.25, 95 % Cl = −0.06 to 0.56, p > 0.05). No significant heterogeneity was detected in the meta-analysis. No statistically significant effects were observed from the meta-regression analysis.

Conclusion

Dietary NO3 supplementation is likely to elicit a positive outcome when testing endurance exercise capacity, whereas dietary NO3 supplementation is less likely to be effective for time-trial performance. Further work is needed to understand the optimal dosing strategies, which population is most likely to benefit, and under which conditions dietary nitrates are likely to be most effective for performance.

Keywords

Exercise Performance Time Trial Time Trial Performance Ergogenic Effect Beetroot Juice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to express their gratitude to Julie Hansen and Scott Macintyre for their assistance in developing a search strategy, and to several authors cited herein for providing access to data.

Compliance with Ethical Standards

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Nicholas McMahon, Michael Leveritt and Toby Pavey declare they have no conflicts of interest relevant to the content of this review.

Supplementary material

40279_2016_617_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 23 kb)

References

  1. 1.
    Wolinsky I, Driskell JA. Nutritional ergogenic aids. vol Book, Whole. Boca Raton: CRC Press; 2004.Google Scholar
  2. 2.
    Bishop D. Dietary supplements and team-sport performance. Sports Med. 2010;40(12):995–1017. doi: 10.2165/11536870-000000000-00000.CrossRefPubMedGoogle Scholar
  3. 3.
    Stamler JS, Meissner G. Physiology of nitric oxide in skeletal muscle. Physiol Rev. 2001;81(1):209–37.PubMedGoogle Scholar
  4. 4.
    Santamaria P. Nitrate in vegetables: toxicity, content, intake and EC regulation. J Sci Food Agric. 2006;86(1):10–7. doi: 10.1002/jsfa.2351.CrossRefGoogle Scholar
  5. 5.
    Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008;7(2):156–67. doi: 10.1038/nrd2466.CrossRefPubMedGoogle Scholar
  6. 6.
    Larsen FJ, Weitzberg E, Lundberg JO, et al. Effects of dietary nitrate on oxygen cost during exercise. Acta Physiol. 2007;191(1):59–66. doi: 10.1111/j.1748-1716.2007.01713.x.CrossRefGoogle Scholar
  7. 7.
    Stuart MK, Howley ET, Gladden LB, et al. Efficiency of trained subjects differing in maximal oxygen uptake and type of training. J Appl Physiol Respir Environ Exerc Physiol. 1981;50(2):444–9.PubMedGoogle Scholar
  8. 8.
    Moseley L, Achten J, Martin JC, et al. No differences in cycling efficiency between world-class and recreational cyclists. Int J Sports Med. 2004;25(5):374–9. doi: 10.1055/s-2004-815848.CrossRefPubMedGoogle Scholar
  9. 9.
    Bailey SJ, Fulford J, Vanhatalo A, et al. Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J Appl Physiol. 2010;109(1):135–48. doi: 10.1152/japplphysiol.00046.2010.CrossRefPubMedGoogle Scholar
  10. 10.
    Vanhatalo A, Bailey SJ, Blackwell JR, et al. Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise. Am J Physiol Regul Integr Comp Physiol. 2010;299(4):R1121–31.CrossRefPubMedGoogle Scholar
  11. 11.
    Breese BC, McNarry MA, Marwood S, et al. Beetroot juice supplementation speeds O2 uptake kinetics and improves exercise tolerance during severe-intensity exercise initiated from an elevated metabolic rate. Am J Physiol Regul Integr Comp Physiol. 2013;305(12):R1441–50. doi: 10.1152/ajpregu.00295.2013.CrossRefPubMedGoogle Scholar
  12. 12.
    Masschelein E, Van Thienen R, Wang X, et al. Dietary nitrate improves muscle but not cerebral oxygenation status during exercise in hypoxia. J Appl Physiol. 2012;113(5):736–45.CrossRefPubMedGoogle Scholar
  13. 13.
    Muggeridge DJ, Howe CC, Spendiff O, et al. The effects of a single dose of concentrated beetroot juice on performance in trained flatwater kayakers. Int J Sport Nutr Exerc Metab. 2013;23(5):498–506.CrossRefPubMedGoogle Scholar
  14. 14.
    Porcelli S, Ramaglia M, Bellistri G, et al. Aerobic fitness affects the exercise performance responses to nitrate supplementation. Med Sci Sports Exerc. 2014;. doi: 10.1249/MSS.0000000000000577.Google Scholar
  15. 15.
    Bailey SJ, Winyard P, Vanhatalo A, et al. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J Appl Physiol. 2009;107(4):1144–55.CrossRefPubMedGoogle Scholar
  16. 16.
    Lansley KE, Winyard PG, Bailey SJ, et al. Acute dietary nitrate supplementation improves cycling time trial performance. Med Sci Sports Exerc. 2011;43(6):1125–31.CrossRefPubMedGoogle Scholar
  17. 17.
    Cermak NM, Res P, Stinkens R, et al. No improvement in endurance performance after a single dose of beetroot juice. Int J Sport Nutr Exerc Metab. 2012;22(6):470–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Murphy M, Eliot K, Heuertz RM, et al. Whole beetroot consumption acutely improves running performance. J Acad Nutr Diet. 2012;112(4):548–52.CrossRefPubMedGoogle Scholar
  19. 19.
    Peacock O, Tjonna AE, James P, et al. Dietary nitrate does not enhance running performance in elite cross-country skiers. Med Sci Sports Exerc. 2012;44(11):2213–9. doi: 10.1249/MSS.0b013e3182640f48.CrossRefPubMedGoogle Scholar
  20. 20.
    Wilkerson DP, Hayward GM, Bailey SJ, et al. Influence of acute dietary nitrate supplementation on 50 mile time trial performance in well-trained cyclists. Eur J Appl Physiol. 2012;112(12):4127–34. doi: 10.1007/s00421-012-2397-6.CrossRefPubMedGoogle Scholar
  21. 21.
    Christensen PM, Nyberg M, Bangsbo J. Influence of nitrate supplementation on VO2 kinetics and endurance of elite cyclists. Scand J Med Sci Sports. 2013;23(1):e21–31. doi: 10.1111/sms.12005.CrossRefPubMedGoogle Scholar
  22. 22.
    Boorsma RK, Whitfield J, Spriet LL. Beetroot juice supplementation does not improve performance of elite 1500-m runners. Med Sci Sports Exerc. 2014;46(12):2326–34. doi: 10.1249/MSS.0000000000000364.CrossRefPubMedGoogle Scholar
  23. 23.
    Hoon MW, Johnson NA, Chapman PG, et al. The effect of nitrate supplementation on exercise performance in healthy individuals: a systematic review and meta-analysis. Int J Sport Nutr Exerc Metab. 2013;23(5):522.CrossRefPubMedGoogle Scholar
  24. 24.
    Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339(7716):332–6. doi: 10.1136/bmj.b2535.Google Scholar
  25. 25.
    Maher CG, Sherrington C, Herbert RD, et al. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713.PubMedGoogle Scholar
  26. 26.
    Hedges LV. Distribution theory for Glass’s estimator of effect size and related estimators. J Educ Behav Stat. 1981;6(2):107–28.CrossRefGoogle Scholar
  27. 27.
    Cohen J. A power primer. Psychol Bull. 1992;112(1):155–9. doi: 10.1037/0033-2909.112.1.155.CrossRefPubMedGoogle Scholar
  28. 28.
    Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.CrossRefPubMedGoogle Scholar
  29. 29.
    Egger M, Smith GD, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sterne JAC, Sutton AJ, Ioannidis JPA, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. 2011;343(7818):302–7. doi: 10.1136/bmj.d4002.Google Scholar
  31. 31.
    Wylie LJ, Kelly J, Bailey SJ, et al. Beetroot juice and exercise: pharmacodynamic and dose-response relationships. J Appl Physiol. 2013;115(3):325–36. doi: 10.1152/japplphysiol.00372.2013.CrossRefPubMedGoogle Scholar
  32. 32.
    Hoon MW, Hopkins WG, Jones AM, et al. Nitrate supplementation and high-intensity performance in competitive cyclists. Appl Physiol Nutr Metab. 2014;39(9):1043–9. doi: 10.1139/apnm-2013-0574.CrossRefPubMedGoogle Scholar
  33. 33.
    Hoon MW, Jones AM, Johnson NA, et al. The effect of variable doses of inorganic nitrate-rich beetroot juice on simulated 2000-m rowing performance in trained athletes. Int J Sports Physiol Perform. 2014;9(4):615–20.CrossRefPubMedGoogle Scholar
  34. 34.
    Kelly J, Vanhatalo A, Wilkerson DP, et al. Effects of nitrate on the power-duration relationship for severe-intensity exercise. Med Sci Sports Exerc. 2013;45(9):1798–806. doi: 10.1249/MSS.0b013e31828e885c.CrossRefPubMedGoogle Scholar
  35. 35.
    Trexler ET, Smith-Ryan AE, Melvin MN, et al. Effects of pomegranate extract on blood flow and running time to exhaustion. Appl Physiol Nutr Metab. 2014;39(9):1038–42. doi: 10.1139/apnm-2014-0137.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lansley KE, Winyard PG, Fulford J, et al. Dietary nitrate supplementation reduces the O2 cost of walking and running: a placebo-controlled study. J Appl Physiol. 2011;110(3):591–600. doi: 10.1152/japplphysiol.01070.2010.CrossRefPubMedGoogle Scholar
  37. 37.
    Bailey SJ, Varnham RL, DiMenna FJ, et al. Inorganic nitrate supplementation improves muscle oxygenation, O2 uptake kinetics, and exercise tolerance at high but not low pedal rates. J Appl Physiol. 2015;118(11):1396–405. doi: 10.1152/japplphysiol.01141.2014.CrossRefPubMedGoogle Scholar
  38. 38.
    Kelly J, Vanhatalo A, Bailey SJ, et al. Dietary nitrate supplementation: effects on plasma nitrite and pulmonary O2 uptake dynamics during exercise in hypoxia and normoxia. Am J Physiol Regul Integr Comp Physiol. 2014;307(7):R920–30. doi: 10.1152/ajpregu.00068.2014.CrossRefPubMedGoogle Scholar
  39. 39.
    MacLeod KE, Nugent SF, Barr SI, et al. Acute beetroot juice supplementation does not improve cycling performance in normoxia or moderate hypoxia. Int J Sport Nutr Exerc Metab. 2015;25(4):359–66. doi: 10.1123/ijsnem.2014-0129.CrossRefPubMedGoogle Scholar
  40. 40.
    Lane SC, Hawley JA, Desbrow B, et al. Single and combined effects of beetroot juice and caffeine supplementation on cycling time trial performance. Appl Physiol Nutr Metab. 2014;39(9):1050–7. doi: 10.1139/apnm-2013-0336.CrossRefPubMedGoogle Scholar
  41. 41.
    Peeling P, Cox GR, Bullock N, et al. Beetroot juice improves on-water 500 m time-trial performance, and laboratory-based paddling economy in national and international-level kayak athletes. Int J Sport Nutr Exerc Metab. 2014;. doi: 10.1123/ijsnem.2014-0110.Google Scholar
  42. 42.
    Arnold JT, Oliver SJ, Lewis-Jones TM, et al. Beetroot juice does not enhance altitude running performance in well-trained athletes. Appl Physiol Nutr Metab. 2015;40(6):590–5. doi: 10.1139/apnm-2014-0470.CrossRefPubMedGoogle Scholar
  43. 43.
    Buck CL, Henry T, Guelfi K, et al. Effects of sodium phosphate and beetroot juice supplementation on repeated-sprint ability in females. Eur J Appl Physiol. 2015;115(10):2205–13. doi: 10.1007/s00421-015-3201-1.CrossRefPubMedGoogle Scholar
  44. 44.
    Martin K, Smee D, Thompson KG, et al. No improvement of repeated-sprint performance with dietary nitrate. Int J Sports Physiol Perform. 2014;9(5):845–50.CrossRefPubMedGoogle Scholar
  45. 45.
    Vanhatalo A, Fulford J, Bailey SJ, et al. Dietary nitrate reduces muscle metabolic perturbation and improves exercise tolerance in hypoxia. J Physiol. 2011;589(Pt 22):5517–28. doi: 10.1113/jphysiol.2011.216341.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Engan HK, Jones AM, Ehrenberg F, et al. Acute dietary nitrate supplementation improves dry static apnea performance. Respir Physiol Neurobiol. 2012;182(2–3):53–9. doi: 10.1016/j.resp.2012.05.007.CrossRefPubMedGoogle Scholar
  47. 47.
    Muggeridge DJ, Howe CC, Spendiff O, et al. A single dose of beetroot juice enhances cycling performance in simulated altitude. Med Sci Sports Exerc. 2014;46(1):143–50. doi: 10.1249/MSS.0b013e3182a1dc51.CrossRefPubMedGoogle Scholar
  48. 48.
    Bond H, Morton L, Braakhuis AJ. Dietary nitrate supplementation improves rowing performance in well-trained rowers. Int J Sport Nutr Exerc Metab. 2012;22(4):251–6.CrossRefPubMedGoogle Scholar
  49. 49.
    Kelly J, Fulford J, Vanhatalo A, et al. Effects of short-term dietary nitrate supplementation on blood pressure, O2 uptake kinetics, and muscle and cognitive function in older adults. Am J Physiol Regul Integr Comp Physiol. 2013;304(2):R73–83.CrossRefPubMedGoogle Scholar
  50. 50.
    Glaister M, Pattison JR, Muniz-Pumares D, et al. Effects of dietary nitrate, caffeine, and their combination on 20-km cycling time trial performance. J Strength Cond Res. 2015;29(1):165–74.CrossRefPubMedGoogle Scholar
  51. 51.
    Larsen FJ, Weitzberg E, Lundberg JO, et al. Dietary nitrate reduces maximal oxygen consumption while maintaining work performance in maximal exercise. Free Radic Biol Med. 2010;48(2):342–7.CrossRefPubMedGoogle Scholar
  52. 52.
    Bescós R, Rodriguez FA, Iglesias X, et al. Acute administration of inorganic nitrate reduces VO2peak in endurance athletes. Med Sci Sports Exerc. 2011;43(10):1979–86.CrossRefPubMedGoogle Scholar
  53. 53.
    Bescós R, Ferrer-Roca V, Galilea PA, et al. Sodium nitrate supplementation does not enhance performance of endurance athletes. Med Sci Sports Exerc. 2012;44(12):2400–9. doi: 10.1249/MSS.0b013e3182687e5c.CrossRefPubMedGoogle Scholar
  54. 54.
    Sandbakk SB, Sandbakk O, Peacock O, et al. Effects of acute supplementation of l-arginine and nitrate on endurance and sprint performance in elite athletes. Nitric Oxide. 2014;48:10–5. doi: 10.1016/j.niox.2014.10.006.CrossRefPubMedGoogle Scholar
  55. 55.
    Carpentier A, Stragier S, Bréjeon C, et al. Nitrate supplementation, exercise, and kidney function: are there detrimental effects? Med Sci Sports Exerc. 2015;47(7):1519–22. doi: 10.1249/MSS.0000000000000548.CrossRefPubMedGoogle Scholar
  56. 56.
    Muggeridge DJ, Sculthorpe N, Grace FM, et al. Acute whole body UVA irradiation combined with nitrate ingestion enhances time trial performance in trained cyclists. Nitric Oxide. 2014;48:3–9.CrossRefPubMedGoogle Scholar
  57. 57.
    Cermak NM, Gibala MJ, Van Loon LJC. Nitrate supplementation’s improvement of 10-km time-trial performance in trained cyclists. Int J Sport Nutr Exerc Metab. 2012;22(1):64–71.CrossRefPubMedGoogle Scholar
  58. 58.
    Wylie LJ, Mohr M, Krustrup P, et al. Dietary nitrate supplementation improves team sport-specific intense intermittent exercise performance. Eur J Appl Physiol. 2013;113(7):1673–84. doi: 10.1007/s00421-013-2589-8.CrossRefPubMedGoogle Scholar
  59. 59.
    Aucouturier J, Boissiere J, Pawlak-Chaouch M, et al. Effect of dietary nitrate supplementation on tolerance to supramaximal intensity intermittent exercise. Nitric Oxide. 2015;49:16–25. doi: 10.1016/j.niox.2015.05.004.CrossRefPubMedGoogle Scholar
  60. 60.
    Jones AM. Dietary nitrate supplementation and exercise performance. Sports Med. 2014;44(S1):35–45. doi: 10.1007/s40279-014-0149-y.CrossRefPubMedCentralGoogle Scholar
  61. 61.
    Saris W, Brouns F, Kester A, et al. A new validated endurance performance test. Med Sci Sports Exerc. 1996;28(2):266–70. doi: 10.1097/00005768-199602000-00017.CrossRefPubMedGoogle Scholar
  62. 62.
    Hinckson EA, Hopkins WG. Reliability of time to exhaustion analyzed with critical-power and log-log modeling. Med Sci Sports Exerc. 2005;37(4):696–701. doi: 10.1249/01.MSS.0000159023.06934.53.CrossRefPubMedGoogle Scholar
  63. 63.
    Amann M, Hopkins WG, Marcora SM. Similar sensitivity of time to exhaustion and time-trial time to changes in endurance. Med Sci Sports Exerc. 2008;40(3):574.CrossRefPubMedGoogle Scholar
  64. 64.
    Jeukendrup AE, Currell K. Should time trial performance be predicted from three serial time-to-exhaustion tests? Med Sci Sports Exerc. 2005;37(10):1820.CrossRefPubMedGoogle Scholar
  65. 65.
    Laursen PB, Rhodes EC, Langill RH, et al. Relationship of exercise test variables to cycling performance in an ironman triathlon. Eur J Appl Physiol. 2002;87(4):433–40. doi: 10.1007/s00421-002-0659-4.CrossRefPubMedGoogle Scholar
  66. 66.
    Currell K, Jeukendrup AE. Validity, reliability and sensitivity of measures of sporting performance. Sports Med. 2008;38(4):297–316.CrossRefPubMedGoogle Scholar
  67. 67.
    International Olympic Committee. London 2012 athletics, 10000m men final. 2015 [cited 1 Oct 2015]. Available from: https://www.olympic.org/london-2012/athletics/10000m-men.
  68. 68.
    Handzlik MK, Gleeson M. Likely additive ergogenic effects of combined preexercise dietary nitrate and caffeine ingestion in trained cyclists. ISRN Nutr. 2013;2013:396581. doi: 10.5402/2013/396581.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Thompson KG, Turner L, Prichard J, et al. Influence of dietary nitrate supplementation on physiological and cognitive responses to incremental cycle exercise. Respir Physiol Neurobiol. 2014;193:11–20. doi: 10.1016/j.resp.2013.12.015.CrossRefPubMedGoogle Scholar
  70. 70.
    Kokkinoplitis K, Chester N. The effect of beetroot juice on repeated sprint performance and muscle force production. J Phys Educ Sport. 2014;14(2):242–7. doi: 10.7752/jpes.2014.02036.Google Scholar
  71. 71.
    Hernández A, Schiffer TA, Ivarsson N, et al. Dietary nitrate increases tetanic [Ca2+]i and contractile force in mouse fast-twitch muscle. J Physiol. 2012;590:3575–83. doi: 10.1113/jphysiol.2012.232777.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Ferguson SK, Hirai DM, Copp SW, et al. Impact of dietary nitrate supplementation via beetroot juice on exercising muscle vascular control in rats. J Physiol. 2013;591(2):547–57. doi: 10.1113/jphysiol.2012.243121.CrossRefPubMedGoogle Scholar
  73. 73.
    Coggan AR, Leibowitz JL, Kadkhodayan A, et al. Effect of acute dietary nitrate intake on maximal knee extensor speed and power in healthy men and women. Nitric Oxide. 2015;48:16–21. doi: 10.1016/j.niox.2014.08.014.CrossRefPubMedGoogle Scholar
  74. 74.
    Thompson C, Wylie LJ, Fulford J, et al. Dietary nitrate improves sprint performance and cognitive function during prolonged intermittent exercise. Eur J Appl Physiol. 2015;115:1825–34. doi: 10.1007/s00421-015-3166-0.CrossRefPubMedGoogle Scholar
  75. 75.
    Wylie LJ, Bailey SJ, Kelly J, et al. Influence of beetroot juice supplementation on intermittent exercise performance. Eur J Appl Physiol. 2016;116:415–25. doi: 10.1007/s00421-015-3296-4.CrossRefPubMedGoogle Scholar
  76. 76.
    Affourtit C, Bailey SJ, Jones AM, et al. On the mechanism by which dietary nitrate improves human skeletal muscle function. Front Physiol. 2015;6:211.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Verhagen AP, de Vet HC, de Bie RA, et al. The Delphi list: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus. J Clin Epidemiol. 1998;51(12):1235.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Human Movement and Nutrition SciencesUniversity of QueenslandSt. LuciaAustralia
  2. 2.School of Exercise and Nutrition SciencesQueensland University of TechnologyKelvin GroveAustralia

Personalised recommendations