Skip to main content
Log in

Ageing, Muscle Power and Physical Function: A Systematic Review and Implications for Pragmatic Training Interventions

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

The physiological impairments most strongly associated with functional performance in older people are logically the most efficient therapeutic targets for exercise training interventions aimed at improving function and maintaining independence in later life.

Objectives

The objectives of this review were to (1) systematically review the relationship between muscle power and functional performance in older people; (2) systematically review the effect of power training (PT) interventions on functional performance in older people; and (3) identify components of successful PT interventions relevant to pragmatic trials by scoping the literature.

Methods

Our approach involved three stages. First, we systematically reviewed evidence on the relationship between muscle power, muscle strength and functional performance and, second, we systematically reviewed PT intervention studies that included both muscle power and at least one index of functional performance as outcome measures. Finally, taking a strong pragmatic perspective, we conducted a scoping review of the PT evidence to identify the successful components of training interventions needed to provide a minimally effective training dose to improve physical function.

Results

Evidence from 44 studies revealed a positive association between muscle power and indices of physical function, and that muscle power is a marginally superior predictor of functional performance than muscle strength. Nine studies revealed maximal angular velocity of movement, an important component of muscle power, to be positively associated with functional performance and a better predictor of functional performance than muscle strength. We identified 31 PT studies, characterised by small sample sizes and incomplete reporting of interventions, resulting in less than one-in-five studies judged as having a low risk of bias. Thirteen studies compared traditional resistance training with PT, with ten studies reporting the superiority of PT for either muscle power or functional performance. Further studies demonstrated the efficacy of various methods of resistance and functional task PT on muscle power and functional performance, including low-load PT and low-volume interventions.

Conclusions

Maximal intended movement velocity, low training load, simple training methods, low-volume training and low-frequency training were revealed as components offering potential for the development of a pragmatic intervention. Additionally, the research area is dominated by short-term interventions producing short-term gains with little consideration of the long-term maintenance of functional performance. We believe the area would benefit from larger and higher-quality studies and consideration of optimal long-term strategies to develop and maintain muscle power and physical function over years rather than weeks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pahor M, Guralnik JM, Ambrosius WT, et al. Effect of structured physical activity on prevention of major mobility disability in older adults: the LIFE study randomized clinical trial. JAMA. 2014;311(23):2387–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ratamess NA, Alvar BA, Evetoch TK, et al. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687–708.

    Article  Google Scholar 

  3. Chodzko-Zajko WJ, Proctor DN, Fiatarone Singh MA, et al. American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc. 2009;41(7):1510–30.

    Article  PubMed  Google Scholar 

  4. Fiatarone MA, Marks EC, Ryan ND, et al. High-intensity strength training in nonagenarians. Effects on skeletal muscle. JAMA. 1990;263(22):3029–34.

    Article  CAS  PubMed  Google Scholar 

  5. Fiatarone MA, O’Neill EF, Ryan ND, et al. Exercise training and nutritional supplementation for physical frailty in very elderly people. N Engl J Med. 1994;330(25):1769–75.

    Article  CAS  PubMed  Google Scholar 

  6. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9 (W64).

  7. Higgins JPT, Altman DG, Sterne JAC. Chapter 8: Assessing risk of bias in included studies. In: Higgins JPT, Green S, editors. Cochrane handbook for systematic reviews of interventions version 5.1.0 (updated March 2011). The Cochrane Collaboration. 2011. Available from http://www.cochrane-handbook.org.

  8. Levac D, Colquhoun H, O’Brien KK. Scoping studies: advancing the methodology. Implement Sci. 2010;5:69.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Aniansson A, Rundgren A, Sperling L. Evaluation of functional capacity in activities of daily living in 70-year-old men and women. Scand J Rehabil Med. 1980;12(4):145–54.

    CAS  PubMed  Google Scholar 

  10. Bassey EJ, Bendall MJ, Pearson M. Muscle strength in the triceps surae and objectively measured customary walking activity in men and women over 65 years of age. Clin Sci (Lond). 1988;74(1):85–9.

    Article  CAS  PubMed  Google Scholar 

  11. Bendall MJ, Bassey EJ, Pearson MB. Factors affecting walking speed of elderly people. Age Ageing. 1989;18(5):327–32.

    Article  CAS  PubMed  Google Scholar 

  12. Hyatt RH, Whitelaw MN, Bhat A, et al. Association of muscle strength with functional status of elderly people. Age Ageing. 1990;19(5):330–6.

    Article  CAS  PubMed  Google Scholar 

  13. Reid KF, Fielding RA. Skeletal muscle power: a critical determinant of physical functioning in older adults. Exerc Sport Sci Rev. 2012;40(1):4–12.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Beijersbergen CM, Granacher U, Vandervoort AA, et al. The biomechanical mechanism of how strength and power training improves walking speed in old adults remains unknown. Ageing Res Rev. 2013;12(2):618–27.

    Article  CAS  PubMed  Google Scholar 

  15. Hortobagyi T, Mizelle C, Beam S, et al. Old adults perform activities of daily living near their maximal capabilities. J Gerontol A Biol Sci Med Sci. 2003;58(5):M453–60.

    Article  PubMed  Google Scholar 

  16. Larsen AH, Sorensen H, Puggaard L, et al. Biomechanical determinants of maximal stair climbing capacity in healthy elderly women. Scand J Med Sci Sports. 2009;19(5):678–86.

    Article  CAS  PubMed  Google Scholar 

  17. Schenkman M, Riley PO, Pieper C. Sit to stand from progressively lower seat heights—alterations in angular velocity. Clin Biomech (Bristol, Avon). 1996;11(3):153–8.

  18. Gross MM, Stevenson PJ, Charette SL, et al. Effect of muscle strength and movement speed on the biomechanics of rising from a chair in healthy elderly and young women. Gait Posture. 1998;8(3):175–85.

    Article  PubMed  Google Scholar 

  19. Kulmala JP, Korhonen MT, Kuitunen S, et al. Which muscles compromise human locomotor performance with age? J R Soc Interface. 2014;11(100):20140858.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bassey EJ, Fiatarone MA, O’Neill EF, et al. Leg extensor power and functional performance in very old men and women. Clin Sci (Lond). 1992;82(3):321–7.

    Article  CAS  PubMed  Google Scholar 

  21. Skelton DA, Greig CA, Davies JM, et al. Strength, power and related functional ability of healthy people aged 65–89 years. Age Ageing. 1994;23(5):371–7.

    Article  CAS  PubMed  Google Scholar 

  22. Lamb SE, Morse RE, Evans JG. Mobility after proximal femoral fracture: the relevance of leg extensor power, postural sway and other factors. Age Ageing. 1995;24(4):308–14.

    Article  CAS  PubMed  Google Scholar 

  23. Earles DR, Judge JO, Gunnarsson OT. Power as a predictor of functional ability in community dwelling older persons. Med Sci Sports Exerc. 1997;29(5):11.

    Article  Google Scholar 

  24. Rantanen T, Avela J. Leg extension power and walking speed in very old people living independently. J Gerontol A Biol Sci Med Sci. 1997;52(4):M225–31.

    Article  CAS  PubMed  Google Scholar 

  25. Foldvari M, Clark M, Laviolette LC, et al. Association of muscle power with functional status in community-dwelling elderly women. J Gerontol A Biol Sci Med Sci. 2000;55(4):M192–9.

    Article  CAS  PubMed  Google Scholar 

  26. Kozakai R, Tsuzuku S, Yabe K, et al. Age-related changes in gait velocity and leg extension power in middle-aged and elderly people. J Epidemiol. 2000;10(1 Suppl):S77–81.

    Article  CAS  PubMed  Google Scholar 

  27. Samson MM, Meeuwsen IB, Crowe A, et al. Relationships between physical performance measures, age, height and body weight in healthy adults. Age Ageing. 2000;29(3):235–42.

    Article  CAS  PubMed  Google Scholar 

  28. Suzuki T, Bean JF, Fielding RA. Muscle power of the ankle flexors predicts functional performance in community-dwelling older women. J Am Geriatr Soc. 2001;49(9):1161–7.

    Article  CAS  PubMed  Google Scholar 

  29. Bean JF, Kiely DK, Herman S, et al. The relationship between leg power and physical performance in mobility-limited older people. J Am Geriatr Soc. 2002;50(3):461–7.

    Article  PubMed  Google Scholar 

  30. Bean JF, Kiely DK, Leveille SG, et al. The 6-minute walk test in mobility-limited elders: what is being measured? J Gerontol A Biol Sci Med Sci. 2002;57(11):M751–6.

    Article  PubMed  Google Scholar 

  31. Slade JM, Miszko TA, Laity JH, et al. Anaerobic power and physical function in strength-trained and non-strength-trained older adults. J Gerontol A Biol Sci Med Sci. 2002;57(3):M168–72.

    Article  PubMed  Google Scholar 

  32. Bean JF, Leveille SG, Kiely DK, et al. A comparison of leg power and leg strength within the InCHIANTI study: which influences mobility more? J Gerontol A Biol Sci Med Sci. 2003;58(8):728–33.

    Article  PubMed  Google Scholar 

  33. Lindemann U, Claus H, Stuber M, et al. Measuring power during the sit-to-stand transfer. Eur J Appl Physiol. 2003;89(5):466–70.

    Article  PubMed  Google Scholar 

  34. Barker K, Lamb SE, Toye F, et al. Association between radiographic joint space narrowing, function, pain and muscle power in severe osteoarthritis of the knee. Clin Rehabil. 2004;18(7):793–800.

    Article  PubMed  Google Scholar 

  35. Cuoco A, Callahan DM, Sayers S, et al. Impact of muscle power and force on gait speed in disabled older men and women. J Gerontol A Biol Sci Med Sci. 2004;59(11):1200–6.

    Article  PubMed  Google Scholar 

  36. Petrella JK, Miller LS, Cress ME. Leg extensor power, cognition, and functional performance in independent and marginally dependent older adults. Age Ageing. 2004;33(4):342–8.

    Article  PubMed  Google Scholar 

  37. Herman S, Kiely DK, Leveille S, et al. Upper and lower limb muscle power relationships in mobility-limited older adults. J Gerontol A Biol Sci Med Sci. 2005;60(4):476–80.

    Article  PubMed  Google Scholar 

  38. Portegijs E, Sipila S, Alen M, et al. Leg extension power asymmetry and mobility limitation in healthy older women. Arch Phys Med Rehabil. 2005;86(9):1838–42.

    Article  PubMed  Google Scholar 

  39. Sayers SP, Guralnik JM, Thombs LA, et al. Effect of leg muscle contraction velocity on functional performance in older men and women. J Am Geriatr Soc. 2005;53(3):467–71.

    Article  PubMed  Google Scholar 

  40. Holviala JH, Sallinen JM, Kraemer WJ, et al. Effects of strength training on muscle strength characteristics, functional capabilities, and balance in middle-aged and older women. J Strength Cond Res. 2006;20(2):336–44.

    PubMed  Google Scholar 

  41. Kuo HK, Leveille SG, Yen CJ, et al. Exploring how peak leg power and usual gait speed are linked to late-life disability: data from the National Health and Nutrition Examination Survey (NHANES), 1999–2002. Am J Phys Med Rehabil. 2006;85(8):650–8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Marsh AP, Miller ME, Saikin AM, et al. Lower extremity strength and power are associated with 400-meter walk time in older adults: The InCHIANTI study. J Gerontol A Biol Sci Med Sci. 2006;61(11):1186–93.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bean JF, Kiely DK, LaRose S, et al. Is stair climb power a clinically relevant measure of leg power impairments in at-risk older adults? Arch Phys Med Rehabil. 2007;88(5):604–9.

    Article  PubMed  Google Scholar 

  44. Bonnefoy M, Jauffret M, Jusot JF. Muscle power of lower extremities in relation to functional ability and nutritional status in very elderly people. J Nutr Health Aging. 2007;11(3):223–8.

    CAS  PubMed  Google Scholar 

  45. Perry MC, Carville SF, Smith IC, et al. Strength, power output and symmetry of leg muscles: effect of age and history of falling. Eur J Appl Physiol. 2007;100(5):553–61.

    Article  PubMed  Google Scholar 

  46. Puthoff ML, Nielsen DH. Relationships among impairments in lower-extremity strength and power, functional limitations, and disability in older adults. Phys Ther. 2007;87(10):1334–47.

    Article  PubMed  Google Scholar 

  47. Arai T, Obuchi S, Shiba Y, et al. The feasibility of measuring joint angular velocity with a gyro-sensor. Arch Phys Med Rehabil. 2008;89(1):95–9.

    Article  PubMed  Google Scholar 

  48. Bean JF, Kiely DK, LaRose S, et al. Which impairments are most associated with high mobility performance in older adults? Implications for a rehabilitation prescription. Arch Phys Med Rehabil. 2008;89(12):2278–84.

    Article  PubMed  Google Scholar 

  49. Clémençon M, Hautier CA, Rahmani A, et al. Potential role of optimal velocity as a qualitative factor of physical functional performance in women aged 72 to 96 years. Arch Phys Med Rehabil. 2008;89(8):1594–9.

    Article  PubMed  Google Scholar 

  50. Mayson DJ, Kiely DK, LaRose SI, et al. Leg strength or velocity of movement: which is more influential on the balance of mobility limited elders? Am J Phys Med Rehabil. 2008;87(12):969–76.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Portegijs E, Sipila S, Rantanen T, et al. Leg extension power deficit and mobility limitation in women recovering from hip fracture. Am J Phys Med Rehabil. 2008;87(5):363–70.

    Article  PubMed  Google Scholar 

  52. Carabello RJ, Reid KF, Clark DJ, et al. Lower extremity strength and power asymmetry assessment in healthy and mobility-limited populations: reliability and association with physical functioning. Aging Clin Exp Res. 2010;22(4):324–9.

    Article  PubMed  Google Scholar 

  53. Garcia PA, Dias JM, Dias RC, et al. A study on the relationship between muscle function, functional mobility and level of physical activity in community-dwelling elderly. Rev Bras Fisioter. 2011;15(1):15–22.

    Article  PubMed  Google Scholar 

  54. Van Roie E, Verschueren SM, Boonen S, et al. Force-velocity characteristics of the knee extensors: an indication of the risk for physical frailty in elderly women. Arch Phys Med Rehabil. 2011;92(11):1827–32.

    Article  PubMed  Google Scholar 

  55. Arai T, Obuchi S, Shiba Y, et al. The validity of an assessment of maximum angular velocity of knee extension (KE) using a gyroscope. Arch Gerontol Geriatr. 2012;54(2):e175–80.

    Article  PubMed  Google Scholar 

  56. Muehlbauer T, Besemer C, Wehrle A, et al. Relationship between strength, power and balance performance in seniors. Gerontology. 2012;58(6):504–12.

    Article  PubMed  Google Scholar 

  57. Pojednic RM, Clark DJ, Patten C, et al. The specific contributions of force and velocity to muscle power in older adults. Exp Gerontol. 2012;47(8):608–13.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Casas-Herrero A, Cadore EL, Zambom-Ferraresi F, et al. Functional capacity, muscle fat infiltration, power output, and cognitive impairment in institutionalized frail oldest old. Rejuvenation Res. 2013;16(5):396–403.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Paul SS, Sherrington C, Fung VS, et al. Motor and cognitive impairments in Parkinson disease: relationships with specific balance and mobility tasks. Neurorehabil Neural Repair. 2013;27(1):63–71.

    Article  PubMed  Google Scholar 

  60. Forte R, Boreham CA, De Vito G, et al. Measures of static postural control moderate the association of strength and power with functional dynamic balance. Aging Clin Exp Res. 2014;26(6):645–53.

    Article  PubMed  Google Scholar 

  61. Jenkins ND, Buckner SL, Bergstrom HC, et al. Reliability and relationships among handgrip strength, leg extensor strength and power, and balance in older men. Exp Gerontol. 2014;58:47–50.

    Article  PubMed  Google Scholar 

  62. Stenroth L, Sillanpaa E, McPhee JS, et al. Plantarflexor muscle-tendon properties are associated with mobility in healthy older adults. J Gerontol A Biol Sci Med Sci. 2015;70(8):996–1002.

    Article  PubMed  Google Scholar 

  63. Harries UJ, Bassey EJ. Torque-velocity relationships for the knee extensors in women in their 3rd and 7th decades. Eur J Appl Physiol Occup Physiol. 1990;60(3):187–90.

    Article  CAS  PubMed  Google Scholar 

  64. Metter EJ, Conwit R, Tobin J, et al. Age-associated loss of power and strength in the upper extremities in women and men. J Gerontol A Biol Sci Med Sci. 1997;52(5):B267–76.

    Article  CAS  PubMed  Google Scholar 

  65. De Vito G, Bernardi M, Forte R, et al. Determinants of maximal instantaneous muscle power in women aged 50–75 years. Eur J Appl Physiol Occup Physiol. 1998;78(1):59–64.

    Article  PubMed  Google Scholar 

  66. Kostka T. Quadriceps maximal power and optimal shortening velocity in 335 men aged 23–88 years. Eur J Appl Physiol. 2005;95(2–3):140–5.

    Article  PubMed  Google Scholar 

  67. Petrella JK, Kim JS, Tuggle SC, et al. Age differences in knee extension power, contractile velocity, and fatigability. J Appl Physiol (1985). 2005;98(1):211–20.

  68. Clark DJ, Pojednic RM, Reid KF, et al. Longitudinal decline of neuromuscular activation and power in healthy older adults. J Gerontol A Biol Sci Med Sci. 2013;68(11):1419–25.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Miller MS, Bedrin NG, Callahan DM, et al. Age-related slowing of myosin actin cross-bridge kinetics is sex specific and predicts decrements in whole skeletal muscle performance in humans. J Appl Physiol (1985). 2013;115(7):1004–14.

  70. Reid KF, Pasha E, Doros G, et al. Longitudinal decline of lower extremity muscle power in healthy and mobility-limited older adults: influence of muscle mass, strength, composition, neuromuscular activation and single fiber contractile properties. Eur J Appl Physiol. 2014;114(1):29–39.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Candow DG, Chilibeck PD. Differences in size, strength, and power of upper and lower body muscle groups in young and older men. J Gerontol A Biol Sci Med Sci. 2005;60(2):148–56.

    Article  PubMed  Google Scholar 

  72. Evans WJ. Exercise strategies should be designed to increase muscle power. J Gerontol A Biol Sci Med Sci. 2000;55(6):M309–10.

    Article  CAS  PubMed  Google Scholar 

  73. Buchner DM, Larson EB, Wagner EH, et al. Evidence for a non-linear relationship between leg strength and gait speed. Age Ageing. 1996;25(5):386–91.

    Article  CAS  PubMed  Google Scholar 

  74. Ferrucci L, Guralnik JM, Buchner D, et al. Departures from linearity in the relationship between measures of muscular strength and physical performance of the lower extremities: the Women’s Health and Aging Study. J Gerontol A Biol Sci Med Sci. 1997;52(5):M275–85.

    Article  CAS  PubMed  Google Scholar 

  75. Salem GJ, Wang MY, Young JT, et al. Knee strength and lower- and higher-intensity functional performance in older adults. Med Sci Sports Exerc. 2000;32(10):1679–84.

    Article  CAS  PubMed  Google Scholar 

  76. Pearson SJ, Cobbold M, Orrell RW, et al. Power output and muscle myosin heavy chain composition in young and elderly men. Med Sci Sports Exerc. 2006;38(9):1601–7.

    Article  PubMed  Google Scholar 

  77. Skelton DA, Kennedy J, Rutherford OM. Explosive power and asymmetry in leg muscle function in frequent fallers and non-fallers aged over 65. Age Ageing. 2002;31(2):119–25.

    Article  PubMed  Google Scholar 

  78. Portegijs E, Sipila S, Pajala S, et al. Asymmetrical lower extremity power deficit as a risk factor for injurious falls in healthy older women. J Am Geriatr Soc. 2006;54(3):551–3.

    Article  PubMed  Google Scholar 

  79. Earles DR, Judge JO, Gunnarsson OT. Velocity training induces power-specific adaptations in highly functioning older adults. Arch Phys Med Rehabil. 2001;82(7):872–8.

    Article  CAS  PubMed  Google Scholar 

  80. Hruda KV, Hicks AL, McCartney N. Training for muscle power in older adults: effects on functional abilities. Can J Appl Physiol. 2003;28(2):178–89.

    Article  PubMed  Google Scholar 

  81. Macaluso A, Young A, Gibb KS, et al. Cycling as a novel approach to resistance training increases muscle strength, power, and selected functional abilities in healthy older women. J Appl Physiol (1985). 2003;95(6):2544–53.

  82. Miszko TA, Cress ME, Slade JM, et al. Effect of strength and power training on physical function in community-dwelling older adults. J Gerontol A Biol Sci Med Sci. 2003;58(2):171–5.

    Article  PubMed  Google Scholar 

  83. Sayers SP, Bean J, Cuoco A, et al. Changes in function and disability after resistance training: does velocity matter?: a pilot study. Am J Phys Med Rehabil. 2003;82(8):605–13.

    PubMed  Google Scholar 

  84. Bean JF, Herman S, Kiely DK, et al. Increased Velocity Exercise Specific to Task (InVEST) training: a pilot study exploring effects on leg power, balance, and mobility in community-dwelling older women. J Am Geriatr Soc. 2004;52(5):799–804.

    Article  PubMed  Google Scholar 

  85. Ramsbottom R, Ambler A, Potter J, et al. The effect of 6 months training on leg power, balance, and functional mobility of independently living adults over 70 years old. J Aging Phys Act. 2004;12(4):497–510.

    Article  PubMed  Google Scholar 

  86. de Vreede PL, Samson MM, van Meeteren NL, et al. Functional-task exercise versus resistance strength exercise to improve daily function in older women: a randomized, controlled trial. J Am Geriatr Soc. 2005;53(1):2–10.

    Article  PubMed  Google Scholar 

  87. Henwood TR, Taaffe DR. Improved physical performance in older adults undertaking a short-term programme of high-velocity resistance training. Gerontology. 2005;51(2):108–15.

    Article  PubMed  Google Scholar 

  88. Orr R, de Vos NJ, Singh NA, et al. Power training improves balance in healthy older adults. J Gerontol A Biol Sci Med Sci. 2006;61(1):78–85.

    Article  PubMed  Google Scholar 

  89. Bottaro M, Machado SN, Nogueira W, et al. Effect of high versus low-velocity resistance training on muscular fitness and functional performance in older men. Eur J Appl Physiol. 2007;99(3):257–64.

    Article  PubMed  Google Scholar 

  90. Henwood TR, Riek S, Taaffe DR. Strength versus muscle power-specific resistance training in community-dwelling older adults. J Gerontol A Biol Sci Med Sci. 2008;63(1):83–91.

    Article  PubMed  Google Scholar 

  91. Onambele GL, Maganaris CN, Mian OS, et al. Neuromuscular and balance responses to flywheel inertial versus weight training in older persons. J Biomech. 2008;41(15):3133–8.

    Article  PubMed  Google Scholar 

  92. Portegijs E, Kallinen M, Rantanen T, et al. Effects of resistance training on lower-extremity impairments in older people with hip fracture. Arch Phys Med Rehabil. 2008;89(9):1667–74.

    Article  PubMed  Google Scholar 

  93. Bean JF, Kiely DK, LaRose S, et al. Increased velocity exercise specific to task training versus the National Institute on Aging’s strength training program: changes in limb power and mobility. J Gerontol A Biol Sci Med Sci. 2009;64(9):983–91.

    Article  PubMed  Google Scholar 

  94. Marsh AP, Miller ME, Rejeski WJ, et al. Lower extremity muscle function after strength or power training in older adults. J Aging Phys Act. 2009;17(4):416–43.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Chen PY, Wei SH, Hsieh WL, et al. Lower limb power rehabilitation (LLPR) using interactive video game for improvement of balance function in older people. Arch Gerontol Geriatr. 2012;55(3):677–82.

    Article  PubMed  Google Scholar 

  96. Drey M, Zech A, Freiberger E, et al. Effects of strength training versus power training on physical performance in prefrail community-dwelling older adults. Gerontology. 2012;58(3):197–204.

    Article  PubMed  Google Scholar 

  97. Pereira A, Izquierdo M, Silva AJ, et al. Effects of high-speed power training on functional capacity and muscle performance in older women. Exp Gerontol. 2012;47(3):250–5.

    Article  PubMed  Google Scholar 

  98. Sayers SP, Gibson K, Cook CR. Effect of high-speed power training on muscle performance, function, and pain in older adults with knee osteoarthritis: a pilot investigation. Arthritis Care Res (Hoboken). 2012;64(1):46–53.

    Article  PubMed  Google Scholar 

  99. Lohne-Seiler H, Torstveit MK, Anderssen SA. Traditional versus functional strength training: effects on muscle strength and power in the elderly. J Aging Phys Act. 2013;21(1):51–70.

    Article  PubMed  Google Scholar 

  100. Balachandran A, Krawczyk SN, Potiaumpai M, et al. High-speed circuit training vs hypertrophy training to improve physical function in sarcopenic obese adults: a randomized controlled trial. Exp Gerontol. 2014;60:64–71.

    Article  PubMed  Google Scholar 

  101. Beltran Valls MR, Dimauro I, Brunelli A, et al. Explosive type of moderate-resistance training induces functional, cardiovascular, and molecular adaptations in the elderly. Age (Dordr). 2014;36(2):759–72.

    Article  PubMed  Google Scholar 

  102. Cadore EL, Casas-Herrero A, Zambom-Ferraresi F, et al. Multicomponent exercises including muscle power training enhance muscle mass, power output, and functional outcomes in institutionalized frail nonagenarians. Age (Dordr). 2014;36(2):773–85.

    Article  PubMed  Google Scholar 

  103. Gianoudis J, Bailey CA, Ebeling PR, et al. Effects of a targeted multimodal exercise program incorporating high-speed power training on falls and fracture risk factors in older adults: a community-based randomized controlled trial. J Bone Miner Res. 2014;29(1):182–91.

    Article  PubMed  Google Scholar 

  104. Pamukoff DN, Haakonssen EC, Zaccaria JA, et al. The effects of strength and power training on single-step balance recovery in older adults: a preliminary study. Clin Interv Aging. 2014;9:697–704.

    PubMed  PubMed Central  Google Scholar 

  105. Ramirez-Campillo R, Castillo A, de la Fuente CI, et al. High-speed resistance training is more effective than low-speed resistance training to increase functional capacity and muscle performance in older women. Exp Gerontol. 2014;58:51–7.

    Article  PubMed  Google Scholar 

  106. Reid KF, Martin KI, Doros G, et al. Comparative effects of light or heavy resistance power training for improving lower extremity power and physical performance in mobility-limited older adults. J Gerontol A Biol Sci Med Sci. 2015;70(3):374–80.

    Article  PubMed  Google Scholar 

  107. Wilhelm EN, Rech A, Minozzo F, et al. Concurrent strength and endurance training exercise sequence does not affect neuromuscular adaptations in older men. Exp Gerontol. 2014;60:207–14.

    Article  PubMed  Google Scholar 

  108. Correa CS, LaRoche DP, Cadore EL, et al. 3 Different types of strength training in older women. Int J Sports Med. 2012;33(12):962–9.

    Article  CAS  PubMed  Google Scholar 

  109. Paul SS, Canning CG, Song J, et al. Leg muscle power is enhanced by training in people with Parkinson’s disease: a randomized controlled trial. Clin Rehabil. 2014;28(3):275–88.

    Article  PubMed  Google Scholar 

  110. Steib S, Schoene D, Pfeifer K. Dose-response relationship of resistance training in older adults: a meta-analysis. Med Sci Sports Exerc. 2010;42(5):902–14.

    Article  PubMed  Google Scholar 

  111. Tschopp M, Sattelmayer MK, Hilfiker R. Is power training or conventional resistance training better for function in elderly persons? A meta-analysis. Age Ageing. 2011;40(5):549–56.

    Article  PubMed  Google Scholar 

  112. Signorile JF, Carmel MP, Lai S, et al. Early plateaus of power and torque gains during high- and low-speed resistance training of older women. J Appl Physiol (1985). 2005;98(4):1213–20.

  113. van Tulder M, Furlan A, Bombardier C, et al. Updated method guidelines for systematic reviews in the cochrane collaboration back review group. Spine (Phila Pa 1976). 2003;28(12):1290–9.

  114. Signorile JF, Carmel MP, Czaja SJ, et al. Differential increases in average isokinetic power by specific muscle groups of older women due to variations in training and testing. J Gerontol A Biol Sci Med Sci. 2002;57(10):M683–90.

    Article  PubMed  Google Scholar 

  115. Fielding RA, LeBrasseur NK, Cuoco A, et al. High-velocity resistance training increases skeletal muscle peak power in older women. J Am Geriatr Soc. 2002;50(4):655–62.

    Article  PubMed  Google Scholar 

  116. Delmonico MJ, Kostek MC, Doldo NA, et al. Effects of moderate-velocity strength training on peak muscle power and movement velocity: do women respond differently than men? J Appl Physiol (1985). 2005;99(5):1712–8.

  117. Petrella JK, Kim JS, Tuggle SC, et al. Contributions of force and velocity to improved power with progressive resistance training in young and older adults. Eur J Appl Physiol. 2007;99(4):343–51.

    Article  PubMed  Google Scholar 

  118. Sayers SP, Gibson K. A comparison of high-speed power training and traditional slow-speed resistance training in older men and women. J Strength Cond Res. 2010;24(12):3369–80.

    Article  PubMed  Google Scholar 

  119. Henwood TR, Taaffe DR. Short-term resistance training and the older adult: the effect of varied programmes for the enhancement of muscle strength and functional performance. Clin Physiol Funct Imaging. 2006;26(5):305–13.

    Article  PubMed  Google Scholar 

  120. Bean JF, Kiely DK, LaRose S, et al. Are changes in leg power responsible for clinically meaningful improvements in mobility in older adults? J Am Geriatr Soc. 2010;58(12):2363–8.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power: part 2—training considerations for improving maximal power production. Sports Med. 2011;41(2):125–46.

    Article  PubMed  Google Scholar 

  122. Skelton DA, Young A, Greig CA, et al. Effects of resistance training on strength, power, and selected functional abilities of women aged 75 and older. J Am Geriatr Soc. 1995;43(10):1081–7.

    Article  CAS  PubMed  Google Scholar 

  123. Bean J, Herman S, Kiely DK, et al. Weighted stair climbing in mobility-limited older people: a pilot study. J Am Geriatr Soc. 2002;50(4):663–70.

    Article  PubMed  Google Scholar 

  124. Capodaglio P, Capodaglio Edda M, Facioli M, et al. Long-term strength training for community-dwelling people over 75: impact on muscle function, functional ability and life style. Eur J Appl Physiol. 2007;100(5):535–42.

    Article  PubMed  Google Scholar 

  125. Galvao DA, Taaffe DR. Resistance exercise dosage in older adults: single-versus multiset effects on physical performance and body composition. J Am Geriatr Soc. 2005;53(12):2090–7.

    Article  PubMed  Google Scholar 

  126. Taaffe DR, Duret C, Wheeler S, et al. Once-weekly resistance exercise improves muscle strength and neuromuscular performance in older adults. J Am Geriatr Soc. 1999;47(10):1208–14.

    Article  CAS  PubMed  Google Scholar 

  127. Izquierdo M, Ibanez J, Hakkinen K, et al. Once weekly combined resistance and cardiovascular training in healthy older men. Med Sci Sports Exerc. 2004;36(3):435–43.

    Article  PubMed  Google Scholar 

  128. Stiggelbout M, Popkema DY, Hopman-Rock M, et al. Once a week is not enough: effects of a widely implemented group based exercise programme for older adults; a randomised controlled trial. J Epidemiol Community Health. 2004;58(2):83–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. DiFrancisco-Donoghue J, Werner W, Douris PC. Comparison of once-weekly and twice-weekly strength training in older adults. Br J Sports Med. 2007;41(1):19–22.

    Article  CAS  PubMed  Google Scholar 

  130. Nakamura Y, Tanaka K, Yabushita N, et al. Effects of exercise frequency on functional fitness in older adult women. Arch Gerontol Geriatr. 2007;44(2):163–73.

    Article  PubMed  Google Scholar 

  131. Foley A, Hillier S, Barnard R. Effectiveness of once-weekly gym-based exercise programmes for older adults post discharge from day rehabilitation: a randomised controlled trial. Br J Sports Med. 2011;45(12):978–86.

    Article  CAS  PubMed  Google Scholar 

  132. Sousa N, Mendes R, Abrantes C, et al. Is once-weekly resistance training enough to prevent sarcopenia? J Am Geriatr Soc. 2013;61(8):1423–4.

    Article  PubMed  Google Scholar 

  133. Farinatti PT, Geraldes AA, Bottaro MF, et al. Effects of different resistance training frequencies on the muscle strength and functional performance of active women older than 60 years. J Strength Cond Res. 2013;27(8):2225–34.

    Article  PubMed  Google Scholar 

  134. Westcott WL, Winett RA, Annesi JJ, et al. Prescribing physical activity: applying the ACSM protocols for exercise type, intensity, and duration across 3 training frequencies. Phys Sportsmed. 2009;37(2):51–8.

    Article  PubMed  Google Scholar 

  135. McCartney N, Hicks AL, Martin J, et al. Long-term resistance training in the elderly: effects on dynamic strength, exercise capacity, muscle, and bone. J Gerontol A Biol Sci Med Sci. 1995;50(2):B97–104.

    Article  CAS  PubMed  Google Scholar 

  136. McCartney N, Hicks AL, Martin J, et al. A longitudinal trial of weight training in the elderly: continued improvements in year 2. J Gerontol A Biol Sci Med Sci. 1996;51(6):B425–33.

    Article  CAS  PubMed  Google Scholar 

  137. Sylliaas H, Brovold T, Wyller TB, et al. Prolonged strength training in older patients after hip fracture: a randomised controlled trial. Age Ageing. 2012;41(2):206–12.

    Article  PubMed  Google Scholar 

  138. Lexell J, Downham DY, Larsson Y, et al. Heavy-resistance training in older Scandinavian men and women: short- and long-term effects on arm and leg muscles. Scand J Med Sci Sports. 1995;5(6):329–41.

    Article  CAS  PubMed  Google Scholar 

  139. Hakkinen K, Alen M, Kallinen M, et al. Neuromuscular adaptation during prolonged strength training, detraining and re-strength-training in middle-aged and elderly people. Eur J Appl Physiol. 2000;83(1):51–62.

    Article  CAS  PubMed  Google Scholar 

  140. Henwood TR, Taaffe DR. Detraining and retraining in older adults following long-term muscle power or muscle strength specific training. J Gerontol A Biol Sci Med Sci. 2008;63(7):751–8.

    Article  PubMed  Google Scholar 

  141. Pereira A, Izquierdo M, Silva AJ, et al. Muscle performance and functional capacity retention in older women after high-speed power training cessation. Exp Gerontol. 2012;47(8):620–4.

    Article  PubMed  Google Scholar 

  142. Mitchell SL, Stott DJ, Martin BJ, et al. Randomized controlled trial of quadriceps training after proximal femoral fracture. Clin Rehabil. 2001;15(3):282–90.

    Article  CAS  PubMed  Google Scholar 

  143. Zech A, Drey M, Freiberger E, et al. Residual effects of muscle strength and muscle power training and detraining on physical function in community-dwelling prefrail older adults: a randomized controlled trial. BMC Geriatr. 2012;12:68.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Kennis E, Verschueren SM, Bogaerts A, et al. Long-term impact of strength training on muscle strength characteristics in older adults. Arch Phys Med Rehabil. 2013;94(11):2054–60.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Byrne.

Ethics declarations

Funding

This review was supported by the National Institute for Health Research (NIHR) Oxford Musculoskeletal Biomedical Research Unit. The views expressed are those of the authors and are not necessarily those of the National Health Service, the NIHR or the Department of Health.

Conflicts of interest

Christopher Byrne, Charles Faure, David Keene and Sarah Lamb declare that they have no conflicts of interest relevant to the content of this review.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byrne, C., Faure, C., Keene, D.J. et al. Ageing, Muscle Power and Physical Function: A Systematic Review and Implications for Pragmatic Training Interventions. Sports Med 46, 1311–1332 (2016). https://doi.org/10.1007/s40279-016-0489-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-016-0489-x

Keywords

Navigation