Advertisement

Sports Medicine

, Volume 46, Issue 9, pp 1213–1237 | Cite as

Telomere Length Maintenance and Cardio-Metabolic Disease Prevention Through Exercise Training

  • Joshua DenhamEmail author
  • Brendan J. O’Brien
  • Fadi J. Charchar
Review Article

Abstract

Telomeres are tandem repeat DNA sequences located at distal ends of chromosomes that protect against genomic DNA degradation and chromosomal instability. Excessive telomere shortening leads to cellular senescence and for this reason telomere length is a marker of biological age. Abnormally short telomeres may culminate in the manifestation of a number of cardio-metabolic diseases. Age-related cardio-metabolic diseases attributable to an inactive lifestyle, such as obesity, type 2 diabetes mellitus and cardiovascular disease, are associated with short leukocyte telomeres. Exercise training prevents and manages the symptoms of many cardio-metabolic diseases whilst concurrently maintaining telomere length. The positive relationship between exercise training, physical fitness and telomere length raises the possibility of a mediating role of telomeres in chronic disease prevention via exercise. Further elucidation of the underpinning molecular mechanisms of how exercise maintains telomere length should provide crucial information on how physical activity can be best structured to combat the chronic disease epidemic and improve the human health span. Here, we synthesise and discuss the current evidence on the impact of physical activity and cardiorespiratory fitness on telomere dynamics. We provide the molecular mechanisms with a known role in exercise-induced telomere length maintenance and highlight unexplored, alternative pathways ripe for future investigations.

Keywords

Exercise Training Telomere Length Cardiorespiratory Fitness Ataxia Telangiectasia Mutate Short Telomere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to express their gratitude to the Federation University Australia “Self-sustaining Regions Research and Innovation Initiative”, an Australian Government Collaborative Research Network (CRN).

Compliance with Ethical Standards

Funding

Joshua Denham is supported by an Australian Post-graduate Award scholarship. Fadi Charchar is supported by the Lew Carty Charitable fund and National Health and Medical Research Council. No other sources of funding were used to assist in the preparation of this article.

Conflicts of interest

Joshua Denham, Brendan O’Brien and Fadi Charchar declare that they have no conflicts of interest relevant to the content of this review.

References

  1. 1.
    Blackburn EH. Structure and function of telomeres. Nature. 1991;350(6319):569–73.PubMedCrossRefGoogle Scholar
  2. 2.
    Blackburn EH. Switching and signaling at the telomere. Cell. 2001;106(6):661–73.PubMedCrossRefGoogle Scholar
  3. 3.
    Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998;279(5349):349–52.PubMedCrossRefGoogle Scholar
  4. 4.
    Daniali L, Benetos A, Susser E, et al. Telomeres shorten at equivalent rates in somatic tissues of adults. Nat Commun. 2013;4:1597.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Brouilette S, Singh RK, Thompson JR, et al. White cell telomere length and risk of premature myocardial infarction. Arterioscler Thromb Vasc Biol. 2003;23(5):842–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Samani NJ, Boultby R, Butler R, et al. Telomere shortening in atherosclerosis. Lancet. 2001;358(9280):472–3.PubMedCrossRefGoogle Scholar
  7. 7.
    Mainous AG 3rd, Codd V, Diaz VA, et al. Leukocyte telomere length and coronary artery calcification. Atherosclerosis. 2010;210(1):262–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Zee RY, Castonguay AJ, Barton NS, et al. Mean leukocyte telomere length shortening and type 2 diabetes mellitus: a case-control study. Transl Res. 2010;155(4):166–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Salpea KD, Talmud PJ, Cooper JA, et al. Association of telomere length with type 2 diabetes, oxidative stress and UCP2 gene variation. Atherosclerosis. 2010;209(1):42–50.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Ma H, Zhou Z, Wei S, et al. Shortened telomere length is associated with increased risk of cancer: a meta-analysis. PLoS One. 2011;6(6):e20466.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Epel ES, Blackburn EH, Lin J, et al. Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci USA. 2004;101(49):17312–5.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Puterman E, Lin J, Krauss J, et al. Determinants of telomere attrition over 1 year in healthy older women: stress and health behaviors matter. Mol Psychiatry. 2014;20(4):529–35.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Armanios M, Blackburn EH. The telomere syndromes. Nat Rev Genet. 2012;13(10):693–704.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Thompson PD, Buchner D, Pina IL, et al. Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease: a statement from the Council on Clinical Cardiology (Subcommittee on Exercise, Rehabilitation, and Prevention) and the Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity). Circulation. 2003;107(24):3109–16.PubMedCrossRefGoogle Scholar
  15. 15.
    Sigal RJ, Kenny GP, Wasserman DH, et al. Physical activity/exercise and type 2 diabetes: a consensus statement from the American Diabetes Association. Diabetes Care. 2006;29(6):1433–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Lemanne D, Cassileth B, Gubili J. The role of physical activity in cancer prevention, treatment, recovery, and survivorship. Oncology (Williston Park). 2013;27(6):580–5.PubMedGoogle Scholar
  17. 17.
    Moyzis RK, Buckingham JM, Cram LS, et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA. 1988;85(18):6622–6.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Chen W, Kimura M, Kim S, et al. Longitudinal versus cross-sectional evaluations of leukocyte telomere length dynamics: age-dependent telomere shortening is the rule. J Gerontol A Biol Sci Med Sci. 2011;66(3):312–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Verdun RE, Karlseder J. Replication and protection of telomeres. Nature. 2007;447(7147):924–31.PubMedCrossRefGoogle Scholar
  20. 20.
    Oikawa S, Kawanishi S. Site-specific DNA damage at GGG sequence by oxidative stress may accelerate telomere shortening. FEBS Lett. 1999;453(3):365–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Kawanishi S, Oikawa S. Mechanism of telomere shortening by oxidative stress. Ann N Y Acad Sci. 2004;1019:278–84.PubMedCrossRefGoogle Scholar
  22. 22.
    von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002;27(7):339–44.CrossRefGoogle Scholar
  23. 23.
    Herbig U, Jobling WA, Chen BP, et al. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell. 2004;14(4):501–13.PubMedCrossRefGoogle Scholar
  24. 24.
    de Lange T. How shelterin solves the telomere end-protection problem. Cold Spring Harb Symp Quant Biol. 2010;75:167–77.PubMedCrossRefGoogle Scholar
  25. 25.
    Chin L, Artandi SE, Shen Q, et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell. 1999;97(4):527–38.PubMedCrossRefGoogle Scholar
  26. 26.
    Nandakumar J, Cech TR. Finding the end: recruitment of telomerase to telomeres. Nat Rev Mol Cell Biol. 2013;14(2):69–82.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Griffith JD, Comeau L, Rosenfield S, et al. Mammalian telomeres end in a large duplex loop. Cell. 1999;97(4):503–14.PubMedCrossRefGoogle Scholar
  28. 28.
    Broccoli D, Smogorzewska A, Chong L, et al. Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat Genet. 1997;17(2):231–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Takai KK, Hooper S, Blackwood S, et al. In vivo stoichiometry of shelterin components. J Biol Chem. 2010;285(2):1457–67.PubMedCrossRefGoogle Scholar
  30. 30.
    van Steensel B, de Lange T. Control of telomere length by the human telomeric protein TRF1. Nature. 1997;385(6618):740–3.PubMedCrossRefGoogle Scholar
  31. 31.
    van Steensel B, Smogorzewska A, de Lange T. TRF2 protects human telomeres from end-to-end fusions. Cell. 1998;92(3):401–13.PubMedCrossRefGoogle Scholar
  32. 32.
    Kim SH, Beausejour C, Davalos AR, et al. TIN2 mediates functions of TRF2 at human telomeres. J Biol Chem. 2004;279(42):43799–804.PubMedCrossRefGoogle Scholar
  33. 33.
    Zhang Y, Chen LY, Han X, et al. Phosphorylation of TPP1 regulates cell cycle-dependent telomerase recruitment. Proc Natl Acad Sci USA. 2013;110(14):5457–62.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Wang F, Podell ER, Zaug AJ, et al. The POT1-TPP1 telomere complex is a telomerase processivity factor. Nature. 2007;445(7127):506–10.PubMedCrossRefGoogle Scholar
  35. 35.
    Denchi EL, de Lange T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature. 2007;448(7157):1068–71.PubMedCrossRefGoogle Scholar
  36. 36.
    Bae NS, Baumann P. A RAP1/TRF2 complex inhibits nonhomologous end-joining at human telomeric DNA ends. Mol Cell. 2007;26(3):323–34.PubMedCrossRefGoogle Scholar
  37. 37.
    Sarthy J, Bae NS, Scrafford J, et al. Human RAP1 inhibits non-homologous end joining at telomeres. EMBO J. 2009;28(21):3390–9.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Martinez P, Thanasoula M, Carlos AR, et al. Mammalian Rap1 controls telomere function and gene expression through binding to telomeric and extratelomeric sites. Nat Cell Biol. 2010;12(8):768–80.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Martinez P, Blasco MA. Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat Rev Cancer. 2011;11(3):161–76.PubMedCrossRefGoogle Scholar
  40. 40.
    Sfeir A, de Lange T. Removal of shelterin reveals the telomere end-protection problem. Science. 2012;336(6081):593–7.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    de Lange T. How telomeres solve the end-protection problem. Science. 2009;326(5955):948–52.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Benetti R, Garcia-Cao M, Blasco MA. Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat Genet. 2007;39(2):243–50.PubMedCrossRefGoogle Scholar
  43. 43.
    Blasco MA. The epigenetic regulation of mammalian telomeres. Nat Rev Genet. 2007;8(4):299–309.PubMedCrossRefGoogle Scholar
  44. 44.
    Gonzalo S, Jaco I, Fraga MF, et al. DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol. 2006;8(4):416–24.PubMedCrossRefGoogle Scholar
  45. 45.
    Redon S, Reichenbach P, Lingner J. The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res. 2010;38(17):5797–806.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell. 1985;43(2 Pt 1):405–13.PubMedCrossRefGoogle Scholar
  47. 47.
    Wright WE, Piatyszek MA, Rainey WE, et al. Telomerase activity in human germline and embryonic tissues and cells. Dev Genet. 1996;18(2):173–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Broccoli D, Young JW, de Lange T. Telomerase activity in normal and malignant hematopoietic cells. Proc Natl Acad Sci USA. 1995;92(20):9082–6.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Wernig A, Schafer R, Knauf U, et al. On the regenerative capacity of human skeletal muscle. Artif Organs. 2005;29(3):192–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Chen CH, Chen RJ. Prevalence of telomerase activity in human cancer. J Formos Med Assoc. 2011;110(5):275–89.PubMedCrossRefGoogle Scholar
  51. 51.
    Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266(5193):2011–5.PubMedCrossRefGoogle Scholar
  52. 52.
    Vaziri H, Benchimol S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr Biol. 1998;8(5):279–82.PubMedCrossRefGoogle Scholar
  53. 53.
    Wojtyla A, Gladych M, Rubis B. Human telomerase activity regulation. Mol Biol Rep. 2011;38(5):3339–49.PubMedCrossRefGoogle Scholar
  54. 54.
    Smogorzewska A, de Lange T. Regulation of telomerase by telomeric proteins. Annu Rev Biochem. 2004;73:177–208.PubMedCrossRefGoogle Scholar
  55. 55.
    Wang F, Lei M. Human telomere POT1-TPP1 complex and its role in telomerase activity regulation. Methods Mol Biol. 2011;735:173–87.PubMedCrossRefGoogle Scholar
  56. 56.
    Liu JP, Chen SM, Cong YS, et al. Regulation of telomerase activity by apparently opposing elements. Ageing Res Rev. 2010;9(3):245–56.PubMedCrossRefGoogle Scholar
  57. 57.
    Zhou J, Ding D, Wang M, et al. Telomerase reverse transcriptase in the regulation of gene expression. BMB Rep. 2014;47(1):8–14.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Cesare AJ, Reddel RR. Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet. 2010;11(5):319–30.PubMedCrossRefGoogle Scholar
  59. 59.
    Nabetani A, Ishikawa F. Alternative lengthening of telomeres pathway: recombination-mediated telomere maintenance mechanism in human cells. J Biochem. 2011;149(1):5–14.PubMedCrossRefGoogle Scholar
  60. 60.
    Heaphy CM, Subhawong AP, Hong SM, et al. Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes. Am J Pathol. 2011;179(4):1608–15.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Bojovic B, Booth RE, Jin Y, et al. Alternative lengthening of telomeres in cancer stem cells in vivo. Oncogene. 2014;34:611–20.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Silvestre DC, Pineda JR, Hoffschir F, et al. Alternative lengthening of telomeres in human glioma stem cells. Stem Cells. 2011;29(3):440–51.PubMedCrossRefGoogle Scholar
  63. 63.
    Neumann AA, Watson CM, Noble JR, et al. Alternative lengthening of telomeres in normal mammalian somatic cells. Genes Dev. 2013;27(1):18–23.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Hemann MT, Greider CW. Wild-derived inbred mouse strains have short telomeres. Nucleic Acids Res. 2000;28(22):4474–8.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Zijlmans JM, Martens UM, Poon SS, et al. Telomeres in the mouse have large inter-chromosomal variations in the number of T2AG3 repeats. Proc Natl Acad Sci USA. 1997;94(14):7423–8.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Wright WE, Shay JW. Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology. Nat Med. 2000;6(8):849–51.PubMedCrossRefGoogle Scholar
  67. 67.
    Vina J, Sanchis-Gomar F, Martinez-Bello V, et al. Exercise acts as a drug; the pharmacological benefits of exercise. Br J Pharmacol. 2012;167(1):1–12.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: the evidence. CMAJ. 2006;174(6):801–9.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Powell KE, Paluch AE, Blair SN. Physical activity for health: what kind? How much? How intense? On top of what? Annu Rev Public Health. 2011;32:349–65.PubMedCrossRefGoogle Scholar
  70. 70.
    Shalev I, Entringer S, Wadhwa PD, et al. Stress and telomere biology: a lifespan perspective. Psychoneuroendocrinology. 2013;38(9):1835–42.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Shiels PG, McGlynn LM, MacIntyre A, et al. Accelerated telomere attrition is associated with relative household income, diet and inflammation in the pSoBid cohort. PLoS One. 2011;6(7):e22521.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Nettleton JA, Diez-Roux A, Jenny NS, et al. Dietary patterns, food groups, and telomere length in the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr. 2008;88(5):1405–12.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Lee M, Martin H, Firpo MA, et al. Inverse association between adiposity and telomere length: the Fels Longitudinal Study. Am J Hum Biol. 2011;23(1):100–6.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Garcia-Calzon S, Gea A, Razquin C, et al. Longitudinal association of telomere length and obesity indices in an intervention study with a Mediterranean diet: the PREDIMED-NAVARRA trial. Int J Obes (Lond). 2014;38(2):177–82.CrossRefGoogle Scholar
  75. 75.
    Buxton JL, Das S, Rodriguez A, et al. Multiple measures of adiposity are associated with mean leukocyte telomere length in the northern Finland birth cohort 1966. PLoS One. 2014;9(6):e99133.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Kim S, Parks CG, DeRoo LA, et al. Obesity and weight gain in adulthood and telomere length. Cancer Epidemiol Biomark Prev. 2009;18(3):816–20.CrossRefGoogle Scholar
  77. 77.
    Valdes AM, Andrew T, Gardner JP, et al. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005;366(9486):662–4.PubMedCrossRefGoogle Scholar
  78. 78.
    Chen S, Yeh F, Lin J, et al. Short leukocyte telomere length is associated with obesity in American Indians: the Strong Heart Family study. Aging (Albany NY). 2014;6(5):380–9.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Bekaert S, De Meyer T, Rietzschel ER, et al. Telomere length and cardiovascular risk factors in a middle-aged population free of overt cardiovascular disease. Aging Cell. 2007;6(5):639–47.PubMedCrossRefGoogle Scholar
  80. 80.
    Diaz VA, Mainous AG, Player MS, et al. Telomere length and adiposity in a racially diverse sample. Int J Obes (Lond). 2010;34(2):261–5.CrossRefGoogle Scholar
  81. 81.
    Buxton JL, Walters RG, Visvikis-Siest S, et al. Childhood obesity is associated with shorter leukocyte telomere length. J Clin Endocrinol Metab. 2011;96(5):1500–5.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Al-Attas OS, Al-Daghri N, Bamakhramah A, et al. Telomere length in relation to insulin resistance, inflammation and obesity among Arab youth. Acta Paediatr. 2010;99(6):896–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Nordfjall K, Eliasson M, Stegmayr B, et al. Telomere length is associated with obesity parameters but with a gender difference. Obesity (Silver Spring). 2008;16(12):2682–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Garcia-Calzon S, Moleres A, Marcos A, et al. Telomere length as a biomarker for adiposity changes after a multidisciplinary intervention in overweight/obese adolescents: the EVASYON study. PLoS One. 2014;9(2):e89828.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Shen Q, Zhao X, Yu L, et al. Association of leukocyte telomere length with type 2 diabetes in mainland Chinese populations. J Clin Endocrinol Metab. 2012;97(4):1371–4.PubMedCrossRefGoogle Scholar
  86. 86.
    Testa R, Olivieri F, Sirolla C, et al. Leukocyte telomere length is associated with complications of type 2 diabetes mellitus. Diabet Med. 2011;28(11):1388–94.PubMedCrossRefGoogle Scholar
  87. 87.
    Olivieri F, Lorenzi M, Antonicelli R, et al. Leukocyte telomere shortening in elderly Type2DM patients with previous myocardial infarction. Atherosclerosis. 2009;206(2):588–93.PubMedCrossRefGoogle Scholar
  88. 88.
    Sampson MJ, Winterbone MS, Hughes JC, et al. Monocyte telomere shortening and oxidative DNA damage in type 2 diabetes. Diabetes Care. 2006;29(2):283–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Gardner JP, Li S, Srinivasan SR, et al. Rise in insulin resistance is associated with escalated telomere attrition. Circulation. 2005;111(17):2171–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Zhao J, Zhu Y, Lin J, et al. Short leukocyte telomere length predicts risk of diabetes in American Indians: the strong heart family study. Diabetes. 2014;63(1):354–62.PubMedCrossRefGoogle Scholar
  91. 91.
    You NC, Chen BH, Song Y, et al. A prospective study of leukocyte telomere length and risk of type 2 diabetes in postmenopausal women. Diabetes. 2012;61(11):2998–3004.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Panayiotou AG, Nicolaides AN, Griffin M, et al. Leukocyte telomere length is associated with measures of subclinical atherosclerosis. Atherosclerosis. 2010;211(1):176–81.PubMedCrossRefGoogle Scholar
  93. 93.
    Fitzpatrick AL, Kronmal RA, Gardner JP, et al. Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol. 2007;165(1):14–21.PubMedCrossRefGoogle Scholar
  94. 94.
    Yang Z, Huang X, Jiang H, et al. Short telomeres and prognosis of hypertension in a Chinese population. Hypertension. 2009;53(4):639–45.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Demissie S, Levy D, Benjamin EJ, et al. Insulin resistance, oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham Heart Study. Aging Cell. 2006;5(4):325–30.PubMedCrossRefGoogle Scholar
  96. 96.
    van der Harst P, van der Steege G, de Boer RA, et al. Telomere length of circulating leukocytes is decreased in patients with chronic heart failure. J Am Coll Cardiol. 2007;49(13):1459–64.PubMedCrossRefGoogle Scholar
  97. 97.
    Willeit P, Willeit J, Brandstatter A, et al. Cellular aging reflected by leukocyte telomere length predicts advanced atherosclerosis and cardiovascular disease risk. Arterioscler Thromb Vasc Biol. 2010;30(8):1649–56.PubMedCrossRefGoogle Scholar
  98. 98.
    Farzaneh-Far R, Cawthon RM, Na B, et al. Prognostic value of leukocyte telomere length in patients with stable coronary artery disease: data from the Heart and Soul Study. Arterioscler Thromb Vasc Biol. 2008;28(7):1379–84.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Brouilette SW, Moore JS, McMahon AD, et al. Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland Primary Prevention Study: a nested case-control study. Lancet. 2007;369(9556):107–14.PubMedCrossRefGoogle Scholar
  100. 100.
    Haycock PC, Heydon EE, Kaptoge S, et al. Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2014;349:g4227.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Zee RY, Castonguay AJ, Barton NS, et al. Relative leukocyte telomere length and risk of incident ischemic stroke in men: a prospective, nested case-control approach. Rejuvenation Res. 2010;13(4):411–4.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Perez-Rivera JA, Pabon-Osuna P, Cieza-Borrella C, et al. Effect of telomere length on prognosis in men with acute coronary syndrome. Am J Cardiol. 2014;113(3):418–21.PubMedCrossRefGoogle Scholar
  103. 103.
    Cawthon RM, Smith KR, O’Brien E, et al. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet. 2003;361(9355):393–5.PubMedCrossRefGoogle Scholar
  104. 104.
    Epel ES, Merkin SS, Cawthon R, et al. The rate of leukocyte telomere shortening predicts mortality from cardiovascular disease in elderly men. Aging (Albany NY). 2009;1(1):81–8.CrossRefGoogle Scholar
  105. 105.
    Lee HW, Blasco MA, Gottlieb GJ, et al. Essential role of mouse telomerase in highly proliferative organs. Nature. 1998;392(6676):569–74.PubMedCrossRefGoogle Scholar
  106. 106.
    Herrera E, Samper E, Martin-Caballero J, et al. Disease states associated with telomerase deficiency appear earlier in mice with short telomeres. EMBO J. 1999;18(11):2950–60.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Rudolph KL, Chang S, Lee HW, et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell. 1999;96(5):701–12.PubMedCrossRefGoogle Scholar
  108. 108.
    Perez-Rivero G, Ruiz-Torres MP, Rivas-Elena JV, et al. Mice deficient in telomerase activity develop hypertension because of an excess of endothelin production. Circulation. 2006;114(4):309–17.PubMedCrossRefGoogle Scholar
  109. 109.
    Wong KK, Maser RS, Bachoo RM, et al. Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature. 2003;421(6923):643–8.PubMedCrossRefGoogle Scholar
  110. 110.
    Chang S, Multani AS, Cabrera NG, et al. Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet. 2004;36(8):877–82.PubMedCrossRefGoogle Scholar
  111. 111.
    Bhayadia R, Schmidt BM, Melk A, et al. Senescence-induced oxidative stress causes endothelial dysfunction. J Gerontol A Biol Sci Med Sci. 2016;71(2):161–9.PubMedCrossRefGoogle Scholar
  112. 112.
    Fernandez-Sanchez A, Madrigal-Santillan E, Bautista M, et al. Inflammation, oxidative stress, and obesity. Int J Mol Sci. 2011;12(5):3117–32.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Li H, Horke S, Forstermann U. Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis. 2014;237(1):208–19.PubMedCrossRefGoogle Scholar
  114. 114.
    Watson JD. Type 2 diabetes as a redox disease. Lancet. 2014;383(9919):841–3.PubMedCrossRefGoogle Scholar
  115. 115.
    Fredman G, Ozcan L, Tabas I. Common therapeutic targets in cardiometabolic disease. Sci Transl Med. 2014;6(239):239ps5.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Salpea KD, Maubaret CG, Kathagen A, et al. The effect of pro-inflammatory conditioning and/or high glucose on telomere shortening of aging fibroblasts. PLoS One. 2013;8(9):e73756.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Kurz DJ, Decary S, Hong Y, et al. Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. J Cell Sci. 2004;117(Pt 11):2417–26.PubMedCrossRefGoogle Scholar
  118. 118.
    Ottaviani A, Gilson E, Magdinier F. Telomeric position effect: from the yeast paradigm to human pathologies? Biochimie. 2008;90(1):93–107.PubMedCrossRefGoogle Scholar
  119. 119.
    Baur JA, Zou Y, Shay JW, et al. Telomere position effect in human cells. Science. 2001;292(5524):2075–7.PubMedCrossRefGoogle Scholar
  120. 120.
    Robin JD, Ludlow AT, Batten K, et al. Telomere position effect: regulation of gene expression with progressive telomere shortening over long distances. Genes Dev. 2014;28(22):2464–76.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Koering CE, Pollice A, Zibella MP, et al. Human telomeric position effect is determined by chromosomal context and telomeric chromatin integrity. EMBO Rep. 2002;3(11):1055–61.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Hernandez-Caballero E, Herrera-Gonzalez NE, Salamanca-Gomez F, et al. Role of telomere length in subtelomeric gene expression and its possible relation to cellular senescence. BMB Rep. 2009;42(11):747–51.PubMedCrossRefGoogle Scholar
  123. 123.
    Ning Y, Xu JF, Li Y, et al. Telomere length and the expression of natural telomeric genes in human fibroblasts. Hum Mol Genet. 2003;12(11):1329–36.PubMedCrossRefGoogle Scholar
  124. 124.
    Codd V, Nelson CP, Albrecht E, et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet. 2013;45(4):422–7 (7e1–2).PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Masi S, D’Aiuto F, Martin-Ruiz C, et al. Rate of telomere shortening and cardiovascular damage: a longitudinal study in the 1946 British Birth Cohort. Eur Heart J. 2014;35(46):3296–303.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Baragetti A, Palmen J, Garlaschelli K, et al. Telomere shortening over 6 years is associated with increased subclinical carotid vascular damage and worse cardiovascular prognosis in the general population. J Intern Med. 2015;277(4):478–87.PubMedCrossRefGoogle Scholar
  127. 127.
    Cherkas LF, Hunkin JL, Kato BS, et al. The association between physical activity in leisure time and leukocyte telomere length. Arch Intern Med. 2008;168(2):154–8.PubMedCrossRefGoogle Scholar
  128. 128.
    Du M, Prescott J, Kraft P, et al. Physical activity, sedentary behavior, and leukocyte telomere length in women. Am J Epidemiol. 2012;175(5):414–22.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Ludlow AT, Zimmerman JB, Witkowski S, et al. Relationship between physical activity level, telomere length, and telomerase activity. Med Sci Sports Exerc. 2008;40(10):1764–71.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Savela S, Saijonmaa O, Strandberg TE, et al. Physical activity in midlife and telomere length measured in old age. Exp Gerontol. 2013;48(1):81–4.PubMedCrossRefGoogle Scholar
  131. 131.
    Song Z, von Figura G, Liu Y, et al. Lifestyle impacts on the aging-associated expression of biomarkers of DNA damage and telomere dysfunction in human blood. Aging Cell. 2010;9(4):607–15.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Cassidy A, De Vivo I, Liu Y, et al. Associations between diet, lifestyle factors, and telomere length in women. Am J Clin Nutr. 2010;91(5):1273–80.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Diaz VA, Mainous AG 3rd, Everett CJ, et al. Effect of healthy lifestyle behaviors on the association between leukocyte telomere length and coronary artery calcium. Am J Cardiol. 2010;106(5):659–63.PubMedCrossRefGoogle Scholar
  134. 134.
    Fujishiro K, Diez-Roux AV, Landsbergis PA, et al. Current employment status, occupational category, occupational hazard exposure and job stress in relation to telomere length: the Multiethnic Study of Atherosclerosis (MESA). Occup Environ Med. 2013;70(8):552–60.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Kim JH, Ko JH, Lee DC, et al. Habitual physical exercise has beneficial effects on telomere length in postmenopausal women. Menopause. 2012;19(10):1109–15.PubMedCrossRefGoogle Scholar
  136. 136.
    Garland SN, Johnson B, Palmer C, et al. Physical activity and telomere length in early stage breast cancer survivors. Breast Cancer Res. 2014;16(4):413.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Loprinzi PD. Leisure-time screen-based sedentary behavior and leukocyte telomere length: implications for a new leisure-time screen-based sedentary behavior mechanism. Mayo Clin Proc. 2015;90(6):786–90.PubMedCrossRefGoogle Scholar
  138. 138.
    Sjogren P, Fisher R, Kallings L, et al. Stand up for health—avoiding sedentary behaviour might lengthen your telomeres: secondary outcomes from a physical activity RCT in older people. Br J Sports Med. 2014;48(19):1407–9.PubMedCrossRefGoogle Scholar
  139. 139.
    Washburn RA, Smith KW, Jette AM, et al. The Physical Activity Scale for the Elderly (PASE): development and evaluation. J Clin Epidemiol. 1993;46(2):153–62.PubMedCrossRefGoogle Scholar
  140. 140.
    Lee JY, Bang HW, Ko JH, et al. Leukocyte telomere length is independently associated with gait speed in elderly women. Maturitas. 2013;75(2):165–9.PubMedCrossRefGoogle Scholar
  141. 141.
    Maeda T, Oyama J, Sasaki M, et al. The physical ability of elderly female Japanese patients with cerebrovascular disease correlates with telomere length in their peripheral blood leukocytes. Aging Clin Exp Res. 2011;23(1):22–8.PubMedCrossRefGoogle Scholar
  142. 142.
    Maeda T, Oyama J, Higuchi Y, et al. The physical ability of Japanese female elderly with cerebrovascular disease correlates with the telomere length and subtelomeric methylation status in their peripheral blood leukocytes. Gerontology. 2011;57(2):137–43.PubMedCrossRefGoogle Scholar
  143. 143.
    Bendix L, Gade MM, Staun PW, et al. Leukocyte telomere length and physical ability among Danish twins age 70+. Mech Ageing Dev. 2011;132(11–12):568–72.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Baylis D, Ntani G, Edwards MH, et al. Inflammation, telomere length, and grip strength: a 10-year longitudinal study. Calcif Tissue Int. 2014;95(1):54–63.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Soares-Miranda L, Imamura F, Siscovick D, et al. Physical activity, physical fitness, and leukocyte telomere length. Med Sci Sports Exerc. 2015;47(12):2525–34.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Zhu H, Wang X, Gutin B, et al. Leukocyte telomere length in healthy Caucasian and African-American adolescents: relationships with race, sex, adiposity, adipokines, and physical activity. J Pediatr. 2011;158(2):215–20.PubMedCrossRefGoogle Scholar
  147. 147.
    Garatachea N, Santos-Lozano A, Sanchis-Gomar F, et al. Elite athletes live longer than the general population: a meta-analysis. Mayo Clin Proc. 2014;89(9):1195–200.PubMedCrossRefGoogle Scholar
  148. 148.
    Werner C, Furster T, Widmann T, et al. Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation. 2009;120(24):2438–47.PubMedCrossRefGoogle Scholar
  149. 149.
    LaRocca TJ, Seals DR, Pierce GL. Leukocyte telomere length is preserved with aging in endurance exercise-trained adults and related to maximal aerobic capacity. Mech Ageing Dev. 2010;131(2):165–7.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Denham J, Nelson CP, O’Brien BJ, et al. Longer leukocyte telomeres are associated with ultra-endurance exercise independent of cardiovascular risk factors. PLoS One. 2013;8(7):e69377.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Denham J, O’Brien BJ, Prestes PR, et al. Increased expression of telomere-regulating genes in endurance athletes with long leukocyte telomeres. J Appl Physiol (1985). 2015;120(2):148–58.CrossRefGoogle Scholar
  152. 152.
    Mathur S, Ardestani A, Parker B, et al. Telomere length and cardiorespiratory fitness in marathon runners. J Investig Med. 2013;61(3):613–5.PubMedCrossRefGoogle Scholar
  153. 153.
    Laine MK, Eriksson JG, Kujala UM, et al. Effect of intensive exercise in early adult life on telomere length in later life in men. J Sports Sci Med. 2015;14(2):239–45.PubMedPubMedCentralGoogle Scholar
  154. 154.
    Mason C, Risques RA, Xiao L, et al. Independent and combined effects of dietary weight loss and exercise on leukocyte telomere length in postmenopausal women. Obesity (Silver Spring). 2013;21(12):E549–54.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Krauss J, Farzaneh-Far R, Puterman E, et al. Physical fitness and telomere length in patients with coronary heart disease: findings from the Heart and Soul Study. PLoS One. 2011;6(11):e26983.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Osthus IB, Sgura A, Berardinelli F, et al. Telomere length and long-term endurance exercise: does exercise training affect biological age? A pilot study. PLoS One. 2012;7(12):e52769.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Ponsot E, Lexell J, Kadi F. Skeletal muscle telomere length is not impaired in healthy physically active old women and men. Muscle Nerve. 2008;37(4):467–72.PubMedCrossRefGoogle Scholar
  158. 158.
    Venturelli M, Morgan GR, Donato AJ, et al. Cellular aging of skeletal muscle: telomeric and free radical evidence that physical inactivity is responsible and not age. Clin Sci (Lond). 2014;127(6):415–21.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Collins M, Renault V, Grobler LA, et al. Athletes with exercise-associated fatigue have abnormally short muscle DNA telomeres. Med Sci Sports Exerc. 2003;35(9):1524–8.PubMedCrossRefGoogle Scholar
  160. 160.
    Rae DE, Vignaud A, Butler-Browne GS, et al. Skeletal muscle telomere length in healthy, experienced, endurance runners. Eur J Appl Physiol. 2010;109(2):323–30.PubMedCrossRefGoogle Scholar
  161. 161.
    Kadi F, Ponsot E, Piehl-Aulin K, et al. The effects of regular strength training on telomere length in human skeletal muscle. Med Sci Sports Exerc. 2008;40(1):82–7.PubMedCrossRefGoogle Scholar
  162. 162.
    Ornish D, Lin J, Daubenmier J, et al. Increased telomerase activity and comprehensive lifestyle changes: a pilot study. Lancet Oncol. 2008;9(11):1048–57.PubMedCrossRefGoogle Scholar
  163. 163.
    Ornish D, Lin J, Chan JM, et al. Effect of comprehensive lifestyle changes on telomerase activity and telomere length in men with biopsy-proven low-risk prostate cancer: 5-year follow-up of a descriptive pilot study. Lancet Oncol. 2013;14(11):1112–20.PubMedCrossRefGoogle Scholar
  164. 164.
    Melk A, Tegtbur U, Hilfiker-Kleiner D, et al. Improvement of biological age by physical activity. Int J Cardiol. 2014;176(3):1187–9.PubMedCrossRefGoogle Scholar
  165. 165.
    Puterman E, Lin J, Blackburn E, et al. The power of exercise: buffering the effect of chronic stress on telomere length. PLoS One. 2010;5(5):e10837.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Denham J, Marques FZ, Charchar FJ. Leukocyte telomere length variation due to DNA extraction method. BMC Res Notes. 2014;7(1):877.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Aviv A. The epidemiology of human telomeres: faults and promises. J Gerontol A Biol Sci Med Sci. 2008;63(9):979–83.PubMedCrossRefGoogle Scholar
  168. 168.
    Aviv A, Hunt SC, Lin J, et al. Impartial comparative analysis of measurement of leukocyte telomere length/DNA content by Southern blots and qPCR. Nucleic Acids Res. 2011;39(20):e134.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Martin-Ruiz CM, Baird D, Roger L, et al. Reproducibility of telomere length assessment: an international collaborative study. Int J Epidemiol. 2015;44(5):1673–83.PubMedCrossRefGoogle Scholar
  170. 170.
    Bouchard C, Daw EW, Rice T, et al. Familial resemblance for VO2max in the sedentary state: the HERITAGE family study. Med Sci Sports Exerc. 1998;30(2):252–8.PubMedCrossRefGoogle Scholar
  171. 171.
    Bouchard C, An P, Rice T, et al. Familial aggregation of VO(2max) response to exercise training: results from the HERITAGE Family Study. J Appl Physiol (1985). 1999;87(3):1003–8.Google Scholar
  172. 172.
    Dyrstad SM, Hansen BH, Holme IM, et al. Comparison of self-reported versus accelerometer-measured physical activity. Med Sci Sports Exerc. 2014;46(1):99–106.PubMedCrossRefGoogle Scholar
  173. 173.
    Garriguet D, Colley RC. A comparison of self-reported leisure-time physical activity and measured moderate-to-vigorous physical activity in adolescents and adults. Health Rep. 2014;25(7):3–11.PubMedGoogle Scholar
  174. 174.
    Tully MA, Panter J, Ogilvie D. Individual characteristics associated with mismatches between self-reported and accelerometer-measured physical activity. PLoS One. 2014;9(6):e99636.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Ludlow AT, Witkowski S, Marshall MR, et al. Chronic exercise modifies age-related telomere dynamics in a tissue-specific fashion. J Gerontol A Biol Sci Med Sci. 2012;67(9):911–26.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Werner C, Hanhoun M, Widmann T, et al. Effects of physical exercise on myocardial telomere-regulating proteins, survival pathways, and apoptosis. J Am Coll Cardiol. 2008;52(6):470–82.PubMedCrossRefGoogle Scholar
  177. 177.
    Wolf SA, Melnik A, Kempermann G. Physical exercise increases adult neurogenesis and telomerase activity, and improves behavioral deficits in a mouse model of schizophrenia. Brain Behav Immun. 2011;25(5):971–80.PubMedCrossRefGoogle Scholar
  178. 178.
    Chilton WL, Marques FZ, West J, et al. Acute exercise leads to regulation of telomere-associated genes and microRNA expression in immune cells. PLoS One. 2014;9(4):e92088.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Laye MJ, Solomon TP, Karstoft K, et al. Increased shelterin mRNA expression in peripheral blood mononuclear cells and skeletal muscle following an ultra-long-distance running event. J Appl Physiol (1985). 2012;112(5):773–81.CrossRefGoogle Scholar
  180. 180.
    Ludlow AT, Lima LC, Wang J, et al. Exercise alters mRNA expression of telomere-repeat binding factor 1 in skeletal muscle via p38 MAPK. J Appl Physiol (1985). 2012;113(11):1737–46.PubMedCentralCrossRefGoogle Scholar
  181. 181.
    Schuler G, Adams V, Goto Y. Role of exercise in the prevention of cardiovascular disease: results, mechanisms, and new perspectives. Eur Heart J. 2013;34(24):1790–9.PubMedCrossRefGoogle Scholar
  182. 182.
    Sanz C, Gautier JF, Hanaire H. Physical exercise for the prevention and treatment of type 2 diabetes. Diabetes Metab. 2010;36(5):346–51.PubMedCrossRefGoogle Scholar
  183. 183.
    Slentz CA, Houmard JA, Kraus WE. Modest exercise prevents the progressive disease associated with physical inactivity. Exerc Sport Sci Rev. 2007;35(1):18–23.PubMedCrossRefGoogle Scholar
  184. 184.
    Oeseburg H, de Boer RA, van Gilst WH, et al. Telomere biology in healthy aging and disease. Pflugers Arch. 2010;459(2):259–68.PubMedCrossRefGoogle Scholar
  185. 185.
    Khansari N, Shakiba Y, Mahmoudi M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat Inflamm Allergy Drug Discov. 2009;3(1):73–80.PubMedCrossRefGoogle Scholar
  186. 186.
    Ludlow AT, Spangenburg EE, Chin ER, et al. Telomeres shorten in response to oxidative stress in mouse skeletal muscle fibers. J Gerontol A Biol Sci Med Sci. 2014;69(7):821–30.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Gleeson M, Bishop NC, Stensel DJ, et al. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol. 2011;11(9):607–15.PubMedCrossRefGoogle Scholar
  188. 188.
    Leeuwenburgh C, Heinecke JW. Oxidative stress and antioxidants in exercise. Curr Med Chem. 2001;8(7):829–38.PubMedCrossRefGoogle Scholar
  189. 189.
    Shin YA, Lee JH, Song W, et al. Exercise training improves the antioxidant enzyme activity with no changes of telomere length. Mech Ageing Dev. 2008;129(5):254–60.PubMedCrossRefGoogle Scholar
  190. 190.
    Dinami R, Ercolani C, Petti E, et al. miR-155 drives telomere fragility in human breast cancer by targeting TRF1. Cancer Res. 2014;74(15):4145–56.PubMedCrossRefGoogle Scholar
  191. 191.
    Luke B, Lingner J. TERRA: telomeric repeat-containing RNA. EMBO J. 2009;28(17):2503–10.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Benetti R, Gonzalo S, Jaco I, et al. A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol. 2008;15(9):998.PubMedCrossRefGoogle Scholar
  193. 193.
    Yamada Y, Nishida T, Horibe H, et al. Identification of hypo- and hypermethylated genes related to atherosclerosis by a genome-wide analysis of DNA methylation. Int J Mol Med. 2014;33(5):1355–63.PubMedGoogle Scholar
  194. 194.
    Ribel-Madsen R, Fraga MF, Jacobsen S, et al. Genome-wide analysis of DNA methylation differences in muscle and fat from monozygotic twins discordant for type 2 diabetes. PLoS One. 2012;7(12):e51302.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Denham J, Marques FZ, O’Brien BJ, et al. Exercise: putting action into our epigenome. Sports Med. 2014;44(2):189–209.PubMedCrossRefGoogle Scholar
  196. 196.
    Voisin S, Eynon N, Yan X, et al. Exercise training and DNA methylation in humans. Acta Physiol (Oxf). 2015;213(1):39–59.PubMedCrossRefGoogle Scholar
  197. 197.
    McGee SL, Hargreaves M. Histone modifications and exercise adaptations. J Appl Physiol (1985). 2011;110(1):258–63.CrossRefGoogle Scholar
  198. 198.
    Denham J, O’Brien BJ, Marques FZ, et al. Changes in the leukocyte methylome and its effect on cardiovascular-related genes after exercise. J Appl Physiol (1985). 2015;118(4):475–88.CrossRefGoogle Scholar
  199. 199.
    Guilleret I, Benhattar J. Unusual distribution of DNA methylation within the hTERT CpG island in tissues and cell lines. Biochem Biophys Res Commun. 2004;325(3):1037–43.PubMedCrossRefGoogle Scholar
  200. 200.
    Zhu J, Zhao Y, Wang S. Chromatin and epigenetic regulation of the telomerase reverse transcriptase gene. Protein Cell. 2010;1(1):22–32.PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Renaud S, Loukinov D, Bosman FT, et al. CTCF binds the proximal exonic region of hTERT and inhibits its transcription. Nucleic Acids Res. 2005;33(21):6850–60.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Liu L, Saldanha SN, Pate MS, et al. Epigenetic regulation of human telomerase reverse transcriptase promoter activity during cellular differentiation. Genes Chromosomes Cancer. 2004;41(1):26–37.PubMedCrossRefGoogle Scholar
  203. 203.
    Benetti R, Gonzalo S, Jaco I, et al. A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol. 2008;15(3):268–79.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Borghini A, Giardini G, Tonacci A, et al. Chronic and acute effects of endurance training on telomere length. Mutagenesis. 2015;30(5):711–6.PubMedCrossRefGoogle Scholar
  205. 205.
    Loprinzi PD, Loenneke JP, Blackburn EH. Movement-based behaviors and leukocyte telomere length among US adults. Med Sci Sports Exerc. 2015;47(11):2347–52.PubMedCrossRefGoogle Scholar
  206. 206.
    Weischer M, Bojesen SE, Nordestgaard BG. Telomere shortening unrelated to smoking, body weight, physical activity, and alcohol intake: 4576 general population individuals with repeat measurements 10 years apart. PLoS Genet. 2014;10(3):e1004191.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Yang JH, Han H, Jang SY, et al. A comparison of the Ghent and revised Ghent nosologies for the diagnosis of Marfan syndrome in an adult Korean population. Am J Med Genet A. 2012;158A(5):989–95.PubMedCrossRefGoogle Scholar
  208. 208.
    Kingma EM, de Jonge P, van der Harst P, et al. The association between intelligence and telomere length: a longitudinal population based study. PLoS One. 2012;7(11):e49356.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Mirabello L, Huang WY, Wong JY, et al. The association between leukocyte telomere length and cigarette smoking, dietary and physical variables, and risk of prostate cancer. Aging Cell. 2009;8(4):405–13.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Woo J, Tang N, Leung J. No association between physical activity and telomere length in an elderly Chinese population 65 years and older. Arch Intern Med. 2008;168(19):2163–4.PubMedCrossRefGoogle Scholar
  211. 211.
    Loprinzi PD. Cardiorespiratory capacity and leukocyte telomere length among adults in the United States. Am J Epidemiol. 2015;182(3):198–201.PubMedCrossRefGoogle Scholar
  212. 212.
    Maynard S, Keijzers G, Hansen AM, et al. Associations of subjective vitality with DNA damage, cardiovascular risk factors and physical performance. Acta Physiol (Oxf). 2015;213(1):156–70.PubMedCrossRefGoogle Scholar
  213. 213.
    Simpson RJ, Cosgrove C, Chee MM, et al. Senescent phenotypes and telomere lengths of peripheral blood T-cells mobilized by acute exercise in humans. Exerc Immunol Rev. 2010;16:40–55.PubMedGoogle Scholar
  214. 214.
    Bruunsgaard H, Jensen MS, Schjerling P, et al. Exercise induces recruitment of lymphocytes with an activated phenotype and short telomeres in young and elderly humans. Life Sci. 1999;65(24):2623–33.PubMedCrossRefGoogle Scholar
  215. 215.
    Hovatta I, de Mello VD, Kananen L, et al. Leukocyte telomere length in the Finnish Diabetes Prevention Study. PLoS One. 2012;7(4):e34948.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Botha M, Grace L, Bugarith K, et al. The impact of voluntary exercise on relative telomere length in a rat model of developmental stress. BMC Res Notes. 2012;5:697.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Joshua Denham
    • 1
    Email author
  • Brendan J. O’Brien
    • 2
  • Fadi J. Charchar
    • 3
  1. 1.School of Science and TechnologyUniversity of New EnglandArmidaleAustralia
  2. 2.Faculty of HealthFederation University AustraliaMt HelenAustralia
  3. 3.Faculty of Science and TechnologyFederation University AustraliaMt HelenAustralia

Personalised recommendations