Sports Medicine

, Volume 46, Issue 4, pp 473–485 | Cite as

Can Exercise Positively Influence the Intervertebral Disc?

  • Daniel L. Belavý
  • Kirsten Albracht
  • Gert-Peter Bruggemann
  • Pieter-Paul A. Vergroesen
  • Jaap H. van Dieën
Review Article


To better understand what kinds of sports and exercise could be beneficial for the intervertebral disc (IVD), we performed a review to synthesise the literature on IVD adaptation with loading and exercise. The state of the literature did not permit a systematic review; therefore, we performed a narrative review. The majority of the available data come from cell or whole-disc loading models and animal exercise models. However, some studies have examined the impact of specific sports on IVD degeneration in humans and acute exercise on disc size. Based on the data available in the literature, loading types that are likely beneficial to the IVD are dynamic, axial, at slow to moderate movement speeds, and of a magnitude experienced in walking and jogging. Static loading, torsional loading, flexion with compression, rapid loading, high-impact loading and explosive tasks are likely detrimental for the IVD. Reduced physical activity and disuse appear to be detrimental for the IVD. We also consider the impact of genetics and the likelihood of a ‘critical period’ for the effect of exercise in IVD development. The current review summarises the literature to increase awareness amongst exercise, rehabilitation and ergonomic professionals regarding IVD health and provides recommendations on future directions in research.


  1. 1.
    Brickley-Parsons D, Glimcher MJ. Is the chemistry of collagen in intervertebral discs an expression of Wolff’s Law? A study of the human lumbar spine. Spine. 1984;9:148–63.PubMedCrossRefGoogle Scholar
  2. 2.
    Vanharanta H. The intervertebral disc: a biologically active tissue challenging therapy. Ann Med. 1994;26:395–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Scott JE, Bosworth TR, Cribb AM, et al. The chemical morphology of age-related changes in human intervertebral disc glycosaminoglycans from cervical, thoracic and lumbar nucleus pulposus and annulus fibrosus. J Anat. 1994;184(Pt 1):73–82.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Marchand F, Ahmed AM. Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine. 1990;15:402–10.PubMedCrossRefGoogle Scholar
  5. 5.
    Inoue H. Three-dimensional architecture of lumbar intervertebral discs. Spine. 1981;6:139–46.PubMedCrossRefGoogle Scholar
  6. 6.
    Wade KR, Robertson PA, Broom ND. A fresh look at the nucleus-endplate region: new evidence for significant structural integration. Eur Spine J. 2011;20:1225–32. doi:10.1007/s00586-011-1704-y.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Adams MA, Roughley PJ. What is intervertebral disc degeneration, and what causes it? Spine. 2006;31:2151–61. doi:10.1097/01.brs.0000231761.73859.2c.PubMedCrossRefGoogle Scholar
  8. 8.
    Vergroesen P-PA, Kingma I, Emanuel KS, et al. Mechanics and biology in intervertebral disc degeneration: a vicious circle. Osteoarthr Cartil. 2015;23:1057–70. doi:10.1016/j.joca.2015.03.028.PubMedCrossRefGoogle Scholar
  9. 9.
    Urban JPG, Smith S, Fairbank JCT. Nutrition of the intervertebral disc. Spine. 2004;29:2700–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Katz MM, Hargens AR, Garfin SR. Intervertebral disc nutrition. Diffusion versus convection. Clin Orthop. 1986;210:243–5.PubMedGoogle Scholar
  11. 11.
    Urban JP, Holm S, Maroudas A, et al. Nutrition of the intervertebral disc: effect of fluid flow on solute transport. Clin Orthop. 1982;170:296–302.PubMedGoogle Scholar
  12. 12.
    Urban JP, Holm S, Maroudas A. Diffusion of small solutes into the intervertebral disc: as in vivo study. Biorheology. 1978;15:203–21.PubMedGoogle Scholar
  13. 13.
    Bayliss MT, Urban JP, Johnstone B, et al. In vitro method for measuring synthesis rates in the intervertebral disc. J Orthop Res. 1986;4:10–7. doi:10.1002/jor.1100040102.PubMedCrossRefGoogle Scholar
  14. 14.
    Ohshima H, Tsuji H, Hirano N, et al. Water diffusion pathway, swelling pressure, and biomechanical properties of the intervertebral disc during compression load. Spine. 1989;14:1234–44.PubMedCrossRefGoogle Scholar
  15. 15.
    Ohshima H, Urban JP, Bergel DH. Effect of static load on matrix synthesis rates in the intervertebral disc measured in vitro by a new perfusion technique. J Orthop Res. 1995;13:22–9. doi:10.1002/jor.1100130106.PubMedCrossRefGoogle Scholar
  16. 16.
    McMillan DW, Garbutt G, Adams MA. Effect of sustained loading on the water content of intervertebral discs: implications for disc metabolism. Ann Rheum Dis. 1996;55:880–7.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Arun R, Freeman BJC, Scammell BE, et al. 2009 ISSLS Prize Winner: what influence does sustained mechanical load have on diffusion in the human intervertebral disc?: an in vivo study using serial postcontrast magnetic resonance imaging. Spine. 2009;34:2324–37. doi:10.1097/BRS.0b013e3181b4df92.PubMedCrossRefGoogle Scholar
  18. 18.
    Das DB, Welling A, Urban JPG, et al. Solute transport in intervertebral disc: experiments and finite element modeling. Ann N Y Acad Sci. 2009;1161:44–61. doi:10.1111/j.1749-6632.2008.04075.x.PubMedCrossRefGoogle Scholar
  19. 19.
    Ferguson SJ, Ito K, Nolte LP. Fluid flow and convective transport of solutes within the intervertebral disc. J Biomech. 2004;37:213–21.PubMedCrossRefGoogle Scholar
  20. 20.
    De Puky P. The physiological oscillation of the length of the body. Acta Orthop. 1935;6:338–47.CrossRefGoogle Scholar
  21. 21.
    Ahrens SF. The effect of age on intervertebral disc compression during running. J Orthop Sports Phys Ther. 1994;20:17–21. doi:10.2519/jospt.1994.20.1.17.PubMedCrossRefGoogle Scholar
  22. 22.
    Carrigg SY, Hillemeyer LE, Villanueva EE. The effect of running-induced intervertebral disc compression on thoracolumbar vertebral column mobility in young, healthy males. J Orthop Sports Phys Ther. 1992;16:19–24. doi:10.2519/jospt.1992.16.1.19.PubMedCrossRefGoogle Scholar
  23. 23.
    Dowzer CN, Reilly T, Cable NT. Effects of deep and shallow water running on spinal shrinkage. Br J Sports Med. 1998;32:44–8.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    White TL, Malone TR. Effects of running on intervertebral disc height. J Orthop Sports Phys Ther. 1990;12:139–46.PubMedCrossRefGoogle Scholar
  25. 25.
    Boocock MG, Garbutt G, Linge K, et al. Changes in stature following drop jumping and post-exercise gravity inversion. Med Sci Sports Exerc. 1990;22:385–90.PubMedCrossRefGoogle Scholar
  26. 26.
    Fowler NE, Lees A, Reilly T. Spinal shrinkage in unloaded and loaded drop-jumping. Ergonomics. 1994;37:133–9. doi:10.1080/00140139408963631.PubMedCrossRefGoogle Scholar
  27. 27.
    Leatt P, Reilly T, Troup JG. Spinal loading during circuit weight-training and running. Br J Sports Med. 1986;20:119–24.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Reilly T, Freeman KA. Effects of loading on spinal shrinkage in males of different age groups. Appl Ergon. 2006;37:305–10. doi:10.1016/j.apergo.2005.07.004.PubMedCrossRefGoogle Scholar
  29. 29.
    Tyrrell AR, Reilly T, Troup JD. Circadian variation in stature and the effects of spinal loading. Spine. 1985;10:161–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Van Dieën JH, Creemers M, Draisma I, et al. Repetitive lifting and spinal shrinkage, effects of age and lifting technique. Clin Biomech Bristol Avon. 1994;9:367–74. doi:10.1016/0268-0033(94)90067-1.CrossRefGoogle Scholar
  31. 31.
    Malko JA, Hutton WC, Fajman WA. An in vivo magnetic resonance imaging study of changes in the volume (and fluid content) of the lumbar intervertebral discs during a simulated diurnal load cycle. Spine. 1999;24:1015–22.PubMedCrossRefGoogle Scholar
  32. 32.
    Malko JA, Hutton WC, Fajiman WA. An in vivo study of the changes in volume (and fluid content) of the lumber intervertebral disc after overnight bed rest and during an 8-hour walking protocol. J Spinal Disord Tech. 2002;15:157–63.PubMedCrossRefGoogle Scholar
  33. 33.
    Dimitriadis AT, Papagelopoulos PJ, Smith FW, et al. Intervertebral disc changes after 1 h of running: a study on athletes. J Int Med Res. 2011;39:569–79.PubMedCrossRefGoogle Scholar
  34. 34.
    Kingsley MI, D’Silva LA, Jennings C, et al. Moderate-intensity running causes intervertebral disc compression in young adults. Med Sci Sports Exerc. 2012;44:2199–204. doi:10.1249/MSS.0b013e318260dbc1.PubMedCrossRefGoogle Scholar
  35. 35.
    Botsford DJ, Esses SI, Ogilvie-Harris DJ. In vivo diurnal variation in intervertebral disc volume and morphology. Spine. 1994;19:935–40.PubMedCrossRefGoogle Scholar
  36. 36.
    Hellström M, Jacobsson B, Swärd L, et al. Radiologic abnormalities of the thoraco-lumbar spine in athletes. Acta Radiol. 1990;31:127–32.PubMedCrossRefGoogle Scholar
  37. 37.
    Granhed H, Morelli B. Low back pain among retired wrestlers and heavyweight lifters. Am J Sports Med. 1988;16:530–3.PubMedCrossRefGoogle Scholar
  38. 38.
    Swärd L, Hellstrom M, Jacobsson B, et al. Back pain and radiologic changes in the thoraco-lumbar spine of athletes. Spine. 1990;15:124–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Nagashima M, Abe H, Amaya K, et al. Risk factors for lumbar disc degeneration in high school American football players: a prospective 2-year follow-up study. Am J Sports Med. 2013;41:2059–64. doi:10.1177/0363546513495173.PubMedCrossRefGoogle Scholar
  40. 40.
    Brüggemann G-P, Krahl H. Belastungen und Risiken im weiblichen Kunstturnen. Teil 1, Aus der Sicht von Biomechanik und Sportmedizin [Loading and risks in female gymnasts. Part 1, biomechanics and sports medicine]. Schorndorf: Hofmann; 2000.Google Scholar
  41. 41.
    Ranson CA, Kerslake RW, Burnett AF, et al. Magnetic resonance imaging of the lumbar spine in asymptomatic professional fast bowlers in cricket. J Bone Joint Surg Br. 2005;87:1111–6. doi:10.1302/0301-620X.87B8.16405.PubMedCrossRefGoogle Scholar
  42. 42.
    Videman T, Battié MC, Gibbons LE, et al. Lifetime exercise and disk degeneration: an MRI study of monozygotic twins. Med Sci Sports Exerc. 1997;29:1350–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Maurer M, Soder RB, Baldisserotto M. Spine abnormalities depicted by magnetic resonance imaging in adolescent rowers. Am J Sports Med. 2011;39:392–7. doi:10.1177/0363546510381365.PubMedCrossRefGoogle Scholar
  44. 44.
    Kraft CN, Pennekamp PH, Becker U, et al. Magnetic resonance imaging findings of the lumbar spine in elite horseback riders: correlations with back pain, body mass index, trunk/leg-length coefficient, and riding discipline. Am J Sports Med. 2009;37:2205–13. doi:10.1177/0363546509336927.PubMedCrossRefGoogle Scholar
  45. 45.
    Bartolozzi C, Caramella D, Zampa V, et al. The incidence of disk changes in volleyball players. The magnetic resonance findings [in Italian]. Radiol Med. 1991;82:757–60.PubMedGoogle Scholar
  46. 46.
    Goldstein JD, Berger PE, Windler GE, et al. Spine injuries in gymnasts and swimmers. An epidemiologic investigation. Am J Sports Med. 1991;19:463–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Hangai M, Kaneoka K, Hinotsu S, et al. Lumbar intervertebral disk degeneration in athletes. Am J Sports Med. 2009;37:149–55. doi:10.1177/0363546508323252.PubMedCrossRefGoogle Scholar
  48. 48.
    Kaneoka K, Shimizu K, Hangai M, et al. Lumbar intervertebral disk degeneration in elite competitive swimmers: a case control study. Am J Sports Med. 2007;35:1341–5. doi:10.1177/0363546507300259.PubMedCrossRefGoogle Scholar
  49. 49.
    Videman T, Sarna S, Battié MC, et al. The long-term effects of physical loading and exercise lifestyles on back-related symptoms, disability, and spinal pathology among men. Spine. 1995;20:699–709.PubMedCrossRefGoogle Scholar
  50. 50.
    Videman T, Nurminen M, Troup JD. 1990 Volvo Award in clinical sciences. Lumbar spinal pathology in cadaveric material in relation to history of back pain, occupation, and physical loading. Spine. 1990;15:728–40.PubMedGoogle Scholar
  51. 51.
    Kordi M, Belavý DL, Armbrecht G, et al. Loss and re-adaptation of lumbar intervertebral disc water signal intensity after prolonged bedrest. J Musculoskelet Neuronal Interact. 2015;15:294–300.PubMedGoogle Scholar
  52. 52.
    Hangai M, Kaneoka K, Kuno S, et al. Factors associated with lumbar intervertebral disc degeneration in the elderly. Spine J. 2008;8:732–40. doi:10.1016/j.spinee.2007.07.392.PubMedCrossRefGoogle Scholar
  53. 53.
    Adams MA, Hutton WC. Prolapsed intervertebral disc. A hyperflexion injury. 1981 Volvo Award in Basic Science. Spine. 1982;1982(7):184–91.CrossRefGoogle Scholar
  54. 54.
    Wade KR, Robertson PA, Thambyah A, et al. How healthy discs herniate: a biomechanical and microstructural study investigating the combined effects of compression rate and flexion. Spine. 2014;39:1018–28. doi:10.1097/BRS.0000000000000262.PubMedCrossRefGoogle Scholar
  55. 55.
    Roaf R. A study of the mechanics of spinal injuries. J Bone Joint Surg Br. 1960;42:810–23.Google Scholar
  56. 56.
    Wang Y, Videman T, Battié MC. ISSLS prize winner: lumbar vertebral endplate lesions: associations with disc degeneration and back pain history. Spine. 2012;37:1490–6. doi:10.1097/BRS.0b013e3182608ac4.PubMedCrossRefGoogle Scholar
  57. 57.
    Holm S, Holm AK, Ekström L, et al. Experimental disc degeneration due to endplate injury. J Spinal Disord Tech. 2004;17:64–71.PubMedCrossRefGoogle Scholar
  58. 58.
    Schmidt H, Heuer F, Wilke H-J. Dependency of disc degeneration on shear and tensile strains between annular fiber layers for complex loads. Med Eng Phys. 2009;31:642–9. doi:10.1016/j.medengphy.2008.12.004.PubMedCrossRefGoogle Scholar
  59. 59.
    Adams MA, Hutton WC. Gradual disc prolapse. Spine. 1985;10:524–31.PubMedCrossRefGoogle Scholar
  60. 60.
    Hansson TH, Keller TS, Spengler DM. Mechanical behavior of the human lumbar spine. II. Fatigue strength during dynamic compressive loading. J Orthop Res. 1987;5:479–87. doi:10.1002/jor.1100050403.PubMedCrossRefGoogle Scholar
  61. 61.
    Holm S, Nachemson A. Variations in the nutrition of the canine intervertebral disc induced by motion. Spine. 1983;8:866–74.PubMedCrossRefGoogle Scholar
  62. 62.
    Säämänen AM, Puustjärvi K, Ilves K, et al. Effect of running exercise on proteoglycans and collagen content in the intervertebral disc of young dogs. Int J Sports Med. 1993;14:48–51. doi:10.1055/s-2007-1021145.PubMedCrossRefGoogle Scholar
  63. 63.
    Brisby H, Wei AQ, Molloy T, et al. The effect of running exercise on intervertebral disc extracellular matrix production in a rat model. Spine. 2010;35:1429–36. doi:10.1097/BRS.0b013e3181e0f5bc.PubMedCrossRefGoogle Scholar
  64. 64.
    Sasaki N, Henriksson HB, Runesson E, et al. Physical exercise affects cell proliferation in lumbar intervertebral disc regions in rats. Spine. 2012;37:1440–7. doi:10.1097/BRS.0b013e31824ff87d.PubMedCrossRefGoogle Scholar
  65. 65.
    Puustjärvi K, Lammi M, Kiviranta I, et al. Proteoglycan synthesis in canine intervertebral discs after long-distance running training. J Orthop Res. 1993;11:738–46. doi:10.1002/jor.1100110516.PubMedCrossRefGoogle Scholar
  66. 66.
    Puustjärvi K, Lammi M, Helminen H, et al. Proteoglycans in the intervertebral disc of young dogs following strenuous running exercise. Connect Tissue Res. 1994;30:225–40.PubMedCrossRefGoogle Scholar
  67. 67.
    Puustjärvi K, Takala T, Wang W, et al. Enhanced prolylhydroxylase activity in the posterior annulus fibrosus of canine intervertebral discs following long-term running exercise. Eur Spine J. 1993;2:126–31.PubMedCrossRefGoogle Scholar
  68. 68.
    Neufeld JH. Induced narrowing and back adaptation of lumbar intervertebral discs in biomechanically stressed rats. Spine. 1992;17:811–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Cassidy JD, Yong-Hing K, Kirkaldy-Willis WH, et al. A study of the effects of bipedism and upright posture on the lumbosacral spine and paravertebral muscles of the Wistar rat. Spine. 1988;13:301–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Higuchi M, Abe K, Kaneda K. Changes in the nucleus pulposus of the intervertebral disc in bipedal mice. A light and electron microscopic study. Clin Orthop. 1983;175:251–7.PubMedGoogle Scholar
  71. 71.
    Yamada K. The dynamics of experimental posture. Experimental study of intervertebral disk herniation in bipedal animals. Clin Orthop. 1962;25:20–31.PubMedGoogle Scholar
  72. 72.
    Chan SCW, Ferguson SJ, Gantenbein-Ritter B. The effects of dynamic loading on the intervertebral disc. Eur Spine J. 2011;20:1796–812. doi:10.1007/s00586-011-1827-1.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Iatridis JC, MacLean JJ, Roughley PJ, et al. Effects of mechanical loading on intervertebral disc metabolism in vivo. J Bone Joint Surg Am. 2006;88(Suppl 2):41–6.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Le Maitre CL, Frain J, Fotheringham AP, et al. Human cells derived from degenerate intervertebral discs respond differently to those derived from non-degenerate intervertebral discs following application of dynamic hydrostatic pressure. Biorheology. 2008;45:563–75.PubMedGoogle Scholar
  75. 75.
    Wilke HJ, Neef P, Caimi M, et al. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine. 1999;24:755–62.PubMedCrossRefGoogle Scholar
  76. 76.
    Mayer JE, Iatridis JC, Chan D, et al. Genetic polymorphisms associated with intervertebral disc degeneration. Spine J. 2013;13:299–317. doi:10.1016/j.spinee.2013.01.041.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Elfering A, Semmer N, Birkhofer D, et al. Risk factors for lumbar disc degeneration: a 5-year prospective MRI study in asymptomatic individuals. Spine. 2002;27:125–34.PubMedCrossRefGoogle Scholar
  78. 78.
    Yuan H-Y, Tang Y, Liang Y-X, et al. Matrix metalloproteinase-3 and vitamin d receptor genetic polymorphisms, and their interactions with occupational exposure in lumbar disc degeneration. J Occup Health. 2010;52:23–30.PubMedCrossRefGoogle Scholar
  79. 79.
    Coventry MB. Anatomy of the intervertebral disk. Clin Orthop. 1969;67:9–15.PubMedCrossRefGoogle Scholar
  80. 80.
    Kraemer J, Kolditz D, Gowin R. Water and electrolyte content of human intervertebral discs under variable load. Spine. 1985;10:69–71.PubMedCrossRefGoogle Scholar
  81. 81.
    Koeller W, Muehlhaus S, Meier W, et al. Biomechanical properties of human intervertebral discs subjected to axial dynamic compression–influence of age and degeneration. J Biomech. 1986;19:807–16.PubMedCrossRefGoogle Scholar
  82. 82.
    Sether LA, Yu S, Haughton VM, et al. Intervertebral disk: normal age-related changes in MR signal intensity. Radiology. 1990;177:385–8. doi:10.1148/radiology.177.2.2217773.PubMedCrossRefGoogle Scholar
  83. 83.
    Boos N, Weissbach S, Rohrbach H, et al. Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine. 2002;27:2631–44. doi:10.1097/01.BRS.0000035304.27153.5B.PubMedCrossRefGoogle Scholar
  84. 84.
    Luoma K, Vehmas T, Riihimäki H, et al. Disc height and signal intensity of the nucleus pulposus on magnetic resonance imaging as indicators of lumbar disc degeneration. Spine. 2001;26:680–6.PubMedCrossRefGoogle Scholar
  85. 85.
    Sivan SS, Wachtel E, Roughley P. Structure, function, aging and turnover of aggrecan in the intervertebral disc. Biochim Biophys Acta. 2014;1840:3181–9. doi:10.1016/j.bbagen.2014.07.013.PubMedCrossRefGoogle Scholar
  86. 86.
    MacKelvie KJ, Khan KM, McKay HA. Is there a critical period for bone response to weight-bearing exercise in children and adolescents? A systematic review. Br J Sports Med. 2002;36:250–7 (discussion 257).PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Ledsome JR, Lessoway V, Susak LE, et al. Diurnal changes in lumbar intervertebral distance, measured using ultrasound. Spine. 1996;21:1671–5.PubMedCrossRefGoogle Scholar
  88. 88.
    Wang Y-XJ, Griffith JF, Leung JCS, et al. Age related reduction of T1rho and T2 magnetic resonance relaxation times of lumbar intervertebral disc. Quant Imaging Med Surg. 2014;4:259–64. doi:10.3978/j.issn.2223-4292.2014.07.14.PubMedPubMedCentralGoogle Scholar
  89. 89.
    VanTulder MW, Assendelft WJ, Koes BW, et al. Spinal radiographic findings and nonspecific low back pain. A systematic review of observational studies. Spine. 1997;22:427–34.CrossRefGoogle Scholar
  90. 90.
    Boden SD, McCowin PR, Davis DO, et al. Abnormal magnetic-resonance scans of the cervical spine in asymptomatic subjects. A prospective investigation. J Bone Joint Surg Am. 1990;72:1178–84.PubMedGoogle Scholar
  91. 91.
    Boden SD, Davis DO, Dina TS, et al. Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects. A prospective investigation. J Bone Joint Surg Am. 1990;72:403–8.PubMedGoogle Scholar
  92. 92.
    Vernon-Roberts B, Pirie CJ. Degenerative changes in the intervertebral discs of the lumbar spine and their sequelae. Rheumatol Rehabil. 1977;16:13–21.PubMedCrossRefGoogle Scholar
  93. 93.
    Pfirrmann CW, Metzdorf A, Zanetti M, et al. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine. 2001;26:1873–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Belavý DL, Armbrecht G, Gast U, et al. Countermeasures against lumbar spine deconditioning in prolonged bed-rest: resistive exercise with and without whole-body vibration. J Appl Physiol. 2010;109:1801–11.PubMedCrossRefGoogle Scholar
  95. 95.
    An HS, Anderson PA, Haughton VM, et al. Introduction: disc degeneration: summary. Spine. 2004;29:2677–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Marinelli NL, Haughton VM, Munoz A, et al. T2 relaxation times of intervertebral disc tissue correlated with water content and proteoglycan content. Spine. 2009;34:520–4.PubMedCrossRefGoogle Scholar
  97. 97.
    Weidenbaum M, Foster RJ, Best BA, et al. Correlating magnetic resonance imaging with the biochemical content of the normal human intervertebral disc. J Orthop Res. 1992;10:552–61. doi:10.1002/jor.1100100410.PubMedCrossRefGoogle Scholar
  98. 98.
    Antoniou J, Pike GB, Steffen T, et al. Quantitative magnetic resonance imaging in the assessment of degenerative disc disease. Magn Reson Med. 1998;40:900–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Kealey SM, Aho T, Delong D, et al. Assessment of apparent diffusion coefficient in normal and degenerated intervertebral lumbar disks: initial experience. Radiology. 2005;235:569–74. doi:10.1148/radiol.2352040437.PubMedCrossRefGoogle Scholar
  100. 100.
    Antoniou J, Demers CN, Beaudoin G, et al. Apparent diffusion coefficient of intervertebral discs related to matrix composition and integrity. Magn Reson Imaging. 2004;22:963–72. doi:10.1016/j.mri.2004.02.011.PubMedCrossRefGoogle Scholar
  101. 101.
    Wu N, Liu H, Chen J, et al. Comparison of apparent diffusion coefficient and T2 relaxation time variation patterns in assessment of age and disc level related intervertebral disc changes. PLoS One. 2013;8:e69052. doi:10.1371/journal.pone.0069052.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Johannessen W, Auerbach JD, Wheaton AJ, et al. Assessment of human disc degeneration and proteoglycan content using T1rho-weighted magnetic resonance imaging. Spine. 2006;31:1253–7. doi:10.1097/01.brs.0000217708.54880.51.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Rajasekaran S, Babu JN, Arun R, et al. ISSLS prize winner: a study of diffusion in human lumbar discs: a serial magnetic resonance imaging study documenting the influence of the endplate on diffusion in normal and degenerate discs. Spine. 2004;29:2654–67.PubMedCrossRefGoogle Scholar
  104. 104.
    Nguyen-minh C, Haughton VM, Papke RA, et al. Measuring diffusion of solutes into intervertebral disks with MR imaging and paramagnetic contrast medium. AJNR Am J Neuroradiol. 1998;19:1781–4.PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition SciencesDeakin UniversityBurwoodAustralia
  2. 2.Institute of Biomechanics and OrthopedicsGerman Sport University CologneCologneGermany
  3. 3.Cologne Center for Musculoskeletal Biomechanics, Medical FacultyUniversity Hospital of CologneCologneGermany
  4. 4.Department of Human Movement Sciences, MOVE Research Institute AmsterdamVrije Universiteit AmsterdamAmsterdamThe Netherlands
  5. 5.Department of Orthopedic SurgeryVU University Medical Center, AmsterdamAmsterdamThe Netherlands

Personalised recommendations