Advertisement

Sports Medicine

, Volume 47, Issue 2, pp 221–232 | Cite as

Should Return to Sport be Delayed Until 2 Years After Anterior Cruciate Ligament Reconstruction? Biological and Functional Considerations

  • Christopher V. Nagelli
  • Timothy E. HewettEmail author
Review Article

Abstract

Anterior cruciate ligament (ACL) tears are common knee injuries sustained by athletes during sports participation. A devastating complication of returning to sport following ACL reconstruction (ACLR) is a second ACL injury. Strong evidence now indicates that younger, more active athletes are at particularly high risk for a second ACL injury, and this risk is greatest within the first 2 years following ACLR. Nearly one-third of the younger cohort that resumes sports participation will sustain a second ACL injury within the first 2 years after ACLR. The evidence indicates that the risk of second injury may abate over this time period. The incidence rate of second injuries in the first year after ACLR is significantly greater than the rate in the second year. The lower relative risk in the second year may be related to athletes achieving baseline joint health and function well after the current expected timeline (6–12 months) to be released to unrestricted activity. This highlights a considerable debate in the return to sport decision process as to whether an athlete should wait until 2 years after ACLR to return to unrestricted sports activity. In this review, we present evidence in the literature that athletes achieve baseline joint health and function approximately 2 years after ACLR. We postulate that delay in returning to sports for nearly 2 years will significantly reduce the incidence of second ACL injuries.

Keywords

Anterior Cruciate Ligament Anterior Cruciate Ligament Reconstruction Anterior Cruciate Ligament Injury Anterior Cruciate Ligament Graft Anterior Cruciate Ligament Tear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank Drs. Stephanie Di Stasi, Wendy Hurd, and Kate Webster for their input, clinical expertise, editorial work, and conversations regarding the topic presented in this article.

Compliance with Ethical Standards

Funding

The authors acknowledge funding from the National Institute of Arthritis and Musculoskeletal and Skin Diseases: R01-AR049735, R01-AR055563, and R01AR056259 to TEH.

Conflicts of interest

Christopher Nagelli and Timothy Hewett have no conflicts of interest relevant to the content of this review.

References

  1. 1.
    Mall NA, Chalmers PN, Moric M, et al. Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am J Sports Med. 2014;42(10):2363–70.PubMedCrossRefGoogle Scholar
  2. 2.
    Wright RW, Magnussen RA, Dunn WR, et al. Ipsilateral graft and contralateral ACL rupture at five years or more following ACL reconstruction a systematic review. J Bone Joint Surg Am. 2011;93A(12):1159–65.CrossRefGoogle Scholar
  3. 3.
    Bourke HE, Salmon LJ, Waller A, et al. Survival of the anterior cruciate ligament graft and the contralateral ACL at a minimum of 15 years. Am J Sports Med. 2012;40(9):1985–92.PubMedCrossRefGoogle Scholar
  4. 4.
    Drogset JO, Grontvedt T, Robak OR, et al. A sixteen-year follow-up of three operative techniques for the treatment of acute ruptures of the anterior cruciate ligament. J Bone Joint Surg Am. 2006;88(5):944–52.PubMedGoogle Scholar
  5. 5.
    Morgan MD, Salmon LJ, Waller A, et al. Fifteen-year survival of endoscopic anterior cruciate ligament reconstruction in patients aged 18 years and younger. Am J Sports Med. 2016;44(2):384–92.PubMedCrossRefGoogle Scholar
  6. 6.
    Brophy RH, Selby RM, Altchek DW. Anterior cruciate ligament revision: double-bundle augmentation of primary vertical graft. Arthroscopy. 2006;22(6):683 (e1–5).PubMedCrossRefGoogle Scholar
  7. 7.
    Marchant BG, Noyes FR, Barber-Westin SD, et al. Prevalence of nonanatomical graft placement in a series of failed anterior cruciate ligament reconstructions. Am J Sports Med. 2010;38(10):1987–96.PubMedCrossRefGoogle Scholar
  8. 8.
    Hui C, Salmon LJ, Kok A, et al. Fifteen-year outcome of endoscopic anterior cruciate ligament reconstruction with patellar tendon autograft for “isolated” anterior cruciate ligament tear. Am J Sports Med. 2011;39(1):89–98.PubMedCrossRefGoogle Scholar
  9. 9.
    Leys T, Salmon L, Waller A, et al. Clinical results and risk factors for reinjury 15 years after anterior cruciate ligament reconstruction: a prospective study of hamstring and patellar tendon grafts. Am J Sports Med. 2012;40(3):595–605.PubMedCrossRefGoogle Scholar
  10. 10.
    Laboute E, Savalli L, Puig P, et al. Analysis of return to competition and repeat rupture for 298 anterior cruciate ligament reconstructions with patellar or hamstring tendon autograft in sportspeople. Ann Phys Rehabil Med. 2010;53(10):598–614.PubMedCrossRefGoogle Scholar
  11. 11.
    Gifstad T, Foss OA, Engebretsen L, et al. Lower risk of revision with patellar tendon autografts compared with hamstring autografts: a registry study based on 45,998 primary ACL reconstructions in Scandinavia. Am J Sports Med. 2014;42(10):2319–28.PubMedCrossRefGoogle Scholar
  12. 12.
    Persson A, Fjeldsgaard K, Gjertsen JE, et al. Increased risk of revision with hamstring tendon grafts compared with patellar tendon grafts after anterior cruciate ligament reconstruction: a study of 12,643 patients from the Norwegian Cruciate Ligament Registry, 2004–2012. Am J Sports Med. 2014;42(2):285–91.PubMedCrossRefGoogle Scholar
  13. 13.
    Maletis GB, Inacio MC, Desmond JL, et al. Reconstruction of the anterior cruciate ligament: association of graft choice with increased risk of early revision. Bone Joint J. 2013;95-B(5):623–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Shelbourne KD, Gray T, Haro M. Incidence of subsequent injury to either knee within 5 years after anterior cruciate ligament reconstruction with patellar tendon autograft. Am J Sports Med. 2009;37(2):246–51.PubMedCrossRefGoogle Scholar
  15. 15.
    Paterno MV, Rauh MJ, Schmitt LC, et al. Incidence of contralateral and ipsilateral anterior cruciate ligament (ACL) injury after primary ACL reconstruction and return to sport. Clin J Sport Med. 2012;22(2):116–21.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Allen MM, Pareek A, Krych AJ, et al. Are female soccer players at an increased risk of second anterior cruciate ligament injury compared with their athletic peers? Am J Sports Med. 2016. doi: 10.1177/0363546516648439.
  17. 17.
    Kamien PM, Hydrick JM, Replogle WH, et al. Age, graft size, and Tegner activity level as predictors of failure in anterior cruciate ligament reconstruction with hamstring autograft. Am J Sports Med. 2013;41(8):1808–12.PubMedCrossRefGoogle Scholar
  18. 18.
    Magnussen RA, Lawrence JT, West RL, et al. Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft. Arthroscopy. 2012;28(4):526–31.PubMedCrossRefGoogle Scholar
  19. 19.
    Webster KE, Feller JA, Leigh WB, et al. Younger patients are at increased risk for graft rupture and contralateral injury after anterior cruciate ligament reconstruction. Am J Sports Med. 2014;42(3):641–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Paterno MV, Rauh MJ, Schmitt LC, et al. Incidence of second ACL injuries 2 years after primary ACL reconstruction and return to sport. Am J Sports Med. 2014;42(7):1567–73.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Maletis GB, Inacio MC, Reynolds S, et al. Incidence of postoperative anterior cruciate ligament reconstruction infections: graft choice makes a difference. Am J Sports Med. 2013;41(8):1780–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Salmon L, Russell V, Musgrove T, et al. Incidence and risk factors for graft rupture and contralateral rupture after anterior cruciate ligament reconstruction. Arthroscopy. 2005;21(8):948–57.PubMedCrossRefGoogle Scholar
  23. 23.
    Borchers JR, Pedroza A, Kaeding C. Activity level and graft type as risk factors for anterior cruciate ligament graft failure: a case-control study. Am J Sports Med. 2009;37(12):2362–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Paterno MV, Schmitt LC, Ford KR, et al. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med. 2010;38(10):1968–78.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Fauno P, Rahr-Wagner L, Lind M. Risk for revision after anterior cruciate ligament reconstruction is higher among adolescents: results from the Danish registry of knee ligament reconstruction. Orthop J Sports Med. 2014;2(10):2325967114552405.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Lind M, Menhert F, Pedersen AB. Incidence and outcome after revision anterior cruciate ligament reconstruction: results from the Danish registry for knee ligament reconstructions. Am J Sports Med. 2012;40(7):1551–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Paulos L, Noyes FR, Grood E, et al. Knee rehabilitation after anterior cruciate ligament reconstruction and repair. Am J Sports Med. 1981;9(3):140–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Shelbourne KD, Nitz P. Accelerated rehabilitation after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 1992;15(6):256–64.PubMedCrossRefGoogle Scholar
  29. 29.
    Grindem H, Snyder-Mackler L, Moksnes H, et al. Simple decision rules can reduce reinjury risk by 84 % after ACL reconstruction: the Delaware-Oslo ACL cohort study. Br J Sports Med. 2016;50(13):804–8.Google Scholar
  30. 30.
    Scheffler SU, Unterhauser FN, Weiler A. Graft remodeling and ligamentization after cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2008;16(9):834–42.PubMedCrossRefGoogle Scholar
  31. 31.
    Amiel D, Kleiner JB, Roux RD, et al. The phenomenon of “ligamentization”: anterior cruciate ligament reconstruction with autogenous patellar tendon. J Orthop Res. 1986;4(2):162–72.PubMedCrossRefGoogle Scholar
  32. 32.
    Arnoczky SP, Tarvin GB, Marshall JL. Anterior cruciate ligament replacement using patellar tendon. An evaluation of graft revascularization in the dog. J Bone Joint Surg Am. 1982;64(2):217–24.PubMedCrossRefGoogle Scholar
  33. 33.
    Claes S, Verdonk P, Forsyth R, et al. The “ligamentization” process in anterior cruciate ligament reconstruction what happens to the human graft? a systematic review of the literature. Am J Sports Med. 2011;39(11):2476–83.PubMedCrossRefGoogle Scholar
  34. 34.
    Pauzenberger L, Syre S, Schurz M. “Ligamentization” in hamstring tendon grafts after anterior cruciate ligament reconstruction: a systematic review of the literature and a glimpse into the future. Arthroscopy. 2013;29(10):1712–21.PubMedCrossRefGoogle Scholar
  35. 35.
    Abe S, Kurosaka M, Iguchi T, et al. Light and electron microscopic study of remodeling and maturation process in autogenous graft for anterior cruciate ligament reconstruction. Arthroscopy. 1993;9(4):394–405.PubMedCrossRefGoogle Scholar
  36. 36.
    Rougraff B, Shelbourne KD, Gerth PK, et al. Arthroscopic and histologic analysis of human patellar tendon autografts used for anterior cruciate ligament reconstruction. Am J Sports Med. 1993;21(2):277–84.PubMedCrossRefGoogle Scholar
  37. 37.
    Borchers JR, Kaeding CC, Pedroza AD, et al. Intra-articular findings in primary and revision anterior cruciate ligament reconstruction surgery: a comparison of the MOON and MARS study groups. Am J Sports Med. 2011;39(9):1889–93.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Spindler KP, Schils JP, Bergfeld JA, et al. Prospective study of osseous, articular, and meniscal lesions in recent anterior cruciate ligament tears by magnetic resonance imaging and arthroscopy. Am J Sports Med. 1993;21(4):551–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Boden BP, Dean GS, Feagin JA Jr, et al. Mechanisms of anterior cruciate ligament injury. Orthopedics. 2000;23(6):573–8.PubMedGoogle Scholar
  40. 40.
    Rosen MA, Jackson DW, Berger PE. Occult osseous lesions documented by magnetic resonance imaging associated with anterior cruciate ligament ruptures. Arthroscopy. 1991;7(1):45–51.PubMedCrossRefGoogle Scholar
  41. 41.
    Dunn WR, Spindler KP, Amendola A, et al. Which preoperative factors, including bone bruise, are associated with knee pain/symptoms at index anterior cruciate ligament reconstruction (ACLR)? A Multicenter Orthopaedic Outcomes Network (MOON) ACLR Cohort Study. Am J Sports Med. 2010;38(9):1778–87.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Vellet AD, Marks PH, Fowler PJ, et al. Occult posttraumatic osteochondral lesions of the knee: prevalence, classification, and short-term sequelae evaluated with MR imaging. Radiology. 1991;178(1):271–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Mink JH, Deutsch AL. Occult cartilage and bone injuries of the knee: detection, classification, and assessment with MR imaging. Radiology. 1989;170(3 Pt 1):823–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Roemer FW, Frobell R, Hunter DJ, et al. MRI-detected subchondral bone marrow signal alterations of the knee joint: terminology, imaging appearance, relevance and radiological differential diagnosis. Osteoarthritis Cartilage. 2009;17(9):1115–31.PubMedCrossRefGoogle Scholar
  45. 45.
    Johnson DL, Bealle DP, Brand JC Jr, et al. The effect of a geographic lateral bone bruise on knee inflammation after acute anterior cruciate ligament rupture. Am J Sports Med. 2000;28(2):152–5.PubMedGoogle Scholar
  46. 46.
    Boks SS, Vroegindeweij D, Koes BW, et al. Clinical consequences of posttraumatic bone bruise in the knee. Am J Sports Med. 2007;35(6):990–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Costa-Paz M, Muscolo DL, Ayerza M, et al. Magnetic resonance imaging follow-up study of bone bruises associated with anterior cruciate ligament ruptures. Arthroscopy. 2001;17(5):445–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Hanypsiak BT, Spindler KP, Rothrock CR, et al. Twelve-year follow-up on anterior cruciate ligament reconstruction: long-term outcomes of prospectively studied osseous and articular injuries. Am J Sports Med. 2008;36(4):671–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Papalia R, Torre G, Vasta S, et al. Bone bruises in anterior cruciate ligament injured knee and long-term outcomes. A review of the evidence. Open Access. J Sports Med. 2015;6:37–48.Google Scholar
  50. 50.
    Boks SS, Vroegindeweij D, Koes BW, et al. Magnetic resonance imaging abnormalities in symptomatic and contralateral knees: prevalence and associations with traumatic history in general practice. Am J Sports Med. 2006;34(12):1984–91.PubMedCrossRefGoogle Scholar
  51. 51.
    Boks SS, Vroegindeweij D, Koes BW, et al. Follow-up of posttraumatic ligamentous and meniscal knee lesions detected at MR imaging: systematic review. Radiology. 2006;238(3):863–71.PubMedCrossRefGoogle Scholar
  52. 52.
    Dye SF, Chew MH. The use of scintigraphy to detect increased osseous metabolic activity about the knee. Instr Course Lect. 1994;43:453–69.PubMedGoogle Scholar
  53. 53.
    Leppala J, Kannus P, Natri A, et al. Effect of anterior cruciate ligament injury of the knee on bone mineral density of the spine and affected lower extremity: a prospective one-year follow-up study. Calcif Tissue Int. 1999;64(4):357–63.PubMedCrossRefGoogle Scholar
  54. 54.
    Nyland J, Fisher B, Brand E, et al. Osseous deficits after anterior cruciate ligament injury and reconstruction: a systematic literature review with suggestions to improve osseous homeostasis. Arthroscopy. 2010;26(9):1248–57.PubMedCrossRefGoogle Scholar
  55. 55.
    Zerahn B, Munk AO, Helweg J, et al. Bone mineral density in the proximal tibia and calcaneus before and after arthroscopic reconstruction of the anterior cruciate ligament. Arthroscopy. 2006;22(3):265–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Sievanen H, Kannus P, Heinonen A, et al. Bone mineral density and muscle strength of lower extremities after long-term strength training, subsequent knee ligament injury and rehabilitation: a unique 2-year follow-up of a 26-year-old female student. Bone. 1994;15(1):85–90.PubMedCrossRefGoogle Scholar
  57. 57.
    Dye SF, Chew MH. Restoration of osseous homeostasis after anterior cruciate ligament reconstruction. Am J Sports Med. 1993;21(5):748–50.PubMedCrossRefGoogle Scholar
  58. 58.
    van Meer BL, Waarsing JH, van Eijsden WA, et al. Bone mineral density changes in the knee following anterior cruciate ligament rupture. Osteoarthritis Cartilage. 2014;22(1):154–61.PubMedCrossRefGoogle Scholar
  59. 59.
    Zimny ML, Schutte M, Dabezies E. Mechanoreceptors in the human anterior cruciate ligament. Anat Rec. 1986;214(2):204–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Schultz RA, Miller DC, Kerr CS, et al. Mechanoreceptors in human cruciate ligaments. A histological study. J Bone Joint Surg Am. 1984;66(7):1072–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Solomonow M, Baratta R, Zhou BH, et al. The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. Am J Sports Med. 1987;15(3):207–13.PubMedCrossRefGoogle Scholar
  62. 62.
    Dyhre-Poulsen P, Krogsgaard MR. Muscular reflexes elicited by electrical stimulation of the anterior cruciate ligament in humans. J Appl Physiol. 2000;89(6):2191–5.PubMedGoogle Scholar
  63. 63.
    Krogsgaard MR, Fischer-Rasmussen T, Dyhre-Poulsen P. Absence of sensory function in the reconstructed anterior cruciate ligament. J Electromyogr Kinesiol. 2011;21(1):82–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Ochi M, Iwasa J, Uchio Y, et al. The regeneration of sensory neurones in the reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br. 1999;81(5):902–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Ochi M, Iwasa J, Uchio Y, et al. Induction of somatosensory evoked potentials by mechanical stimulation in reconstructed anterior cruciate ligaments. J Bone Joint Surg Br. 2002;84(5):761–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Nyland J, Brosky T, Currier D, et al. Review of the afferent neural system of the knee and its contribution to motor learning. J Orthop Sports Phys Ther. 1994;19(1):2–11.PubMedCrossRefGoogle Scholar
  67. 67.
    Hewett TE, Paterno MV, Myer GA. Strategies for enhancing proprioception and neuromuscular control of the knee. Clin Orthop Relat Res. 2002;402:76–94.CrossRefGoogle Scholar
  68. 68.
    Iwasa J, Ochi M, Adachi N, et al. Proprioceptive improvement in knees with anterior cruciate ligament reconstruction. Clin Orthop Relat Res. 2000;381:168–76.CrossRefGoogle Scholar
  69. 69.
    MacDonald PB, Hedden D, Pacin O, et al. Proprioception in anterior cruciate ligament-deficient and reconstructed knees. Am J Sports Med. 1996;24(6):774–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Negahban H, Mazaheri M, Kingma I, et al. A systematic review of postural control during single-leg stance in patients with untreated anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc. 2014;22(7):1491–504.PubMedGoogle Scholar
  71. 71.
    Roberts D, Friden T, Stomberg A, et al. Bilateral proprioceptive defects in patients with a unilateral anterior cruciate ligament reconstruction: a comparison between patients and healthy individuals. J Orthop Res. 2000;18(4):565–71.PubMedCrossRefGoogle Scholar
  72. 72.
    Risberg MA, Beynnon BD, Peura GD, et al. Proprioception after anterior cruciate ligament reconstruction with and without bracing. Knee Surg Sports Traumatol Arthrosc. 1999;7(5):303–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Gokeler A, Benjaminse A, Hewett TE, et al. Proprioceptive deficits after ACL injury: are they clinically relevant? Br J Sports Med. 2012;46(3):180–92.PubMedCrossRefGoogle Scholar
  74. 74.
    Sanchez M, Anitua E, Azofra J, et al. Ligamentization of tendon grafts treated with an endogenous preparation rich in growth factors: gross morphology and histology. Arthroscopy. 2010;26(4):470–80.PubMedCrossRefGoogle Scholar
  75. 75.
    Weiler A, Peters G, Maurer J, et al. Biomechanical properties and vascularity of an anterior cruciate ligament graft can be predicted by contrast-enhanced magnetic resonance imaging. A two-year study in sheep. Am J Sports Med. 2001;29(6):751–61.PubMedGoogle Scholar
  76. 76.
    Rabuck SJ, Baraga MG, Fu FH. Anterior cruciate ligament healing and advances in imaging. Clin Sports Med. 2013;32(1):13–20.PubMedCrossRefGoogle Scholar
  77. 77.
    Vogl TJ, Schmitt J, Lubrich J, et al. Reconstructed anterior cruciate ligaments using patellar tendon ligament grafts: diagnostic value of contrast-enhanced MRI in a 2-year follow-up regimen. Eur Radiol. 2001;11(8):1450–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Zaffagnini S, De Pasquale V, Marchesini Reggiani L, et al. Neoligamentization process of BTPB used for ACL graft: histological evaluation from 6 months to 10 years. Knee. 2007;14(2):87–93.PubMedCrossRefGoogle Scholar
  79. 79.
    Gohil S, Annear PO, Breidahl W. Anterior cruciate ligament reconstruction using autologous double hamstrings: a comparison of standard versus minimal debridement techniques using MRI to assess revascularisation. A randomised prospective study with a one-year follow-up. J Bone Joint Surg Br. 2007;89(9):1165–71.PubMedCrossRefGoogle Scholar
  80. 80.
    Ge Y, Li H, Tao H, et al. Comparison of tendon-bone healing between autografts and allografts after anterior cruciate ligament reconstruction using magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc. 2015;23(4):954–60.PubMedCrossRefGoogle Scholar
  81. 81.
    Li H, Tao H, Cho S, et al. Difference in graft maturity of the reconstructed anterior cruciate ligament 2 years postoperatively: a comparison between autografts and allografts in young men using clinical and 3.0-T magnetic resonance imaging evaluation. Am J Sports Med. 2012;40(7):1519–26.PubMedCrossRefGoogle Scholar
  82. 82.
    Suomalainen P, Moisala AS, Paakkala A, et al. Double-bundle versus single-bundle anterior cruciate ligament reconstruction: randomized clinical and magnetic resonance imaging study with 2-year follow-up. Am J Sports Med. 2011;39(8):1615–22.PubMedCrossRefGoogle Scholar
  83. 83.
    Eitzen I, Holm I, Risberg MA. Preoperative quadriceps strength is a significant predictor of knee function two years after anterior cruciate ligament reconstruction. Br J Sports Med. 2009;43(5):371–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Roewer BD, Di Stasi SL, Snyder-Mackler L. Quadriceps strength and weight acceptance strategies continue to improve two years after anterior cruciate ligament reconstruction. J Biomech. 2011;44(10):1948–53.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Di Stasi S, Hartigan EH, Snyder-Mackler L. Sex-specific gait adaptations prior to and up to 6 months after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2015;45(3):207–14.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Di Stasi SL, Logerstedt D, Gardinier ES, et al. Gait patterns differ between ACL-reconstructed athletes who pass return-to-sport criteria and those who fail. Am J Sports Med. 2013;41(6):1310–8.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Xergia SA, Pappas E, Zampeli F, et al. Asymmetries in functional hop tests, lower extremity kinematics, and isokinetic strength persist 6 to 9 months following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2013;43(3):154–62.PubMedCrossRefGoogle Scholar
  88. 88.
    Gokeler A, Benjaminse A, van Eck CF, et al. Return of normal gait as an outcome measurement in acl reconstructed patients. A systematic review. Int J Sports. Phys Ther. 2013;8(4):441–51.Google Scholar
  89. 89.
    Hart HF, Culvenor AG, Collins NJ, et al. Knee kinematics and joint moments during gait following anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Br J Sports Med. 2016;50(10):597–612.PubMedCrossRefGoogle Scholar
  90. 90.
    Xergia SA, McClelland JA, Kvist J, et al. The influence of graft choice on isokinetic muscle strength 4-24 months after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2011;19(5):768–80.PubMedCrossRefGoogle Scholar
  91. 91.
    Palmieri-Smith RM, Thomas AC, Wojtys EM. Maximizing quadriceps strength after ACL reconstruction. Clin Sports Med. 2008;27(3):405–24 (vii–ix).PubMedCrossRefGoogle Scholar
  92. 92.
    Wright RW, Huston LJ, Spindler KP, et al. Descriptive epidemiology of the Multicenter ACL Revision Study (MARS) cohort. Am J Sports Med. 2010;38(10):1979–86.PubMedCrossRefGoogle Scholar
  93. 93.
    Webster KE, Feller JA, Wittwer JE. Longitudinal changes in knee joint biomechanics during level walking following anterior cruciate ligament reconstruction surgery. Gait Posture. 2012;36(2):167–71.PubMedCrossRefGoogle Scholar
  94. 94.
    Delahunt E, Sweeney L, Chawke M, et al. Lower limb kinematic alterations during drop vertical jumps in female athletes who have undergone anterior cruciate ligament reconstruction. J Orthop Res. 2012;30(1):72–8.PubMedCrossRefGoogle Scholar
  95. 95.
    Delahunt E, Prendiville A, Sweeney L, et al. Hip and knee joint kinematics during a diagonal jump landing in anterior cruciate ligament reconstructed females. J Electromyogr Kinesiol. 2012;22(4):598–606.PubMedCrossRefGoogle Scholar
  96. 96.
    Paterno MV, Ford KR, Myer GD, et al. Limb asymmetries in landing and jumping 2 years following anterior cruciate ligament reconstruction. Clin J Sport Med. 2007;17(4):258–62.PubMedCrossRefGoogle Scholar
  97. 97.
    Abrams GD, Harris JD, Gupta AK, et al. Functional performance testing after anterior cruciate ligament reconstruction: a systematic review. Orthop J Sports Med. 2014;2(1):2325967113518305.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Tashman S, Araki D. Effects of anterior cruciate ligament reconstruction on in vivo, dynamic knee function. Clin Sports Med. 2013;32(1):47–59.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Hoshino Y, Fu FH, Irrgang JJ, et al. Can joint contact dynamics be restored by anterior cruciate ligament reconstruction? Clin Orthop Relat Res. 2013;471(9):2924–31.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Kaiser J, Vignos MF, Liu F, et al. American Society of Biomechanics Clinical Biomechanics Award 2015: MRI assessments of cartilage mechanics, morphology and composition following reconstruction of the anterior cruciate ligament. Clin Biomech (Bristol, Avon). 2016;34:38–44.Google Scholar
  101. 101.
    Myer GD, Ford KR, Barber Foss KD, et al. The relationship of hamstrings and quadriceps strength to anterior cruciate ligament injury in female athletes. Clin J Sport Med. 2009;19(1):3–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Schmitt LC, Paterno MV, Hewett TE. The impact of quadriceps femoris strength asymmetry on functional performance at return to sport following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2012;42(9):750–9.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Schmitt LC, Paterno MV, Ford KR, et al. Strength asymmetry and landing mechanics at return to sport after anterior cruciate ligament reconstruction. Med Sci Sports Exerc. 2015;47(7):1426–34.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Aune AK, Holm I, Risberg MA, et al. Four-strand hamstring tendon autograft compared with patellar tendon-bone autograft for anterior cruciate ligament reconstruction—a randomized study with two-year follow-up. Am J Sports Med. 2001;29(6):722–8.Google Scholar
  105. 105.
    Inagaki Y, Kondo E, Kitamura N, et al. Prospective clinical comparisons of semitendinosus versus semitendinosus and gracilis tendon autografts for anatomic double-bundle anterior cruciate ligament reconstruction. J Orthop Sci. 2013;18(5):754–61.PubMedCrossRefGoogle Scholar
  106. 106.
    Aglietti P, Giron F, Buzzi R, et al. Anterior cruciate ligament reconstruction: bone-patellar tendon-bone compared with double semitendinosus and gracilis tendon grafts. A prospective, randomized clinical trial. J Bone Joint Surg Am. 2004;86–A(10):2143–55.Google Scholar
  107. 107.
    Maletis GB, Cameron SL, Tengan JJ, et al. A prospective randomized study of anterior cruciate ligament reconstruction: a comparison of patellar tendon and quadruple-strand semitendinosus/gracilis tendons fixed with bioabsorbable interference screws. Am J Sports Med. 2007;35(3):384–94.PubMedCrossRefGoogle Scholar
  108. 108.
    Keays SL, Bullock-Saxton JE, Keays AC, et al. A 6-year follow-up of the effect of graft site on strength, stability, range of motion, function, and joint degeneration after anterior cruciate ligament reconstruction: patellar tendon versus semitendinosus and Gracilis tendon graft. Am J Sports Med. 2007;35(5):729–39.PubMedCrossRefGoogle Scholar
  109. 109.
    Lautamies R, Harilainen A, Kettunen J, et al. Isokinetic quadriceps and hamstring muscle strength and knee function 5 years after anterior cruciate ligament reconstruction: comparison between bone-patellar tendon-bone and hamstring tendon autografts. Knee Surg Sports Traumatol Arthrosc. 2008;16(11):1009–16.PubMedCrossRefGoogle Scholar
  110. 110.
    Moisala AS, Jarvela T, Kannus P, et al. Muscle strength evaluations after ACL reconstruction. Int J Sports Med. 2007;28(10):868–72.PubMedCrossRefGoogle Scholar
  111. 111.
    Morgan JA, Dahm D, Levy B, et al. Femoral tunnel malposition in ACL revision reconstruction. J Knee Surg. 2012;25(5):361–8.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Rahr-Wagner L, Thillemann TM, Pedersen AB, et al. Increased risk of revision after anteromedial compared with transtibial drilling of the femoral tunnel during primary anterior cruciate ligament reconstruction: results from the Danish Knee Ligament Reconstruction Register. Arthroscopy. 2013;29(1):98–105.PubMedCrossRefGoogle Scholar
  113. 113.
    Xu Y, Liu J, Kramer S, et al. Comparison of in situ forces and knee kinematics in anteromedial and high anteromedial bundle augmentation for partially ruptured anterior cruciate ligament. Am J Sports Med. 2011;39(2):272–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Kato Y, Maeyama A, Lertwanich P, et al. Biomechanical comparison of different graft positions for single-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2013;21(4):816–23.PubMedCrossRefGoogle Scholar
  115. 115.
    Fu FH, van Eck CF, Tashman S, et al. Anatomic anterior cruciate ligament reconstruction: a changing paradigm. Knee Surg Sports Traumatol Arthrosc. 2015;23(3):640–8.PubMedCrossRefGoogle Scholar
  116. 116.
    Middleton KK, Hamilton T, Irrgang JJ, et al. Anatomic anterior cruciate ligament (ACL) reconstruction: a global perspective. Part 1. Knee Surg Sports Traumatol Arthrosc. 2014;22(7):1467–82.PubMedCrossRefGoogle Scholar
  117. 117.
    Risberg MA, Lewek M, Snyder-Mackler L. A systematic review of evidence for anterior cruciate ligament rehabilitation: how much and what type? Phys Ther Sport. 2004;5(3):125–45.CrossRefGoogle Scholar
  118. 118.
    Risberg MA, Holm I. The long-term effect of 2 postoperative rehabilitation programs after anterior cruciate ligament reconstruction: a randomized controlled clinical trial with 2 years of follow-up. Am J Sports Med. 2009;37(10):1958–66.PubMedCrossRefGoogle Scholar
  119. 119.
    Grindem H, Granan LP, Risberg MA, et al. How does a combined preoperative and postoperative rehabilitation programme influence the outcome of ACL reconstruction 2 years after surgery? A comparison between patients in the Delaware-Oslo ACL Cohort and the Norwegian National Knee Ligament Registry. Br J Sports Med. 2015;49(6):385–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Grant JA, Mohtadi NG. Two- to 4-year follow-up to a comparison of home versus physical therapy-supervised rehabilitation programs after anterior cruciate ligament reconstruction. Am J Sports Med. 2010;38(7):1389–94.PubMedCrossRefGoogle Scholar
  121. 121.
    Wiggins AJ, Grandhi RK, Schneider DK, et al. Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med. 2016;44(7):1861–76.Google Scholar
  122. 122.
    Christensen JJ, Krych AJ, Engasser WM, et al. Lateral tibial posterior slope is increased in patients with early graft failure after anterior cruciate ligament reconstruction. Am J Sports Med. 2015;43(10):2510–4.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Christopher V. Nagelli
    • 1
    • 2
    • 4
    • 5
  • Timothy E. Hewett
    • 1
    • 2
    • 3
    • 4
    • 5
    Email author
  1. 1.Orthopedic Biomechanics LaboratoriesMayo ClinicRochesterUSA
  2. 2.Department of Orthopedic Surgery and Sports Medicine CenterMayo ClinicRochesterUSA
  3. 3.Department of Physical Medicine and RehabilitationMayo ClinicRochesterUSA
  4. 4.Department of Biomedical EngineeringThe Ohio State UniversityColumbusUSA
  5. 5.Department of Physiology and Biomedical Engineering andMayo ClinicRochesterUSA

Personalised recommendations