Sports Medicine

, Volume 45, Issue 2, pp 279–296 | Cite as

Exercise Modalities and Endothelial Function: A Systematic Review and Dose–Response Meta-Analysis of Randomized Controlled Trials

  • Ammar W. Ashor
  • Jose Lara
  • Mario Siervo
  • Carlos Celis-Morales
  • Clio Oggioni
  • Djordje G. Jakovljevic
  • John C. Mathers
Systematic Review



Regular exercise is associated with enhanced nitric oxide (NO) bioavailability. Flow-mediated dilation (FMD) is used widely to assess endothelial function (EF) and NO release.


The aims of this systematic review and meta-analysis were to (i) investigate the effect of exercise modalities (aerobic, resistance or combined) on FMD; and (ii) determine which exercise and participant characteristics are most effective in improving FMD.


We searched the MEDLINE, Embase, Cochrane Library, and Scopus databases for studies that met the following criteria: (i) randomized controlled trials of exercise with comparative non-exercise, usual care or sedentary groups; (ii) duration of exercise intervention ≥4 weeks; (iii) age ≥18 years; and (iv) EF measured by FMD before and after the intervention. Weighted mean differences (WMDs) with 95 % confidence interval were entered into a random effect model to estimate the pooled effect of the exercise interventions.


All exercise modalities enhanced EF significantly: aerobic (WMD 2.79, 95 % CI 2.12–3.45, p = 0.0001), resistance (WMD 2.52, 95 % CI 1.11–3.93, p = 0.0001) and combined (WMD 2.07, 95 % CI 0.70–3.44, p = 0.003). A dose–response relationship was observed between aerobic exercise intensity and improvement in EF. A 2 metabolic equivalents (MET) increase in absolute exercise intensity or a 10 % increase in relative exercise intensity resulted in a 1 % unit improvement in FMD. There was a positive relationship between frequency of resistance exercise sessions and improvement in EF (β 1.14, CI 0.16–2.12, p = 0.027).


All exercise modalities improve EF significantly and there was a significant, positive relationship between aerobic exercise intensity and EF. Greater frequency, rather than intensity, of resistance exercise training enhanced EF.


Endothelial Function Exercise Intensity Resistance Exercise Aerobic Exercise Exercise Intervention 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



AA is funded by the Ministry of Higher Education and Scientific Research of Iraq. JL and JCM acknowledge support from the LiveWell Programme, a research project funded through a collaborative grant from the Lifelong Health and Wellbeing (LLHW) initiative, managed by the Medical Research Council (MRC) (Grant number G0900686). The authors have no potential conflicts of interest that are directly relevant to the content of this review.

PROSPERO Database registration: CRD42014008988,

Supplementary material

40279_2014_272_MOESM1_ESM.pdf (819 kb)
Supplementary material 1 (PDF 819 kb)


  1. 1.
    Green DJ, Jones H, Thijssen D, et al. Flow-mediated dilation and cardiovascular event prediction: does nitric oxide matter? Hypertension. 2011;57(3):363–9. doi: 10.1161/hypertensionaha.110.167015.PubMedCrossRefGoogle Scholar
  2. 2.
    Lollgen H, Bockenhoff A, Knapp G. Physical activity and all-cause mortality: an updated meta-analysis with different intensity categories. Int J Sports Med. 2009;30(3):213–24. doi: 10.1055/s-0028-1128150.PubMedCrossRefGoogle Scholar
  3. 3.
    Pal S, Radavelli-Bagatini S, Ho S. Potential benefits of exercise on blood pressure and vascular function. J Am Soc Hypertens. 2013;7(6):494–506. doi: 10.1016/j.jash.2013.07.004.PubMedCrossRefGoogle Scholar
  4. 4.
    Cornelissen VA, Fagard RH, Coeckelberghs E, et al. Impact of resistance training on blood pressure and other cardiovascular risk factors: a meta-analysis of randomized, controlled trials. Hypertension. 2011;58(5):950–8. doi: 10.1161/hypertensionaha.111.177071.PubMedCrossRefGoogle Scholar
  5. 5.
    Braith RW, Stewart KJ. Resistance exercise training: its role in the prevention of cardiovascular disease. Circulation. 2006;113(22):2642–50. doi: 10.1161/circulationaha.105.584060.PubMedCrossRefGoogle Scholar
  6. 6.
    Miyachi M. Effects of resistance training on arterial stiffness: a meta-analysis. Br J Sports Med. 2013;47(6):393–6. doi: 10.1136/bjsports-2012-090488.PubMedCrossRefGoogle Scholar
  7. 7.
    Montero D, Walther G, Perez-Martin A, et al. Vascular smooth muscle function in type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetologia. 2013;56(10):2122–33. doi: 10.1007/s00125-013-2974-1.PubMedCrossRefGoogle Scholar
  8. 8.
    Montero D, Roberts CK, Vinet A. Effect of aerobic exercise training on arterial stiffness in obese populations: a systematic review and meta-analysis. Sports Med. 2014;44(6):833–43. doi: 10.1007/s40279-014-0165-y.PubMedCrossRefGoogle Scholar
  9. 9.
    Montero D, Roche E, Martinez-Rodriguez A. The impact of aerobic exercise training on arterial stiffness in pre- and hypertensive subjects: a systematic review and meta-analysis. Int J Cardiol. 2014;173(3):361–8. doi: 10.1016/j.ijcard.2014.03.072.PubMedCrossRefGoogle Scholar
  10. 10.
    Goto C, Higashi Y, Kimura M, et al. Effect of different intensities of exercise on endothelium-dependent vasodilation in humans: role of endothelium-dependent nitric oxide and oxidative stress. Circulation. 2003;108(5):530–5. doi: 10.1161/01.cir.0000080893.55729.28.PubMedCrossRefGoogle Scholar
  11. 11.
    Okamoto T, Masuhara M, Ikuta K. Effect of low-intensity resistance training on arterial function. Eur J Appl Physiol. 2011;111(5):743–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Schuler G, Adams V, Goto Y. Role of exercise in the prevention of cardiovascular disease: results, mechanisms, and new perspectives. Eur Heart J. 2013;34(24):1790–9. doi: 10.1093/eurheartj/eht111.PubMedCrossRefGoogle Scholar
  13. 13.
    Gielen S, Schuler G, Adams V. Cardiovascular effects of exercise training: molecular mechanisms. Circulation. 2010;122(12):1221–38. doi: 10.1161/circulationaha.110.939959.PubMedCrossRefGoogle Scholar
  14. 14.
    Kojda G, Hambrecht R. Molecular mechanisms of vascular adaptations to exercise. Physical activity as an effective antioxidant therapy? Cardiovasc Res. 2005;67(2):187–97. doi: 10.1016/j.cardiores.2005.04.032.PubMedCrossRefGoogle Scholar
  15. 15.
    Inaba Y, Chen JA, Bergmann SR. Prediction of future cardiovascular outcomes by flow-mediated vasodilatation of brachial artery: a meta-analysis. Int J Cardiovasc Imaging. 2010;26(6):631–40. doi: 10.1007/s10554-010-9616-1.PubMedCrossRefGoogle Scholar
  16. 16.
    Charakida M, Masi S, Luscher TF, et al. Assessment of atherosclerosis: the role of flow-mediated dilatation. Eur Heart J. 2010;31(23):2854–61. doi: 10.1093/eurheartj/ehq340.PubMedCrossRefGoogle Scholar
  17. 17.
    Higgins JPT, Green S, editors. Cochrane handbook for systematic reviews of interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011.
  18. 18.
    Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Green DJ, Maiorana A, O’Driscoll G, et al. Effect of exercise training on endothelium-derived nitric oxide function in humans. J Physiol. 2004;561(Pt 1):1–25. doi: 10.1113/jphysiol.2004.068197.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17(1):1–12.PubMedCrossRefGoogle Scholar
  21. 21.
    Howley ET. Type of activity: resistance, aerobic and leisure versus occupational physical activity. Med Sci Sports Exerc. 2001;33(6 Suppl):S364–9; discussion S419–20.Google Scholar
  22. 22.
    Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60. doi: 10.1136/bmj.327.7414.557.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Beck DT, Casey DP, Martin JS, et al. Exercise training improves endothelial function in young prehypertensives. Exp Biol Med (Maywood NJ). 2013;238(4):433–41 10.1177/1535370213477600.CrossRefGoogle Scholar
  25. 25.
    Belardinelli R, Capestro F, Misiani A, et al. Moderate exercise training improves functional capacity, quality of life, and endothelium-dependent vasodilation in chronic heart failure patients with implantable cardioverter defibrillators and cardiac resynchronization therapy. Eur J Cardiovasc Prev Rehabil. 2006;13(5):818–25.PubMedCrossRefGoogle Scholar
  26. 26.
    Belardinelli R, Lacalaprice F, Faccenda E, et al. Effects of short-term moderate exercise training on sexual function in male patients with chronic stable heart failure. Int J Cardiol. 2005;101(1):83–90.PubMedCrossRefGoogle Scholar
  27. 27.
    Belardinelli R, Lacalaprice F, Faccenda E, et al. Trimetazidine potentiates the effects of exercise training in patients with ischemic cardiomyopathy referred for cardiac rehabilitation. Eur J Cardiovasc Prev Rehabil. 2008;15(5):533–40.PubMedCrossRefGoogle Scholar
  28. 28.
    Bhutani S, Klempel MC, Kroeger CM, et al. Alternate day fasting with or without exercise: Effects on endothelial function and adipokines in obese humans. e-SPEN J. 2013;8(5):e205–9.Google Scholar
  29. 29.
    Blumenthal JA, Sherwood A, Babyak MA, et al. Exercise and pharmacological treatment of depressive symptoms in patients with coronary heart disease: Results from the UPBEAT (understanding the prognostic benefits of exercise and antidepressant therapy) study. J Am Coll Cardiol. 2012;60(12):1053–63.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Blumenthal JA, Sherwood A, Babyak MA, et al. Effects of exercise and stress management training on markers of cardiovascular risk in patients with ischemic heart disease: a randomized controlled trial. JAMA. 2005;293(13):1626–34.PubMedCrossRefGoogle Scholar
  31. 31.
    Braith RW, Schofield RS, Hill JA, et al. Exercise training attenuates progressive decline in brachial artery reactivity in heart transplant recipients. J Heart Lung Transplant. 2008;27(1):52–9. doi: 10.1016/j.healun.2007.09.032.PubMedCrossRefGoogle Scholar
  32. 32.
    Choi KM, Han KA, Ahn HJ, et al. Effects of exercise on sRAGE levels and cardiometabolic risk factors in patients with type 2 diabetes: a randomized controlled trial. J Clin Endocrinol Metab. 2012;97(10):3751–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Desch S, Sonnabend M, Niebauer J, et al. Effects of physical exercise versus rosiglitazone on endothelial function in coronary artery disease patients with prediabetes. Diabetes Obes Metab. 2010;12(9):825–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Edwards DG, Schofield RS, Lennon SL, et al. Effect of exercise training on endothelial function in men with coronary artery disease. Am J Cardiol. 2004;93(5):617–20. doi: 10.1016/j.amjcard.2003.11.032.PubMedCrossRefGoogle Scholar
  35. 35.
    Erbs S, Hollriegel R, Linke A, et al. Exercise training in patients with advanced chronic heart failure (NYHA IIIb) promotes restoration of peripheral vasomotor function, induction of endogenous regeneration, and improvement of left ventricular function. Circul Heart Fail. 2010;3(4):486–94.CrossRefGoogle Scholar
  36. 36.
    Giannattasio C, Achilli F, Grappiolo A, et al. Radial artery flow-mediated dilatation in heart failure patients: effects of pharmacological and nonpharmacological treatment. Hypertension. 2001;38(6):1451–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Hermann TS, Dall CH, Christensen SB, et al. Effect of high intensity exercise on peak oxygen uptake and endothelial function in long-term heart transplant recipients. Am J Transplant. 2011;11(3):536–41.PubMedCrossRefGoogle Scholar
  38. 38.
    Hill AM, Buckley JD, Murphy KJ, et al. Combining fish–oil supplements with regular aerobic exercise improves body composition and cardiovascular disease risk factors. Am J Clin Nutr. 2007;85(5):1267–74.PubMedGoogle Scholar
  39. 39.
    Jones LW, Hornsby WE, Freedland SJ, et al. Effects of nonlinear aerobic training on erectile dysfunction and cardiovascular function following radical prostatectomy for clinically localized prostate cancer. Eur Urol. 2014;65(5):852–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Kitzman DW, Brubaker PH, Herrington DM, et al. Effect of endurance exercise training on endothelial function and arterial stiffness in older patients with heart failure and preserved ejection fraction: a randomized, controlled, single-blind trial. J Am Coll Cardiol. 2013;62(7):584–92.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Kobayashi N, Tsuruya Y, Iwasawa T, et al. Exercise training in patients with chronic heart failure improves endothelial function predominantly in the trained extremities. Circ J. 2003;67(6):505–10.PubMedCrossRefGoogle Scholar
  42. 42.
    Kwon HR, Min KW, Ahn HJ, et al. Effects of aerobic exercise vs. resistance training on endothelial function in women with type 2 diabetes mellitus. Diabetes Metab J. 2011;35(4):364–73. doi: 10.4093/dmj.2011.35.4.364.
  43. 43.
    Lavrenčič A, Salobir BG, Keber I. Physical training improves flow-mediated dilation in patients with the polymetabolic syndrome. Arterioscler Thromb Vasc Biol. 2000;20(2):551–5.Google Scholar
  44. 44.
    Linke A, Schoene N, Gielen S, et al. Endothelial dysfunction in patients with chronic heart failure: systemic effects of lower-limb exercise training. J Am Coll Cardiol. 2001;37(2):392–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Maiorana AJ, Naylor LH, Exterkate A, et al. The impact of exercise training on conduit artery wall thickness and remodeling in chronic heart failure patients. Hypertension. 2011;57(1):56–62.PubMedCrossRefGoogle Scholar
  46. 46.
    McDermott MM, Ades P, Guralnik JM, et al. Treadmill exercise and resistance training in patients with peripheral arterial disease with and without intermittent claudication: a randomized controlled trial. JAMA. 2009;301(2):165–74.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Munk PS, Staal EM, Butt N, et al. High-intensity interval training may reduce in-stent restenosis following percutaneous coronary intervention with stent implantation: a randomized controlled trial evaluating the relationship to endothelial function and inflammation. Am Heart J. 2009;158(5):734–41. doi: 10.1016/j.ahj.2009.08.021.PubMedCrossRefGoogle Scholar
  48. 48.
    Pierce GL, Eskurza I, Walker AE, et al. Sex-specific effects of habitual aerobic exercise on brachial artery flow-mediated dilation in middle-aged and older adults. Clin Sci (Lond). 2011;120(1):13–23. doi: 10.1042/cs20100174.PubMedCrossRefGoogle Scholar
  49. 49.
    Ramirez-Velez R, Aguilar de Plata AC, Escudero MM, et al. Influence of regular aerobic exercise on endothelium-dependent vasodilation and cardiorespiratory fitness in pregnant women. J Obstet Gynaecol Res. 2011;37(11):1601–8. doi: 10.1111/j.1447-0756.2011.01582.x.
  50. 50.
    Schmidt A, Pleiner J, Bayerle-Eder M, et al. Regular physical exercise improves endothelial function in heart transplant recipients. Clin Transplant. 2002;16(2):137–43.PubMedCrossRefGoogle Scholar
  51. 51.
    Sixt S, Rastan A, Desch S, et al. Exercise training but not rosiglitazone improves endothelial function in prediabetic patients with coronary disease. Eur J Cardiovasc Prev Rehabil. 2008;15(4):473–8. doi: 10.1097/HJR.0b013e3283002733.PubMedCrossRefGoogle Scholar
  52. 52.
    Sonnenschein K, Horvath T, Mueller M, et al. Exercise training improves in vivo endothelial repair capacity of early endothelial progenitor cells in subjects with metabolic syndrome. Eur J Cardiovasc Prev Rehabil. 2011;18(3):406–14.PubMedCrossRefGoogle Scholar
  53. 53.
    Stensvold D, Tjonna AE, Skaug EA, et al. Strength training versus aerobic interval training to modify risk factors of metabolic syndrome. J Appl Physiol. 2010;108(4):804–10.PubMedCrossRefGoogle Scholar
  54. 54.
    Swift DL, Earnest CP, Blair SN, et al. The effect of different doses of aerobic exercise training on endothelial function in postmenopausal women with elevated blood pressure: results from the DREW study. Br J Sports Med. 2012;46(10):753–8. doi: 10.1136/bjsports-2011-090025.PubMedCrossRefGoogle Scholar
  55. 55.
    Tjonna AE, Lee SJ, Rognmo O, et al. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation. 2008;118(4):346–54. doi: 10.1161/circulationaha.108.772822.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Vona M, Codeluppi GM, Iannino T, et al. Effects of different types of exercise training followed by detraining on endothelium-dependent dilation in patients with recent myocardial infarction. Circulation. 2009;119(12):1601–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Vona M, Rossi A, Capodaglio P, et al. Impact of physical training and detraining on endothelium-dependent vasodilation in patients with recent acute myocardial infarction. Am Heart J. 2004;147(6):1039–46.PubMedCrossRefGoogle Scholar
  58. 58.
    Westhoff TH, Franke N, Schmidt S, et al. Beta-blockers do not impair the cardiovascular benefits of endurance training in hypertensives. J Hum Hypertens. 2007;21(6):486–93. doi: 10.1038/sj.jhh.1002173.PubMedGoogle Scholar
  59. 59.
    Westhoff TH, Schmidt S, Gross V, et al. The cardiovascular effects of upper-limb aerobic exercise in hypertensive patients. J Hypertens. 2008;26(7):1336–42.PubMedCrossRefGoogle Scholar
  60. 60.
    Wisloff U, Stoylen A, Loennechen JP, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation. 2007;115(24):3086–94. doi: 10.1161/circulationaha.106.675041.PubMedCrossRefGoogle Scholar
  61. 61.
    Yoshizawa M, Maeda S, Miyaki A, et al. Additive beneficial effects of lactotripeptides intake with regular exercise on endothelium-dependent dilatation in postmenopausal women. Am J Hypertens. 2010;23(4):368–72. doi: 10.1038/ajh.2009.270.PubMedCrossRefGoogle Scholar
  62. 62.
    Hambrecht R, Hilbrich L, Erbs S, et al. Correction of endothelial dysfunction in chronic heart failure: additional effects of exercise training and oral l-arginine supplementation. J Am Coll Cardiol. 2000;35(3):706–13.PubMedCrossRefGoogle Scholar
  63. 63.
    Okamoto T, Masuhara M, Ikuta K. Effects of low-intensity resistance training with slow lifting and lowering on vascular function. J Hum Hypertens. 2008;22(7):509–11. doi: 10.1038/jhh.2008.12.PubMedCrossRefGoogle Scholar
  64. 64.
    Okamoto T, Masuhara M, Ikuta K. Effects of muscle contraction timing during resistance training on vascular function. J Hum Hypertens. 2009;23(7):470–8. doi: 10.1038/jhh.2008.152.PubMedCrossRefGoogle Scholar
  65. 65.
    Okamoto T, Masuhara M, Ikuta K. Effect of low-intensity resistance training on arterial function. Eur J Appl Physiol. 2011;111(5):743–8. doi: 10.1007/s00421-010-1702-5.PubMedCrossRefGoogle Scholar
  66. 66.
    Olson TP, Dengel DR, Leon AS, et al. Moderate resistance training and vascular health in overweight women. Med Sci Sports Exerc. 2006;38(9):1558–64.PubMedCrossRefGoogle Scholar
  67. 67.
    Barone Gibbs B, Dobrosielski DA, Bonekamp S, et al. A randomized trial of exercise for blood pressure reduction in type 2 diabetes: effect on flow-mediated dilation and circulating biomarkers of endothelial function. Atherosclerosis. 2012;224(2):446–53.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Haykowsky M, Taylor D, Kim D, et al. Exercise training improves aerobic capacity and skeletal muscle function in heart transplant recipients. Am J Transplant. 2009;9(4):734–9. doi: 10.1111/j.1600-6143.2008.02531.x.PubMedCrossRefGoogle Scholar
  69. 69.
    Luk TH, Dai YL, Siu CW, et al. Effect of exercise training on vascular endothelial function in patients with stable coronary artery disease: a randomized controlled trial. Eur J Prev Cardiol. 2012;19(4):830–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Maiorana A, O’Driscoll G, Cheetham C, et al. The effect of combined aerobic and resistance exercise training on vascular function in type 2 diabetes. J Am Coll Cardiol. 2001;38(3):860–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Okada S, Hiuge A, Makino H, et al. Effect of exercise intervention on endothelial function and incidence of cardiovascular disease in patients with type 2 diabetes. J Atheroscler Thromb. 2010;17(8):828–33.PubMedCrossRefGoogle Scholar
  72. 72.
    Okamoto T, Masuhara M, Ikuta K. Combined aerobic and resistance training and vascular function: effect of aerobic exercise before and after resistance training. J Appl Physiol (1985). 2007;103(5):1655-61. doi: 10.1152/japplphysiol.00327.2007.
  73. 73.
    Walsh JH, Bilsborough W, Maiorana A, et al. Exercise training improves conduit vessel function in patients with coronary artery disease. J Appl Physiol (1985). 2003;95(1):20–5. doi: 10.1152/japplphysiol.00012.2003.
  74. 74.
    Walsh JH, Yong G, Cheetham C, et al. Effects of exercise training on conduit and resistance vessel function in treated and untreated hypercholesterolaemic subjects. Eur Heart J. 2003;24(18):1681–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Newcomer SC, Thijssen DH, Green DJ. Effects of exercise on endothelium and endothelium/smooth muscle cross talk: role of exercise-induced hemodynamics. J Appl Physiol (1985). 2011;111(1):311–20. doi: 10.1152/japplphysiol.00033.2011.
  76. 76.
    Ribeiro F, Alves AJ, Duarte JA, et al. Is exercise training an effective therapy targeting endothelial dysfunction and vascular wall inflammation? Int J Cardiol. 2010;141(3):214–21. doi: 10.1016/j.ijcard.2009.09.548.PubMedCrossRefGoogle Scholar
  77. 77.
    Ribeiro F, Ribeiro IP, Alves AJ, et al. Effects of exercise training on endothelial progenitor cells in cardiovascular disease: a systematic review. Am J Phys Med Rehabil. 2013;92(11):1020–30. doi: 10.1097/PHM.0b013e31829b4c4f.PubMedCrossRefGoogle Scholar
  78. 78.
    Padilla J, Harris RA, Rink LD, et al. Characterization of the brachial artery shear stress following walking exercise. Vasc Med. 2008;13(2):105–11. doi: 10.1177/1358863x07086671.PubMedCrossRefGoogle Scholar
  79. 79.
    Whyte LJ, Ferguson C, Wilson J, et al. Effects of single bout of very high-intensity exercise on metabolic health biomarkers in overweight/obese sedentary men. Metabolism. 2013;62(2):212–9. doi: 10.1016/j.metabol.2012.07.019.PubMedCrossRefGoogle Scholar
  80. 80.
    Haskell WL, Lee IM, Pate RR, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39(8):1423–34. doi: 10.1249/mss.0b013e3180616b27.PubMedCrossRefGoogle Scholar
  81. 81.
    Swain DP, Franklin BA. Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise. Am J Cardiol. 2006;97(1):141–7. doi: 10.1016/j.amjcard.2005.07.130.PubMedCrossRefGoogle Scholar
  82. 82.
    Smart NA, Dieberg G, Giallauria F. Intermittent versus continuous exercise training in chronic heart failure: a meta-analysis. Int J Cardiol. 2013;166(2):352–8. doi: 10.1016/j.ijcard.2011.10.075.PubMedCrossRefGoogle Scholar
  83. 83.
    Weston KS, Wisloff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med. 2014;48(16):1227–34. doi: 10.1136/bjsports-2013-092576.PubMedCrossRefGoogle Scholar
  84. 84.
    Kaminsky LA, Arena R, Beckie TM, et al. The importance of cardiorespiratory fitness in the United States: the need for a national registry: a policy statement from the American Heart Association. Circulation. 2013;127(5):652–62. doi: 10.1161/CIR.0b013e31827ee100.PubMedCrossRefGoogle Scholar
  85. 85.
    Gibala MJ, Little JP, Macdonald MJ, et al. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012;590(Pt 5):1077–84. doi: 10.1113/jphysiol.2011.224725.PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Whyte LJ, Gill JM, Cathcart AJ. Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism. 2010;59(10):1421–8. doi: 10.1016/j.metabol.2010.01.002.PubMedCrossRefGoogle Scholar
  87. 87.
    Wisloff U, Ellingsen O, Kemi OJ. High-intensity interval training to maximize cardiac benefits of exercise training? Exerc Sport Sci Rev. 2009;37(3):139–46. doi: 10.1097/JES.0b013e3181aa65fc.PubMedCrossRefGoogle Scholar
  88. 88.
    Akamatsu D, Sato A, Goto H, et al. Nitroglycerin-mediated vasodilatation of the brachial artery may predict long-term cardiovascular events irrespective of the presence of atherosclerotic disease. J Atheroscler Thromb. 2010;17(12):1266–74.PubMedCrossRefGoogle Scholar
  89. 89.
    Mora S, Cook N, Buring JE, et al. Physical activity and reduced risk of cardiovascular events: potential mediating mechanisms. Circulation. 2007;116(19):2110–8. doi: 10.1161/circulationaha.107.729939.PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    MacDonald MJ, Currie KD. Interval exercise is a path to good health, but how much, how often and for whom? Clin Sci (Lond). 2009;116(4):315–6. doi: 10.1042/cs20080632.PubMedCrossRefGoogle Scholar
  91. 91.
    Pyke KE, Tschakovsky ME. The relationship between shear stress and flow-mediated dilatation: implications for the assessment of endothelial function. J Physiol. 2005;568(Pt 2):357–69. doi: 10.1113/jphysiol.2005.089755.PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Thijssen DH, Black MA, Pyke KE, et al. Assessment of flow-mediated dilation in humans: a methodological and physiological guideline. Am J Physiol Heart Circ Physiol. 2011;300(1):H2–12. doi: 10.1152/ajpheart.00471.2010.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ammar W. Ashor
    • 1
    • 2
  • Jose Lara
    • 1
  • Mario Siervo
    • 1
  • Carlos Celis-Morales
    • 1
  • Clio Oggioni
    • 1
  • Djordje G. Jakovljevic
    • 3
  • John C. Mathers
    • 1
  1. 1.Human Nutrition Research Centre, Institute of Cellular MedicineNewcastle UniversityNewcastle on TyneUK
  2. 2.College of MedicineUniversity of Al-MustansiriyahBaghdadIraq
  3. 3.Institute of Cellular MedicineNewcastle UniversityFramlington PlaceUK

Personalised recommendations