Sports Medicine

, Volume 45, Issue 2, pp 213–229 | Cite as

Vitamin D: Recent Advances and Implications for Athletes

  • Joshua J. Todd
  • L. Kirsty Pourshahidi
  • Emeir M. McSorley
  • Sharon M. Madigan
  • Pamela J. Magee
Review Article

Abstract

Athletes may be predisposed to low vitamin D concentrations, with studies reporting a high prevalence of athletes with a vitamin D concentration below 50 nmol/L across a range of sports and geographical locations, particularly over the winter months. It is well documented that vitamin D is important for osseous health by enhancing calcium absorption at the small intestine; however, emerging research suggests that vitamin D may also benefit a plethora of extra-skeletal target tissues and systems. There is strong evidence that vitamin D is capable of regulating both innate and adaptive immune processes via binding of active vitamin D to its complementary receptor. Supplementation with vitamin D may also enhance skeletal muscle function through morphological adaptations and enhanced calcium availability during cross-bridge cycling; however, an exact mechanism of action is yet to be elucidated. Such findings have prompted research into the importance of maintaining vitamin D concentrations over wintertime and the possible physiological and immunological benefits of vitamin D supplementation in athletes. The following review critically evaluates existing literature and presents novel perspectives on how vitamin D may enhance athletic performance.

References

  1. 1.
    Webb AR. Who, what, where and when-influences on cutaneous vitamin D synthesis. Prog Biophys Mol Biol. 2006;92(1):17–25.PubMedGoogle Scholar
  2. 2.
    Ovesen L, Andersen R, Jakobsen J. Geographical differences in vitamin D status, with particular reference to European countries. Proc Nutr Soc. 2003;62(4):813–21.PubMedGoogle Scholar
  3. 3.
    Calvo MS, Whiting SJ, Barton CN. Vitamin D fortification in the United States and Canada: current status and data needs. Am J Clin Nutr. 2004;80(6 Suppl):1710S–6S.PubMedGoogle Scholar
  4. 4.
    Heaney RP, Armas LA, Shary JR, et al. 25-hydroxylation of vitamin D3: relation to circulating vitamin D3 under various input conditions. Am J Clin Nutr. 2008;87(6):1738–42.PubMedGoogle Scholar
  5. 5.
    Gallagher JC, Sai AJ. Vitamin D insufficiency, deficiency, and bone health. J Clin Endocrinol Metab. 2010;95(6):2630–3.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Wang Y, Zhu J, DeLuca HF. Where is the vitamin D receptor? Arch Biochem Biophys. 2012;523(1):123–33.PubMedGoogle Scholar
  7. 7.
    Lips P. Vitamin D physiology. Prog Biophys Mol Biol. 2006;92(1):4–8.PubMedGoogle Scholar
  8. 8.
    Zhang R, Naughton DP. Vitamin D in health and disease: current perspectives. Nutr J. 2010;9:65.PubMedCentralPubMedGoogle Scholar
  9. 9.
    European Food Safety Authority (EFSA). Scientific opinion on the tolerable upper intake level of vitamin D. EFSA J. 2012;10(7):2813.Google Scholar
  10. 10.
    Vieth R. Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am J Clin Nutr. 1999;69(5):842–56.PubMedGoogle Scholar
  11. 11.
    Ozkan B, Hatun S, Bereket A. Vitamin D intoxication. Turk J Pediatr. 2012;54(2):93–8.PubMedGoogle Scholar
  12. 12.
    Ahmed MS, Shoker A. Vitamin D metabolites; protective versus toxic properties: molecular and cellular perspectives. Nephrol Rev. 2010;2(1):19–26.Google Scholar
  13. 13.
    Jones G. Pharmacokinetics of vitamin D toxicity. Am J Clin Nutr. 2008;88(2):582S–6S.PubMedGoogle Scholar
  14. 14.
    Prentice A, Goldberg GR, Schoenmakers I. Vitamin D across the lifecycle: physiology and biomarkers. Am J Clin Nutr. 2008;88(2):500S–6S.PubMedGoogle Scholar
  15. 15.
    Institute of Medicine (IOM). Dietary reference intakes for calcium and vitamin D. Washington DC: The National Academies Press; 2011.Google Scholar
  16. 16.
    Shoenfeld N, Amital H, Shoenfeld Y. The effect of melanism and vitamin D synthesis on the incidence of autoimmune disease. Nat Clin Pract Rheumatol. 2009;5(2):99–105.PubMedGoogle Scholar
  17. 17.
    Mithal A, Wahl DA, Bonjour J, et al. Global vitamin D status and determinants of hypovitaminosis D. Osteoporos Int. 2009;20(11):1807–20.PubMedGoogle Scholar
  18. 18.
    Gannage-Yared MH, Maalouf G, Khalife S, et al. Prevalence and predictors of vitamin D inadequacy amongst Lebanese osteoporotic women. Br J Nutr. 2009;101(4):487–91.PubMedGoogle Scholar
  19. 19.
    Diamond TH, Levy S, Smith A, et al. High bone turnover in Muslim women with vitamin D deficiency. Med J Aust. 2002;177(3):139–41.PubMedGoogle Scholar
  20. 20.
    Wortsman J, Matsuoka LY, Chen TC, et al. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72(3):690–3.PubMedGoogle Scholar
  21. 21.
    Holick MF. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr. 2004;80(6S):1678S–8S.Google Scholar
  22. 22.
    Marks R. Sunlight and health. BMJ. 1999;319(7216):1066.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Matsuoka LY, Ide L, Wortsman J, et al. Sunscreens suppress cutaneous vitamin D3 synthesis. J Clin Endocrinol Metab. 1987;64(6):1165–8.PubMedGoogle Scholar
  24. 24.
    Norval M, Wulf HC. Does chronic sunscreen use reduce vitamin D production to insufficient levels? Br J Dermatol. 2009;161(4):732–6.PubMedGoogle Scholar
  25. 25.
    Burnett ME, Wang SQ. Current sunscreen controversies: a critical review. Photodermatol Photoimmunol Photomed. 2011;27(2):58–67.PubMedGoogle Scholar
  26. 26.
    Webb AR, Kline L, Holick MF. Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J Clin Endocrinol Metab. 1988;67(2):373–8.PubMedGoogle Scholar
  27. 27.
    Huotari A, Herzig KH. Vitamin D and living in northern latitudes—an endemic risk area for vitamin D deficiency. Int J Circumpolar Health. 2008;67(2–3):164–78.PubMedGoogle Scholar
  28. 28.
    MacLaughlin J, Holick MF. Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest. 1985;76(4):1536–8.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Vieth R, Ladak Y, Walfish PG. Age-related changes in the 25-hydroxyvitamin D versus parathyroid hormone relationship suggest a different reason why older adults require more vitamin D. J Clin Endocrinol Metab. 2003;88(1):185–91.PubMedGoogle Scholar
  30. 30.
    Engelman CD. Vitamin D recommendations: the saga continues. J Clin Endocrinol Metab. 2011;96(10):3065–6.PubMedGoogle Scholar
  31. 31.
    Pramyothin P, Holick MF. Vitamin D supplementation: guidelines and evidence for subclinical deficiency. Curr Opin Gastroenterol. 2012;28(2):139–50.PubMedGoogle Scholar
  32. 32.
    Pearce SH, Cheetham TD. Diagnosis and management of vitamin D deficiency. BMJ. 2010;11(340):b5664.Google Scholar
  33. 33.
    Heaney RP. Assessing vitamin D status. Curr Opin Clin Nutr Metab Care. 2011;14(5):440–4.PubMedGoogle Scholar
  34. 34.
    Close GL, Fraser WD. Vitamin D supplementation for athletes: too much of a good thing? Sport Exercise Scientist. 2012;33:24–5.Google Scholar
  35. 35.
    Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011;96(1):53–8.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Hill KM, Jonnalagadda SS, Albertson AM, et al. Top food sources contributing to vitamin D intake and the association of ready-to-eat cereal and breakfast consumption habits to vitamin D intake in Canadians and United States Americans. J Food Sci. 2012;77(8):170–5.Google Scholar
  37. 37.
    Ogan D, Pritchett K. Vitamin D and the athlete: risks, recommendations, and benefits. Nutrients. 2013;5(6):1856–68.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Lovell G. Vitamin D status of females in an elite gymnastics program. Clin J Sport Med. 2008;18(2):159–61.PubMedGoogle Scholar
  39. 39.
    Close GL, Russell J, Cobley JN, et al. Assessment of vitamin D concentration in non-supplemented professional athletes and healthy adults during the winter months in the UK: implications for skeletal muscle function. J Sports Sci. 2013;31(4):344–53.PubMedGoogle Scholar
  40. 40.
    Kopec A, Solarz K, Majda F, et al. An evaluation of the levels of vitamin D and bone turnover markers after the summer and winter periods in Polish professional soccer players. J Hum Kinet. 2013;8(38):135–40.Google Scholar
  41. 41.
    Lanteri P, Lombardi G, Colombini A, et al. Vitamin D in exercise: physiologic and analytical concerns. Clin Chim Acta. 2013;415:45–53.PubMedGoogle Scholar
  42. 42.
    Constantini NW, Arieli R, Chodick G, et al. High prevalence of vitamin D insufficiency in athletes and dancers. Clin J Sport Med. 2010;20(5):368–71.PubMedGoogle Scholar
  43. 43.
    Hamilton B, Grantham J, Racinais S, et al. Vitamin D deficiency is endemic in Middle Eastern sportsmen. Public Health Nutr. 2010;13(10):1528–34.PubMedGoogle Scholar
  44. 44.
    Naeem Z. Vitamin D deficiency—an ignored epidemic. Int J Health Sci. 2010;4(1):V-VI.Google Scholar
  45. 45.
    Lai JK, Lucas RM, Banks E, et al. Variability in vitamin D assays impairs clinical assessment of vitamin D status. Intern Med J. 2012;42(41):43–50.PubMedGoogle Scholar
  46. 46.
    Shah I, James R, Barker J, et al. Misleading measures in vitamin D analysis: a novel LC-MS/MS assay to account for epimers and isobars. Nutr J. 2011;10:46.Google Scholar
  47. 47.
    Wallace AM, Gibson S, de la Hunty A, et al. Measurement of 25-hydroxyvitamin D in the clinical laboratory: current procedures, performance characteristics and limitations. Steroids. 2010;75(7):477–88.PubMedGoogle Scholar
  48. 48.
    Lai JK, Lucas RM, Clements MS, et al. Assessing vitamin D status: pitfalls for the unwary. Mol Nutr Food Res. 2010;54(8):1062–71.PubMedGoogle Scholar
  49. 49.
    Snellman G, Melhus H, Gedeborg R, et al. Determining vitamin D status: a comparison between commercially available assays. PLoS One. 2010;5(7):e11555.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Bolek-Berquist J, Elliott ME, Gangnon RE, et al. Use of a questionnaire to assess vitamin D status in young adults. Public Health Nutr. 2009;12(2):236–43.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Carter GD. 25-hydroxyvitamin D assays: the quest for accuracy. Clin Chem. 2009;55(7):1300–2.PubMedGoogle Scholar
  52. 52.
    Taylor C, Lamparello B, Kruczek K, et al. Validation of a food frequency questionnaire for determining calcium and vitamin D intake by adolescent girls with anorexia nervosa. J Am Diet Assoc. 2009;109(3):479–85.PubMedCentralPubMedGoogle Scholar
  53. 53.
    Hebden L, Kostan E, O’Leary F, et al. Validity and reproducibility of a food frequency questionnaire as a measure of recent dietary intake in young adults. PloS one. 2013;e75156.Google Scholar
  54. 54.
    Chen TC, Shao Q, Heath H, et al. An update on the vitamin D content of fortified milk from the United States and Canada. N Engl J Med. 1993;329(20):1507.PubMedGoogle Scholar
  55. 55.
    Chen TC, Chimeh F, Lu Z, et al. Factors that influence the cutaneous synthesis and dietary sources of vitamin D. Arch Biochem Biophys. 2007;460(2):213–7.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Cashman KD, Hill TR, Lucey AJ, et al. Estimation of the dietary requirement for vitamin D in healthy adults. Am J Clin Nutr. 2008;88(6):1535–42.PubMedGoogle Scholar
  57. 57.
    Kulie T, Groff A, Redmer J, et al. Vitamin D: an evidence-based review. J Am Board Fam Med. 2009;22(6):698–706.PubMedGoogle Scholar
  58. 58.
    Christodoulou S, Goula T, Ververidis A, et al. Vitamin D and bone disease. BioMed Res Int. 2013; 396541.Google Scholar
  59. 59.
    Wood RJ, Tchack L, Taparia S. 1,25-dihydroxyvitamin D3 increases the expression of the CaT1 epithelial calcium channel in the caco-2 human intestinal cell line. BMC Physiol. 2001;1:11.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Wasserman RH. Vitamin D and the dual processes of intestinal calcium absorption. J Nutr. 2004;134(11):3137–9.PubMedGoogle Scholar
  61. 61.
    Christakos S. Recent advances in our understanding of 1,25-dihydroxyvitamin D(3) regulation of intestinal calcium absorption. Arch Biochem Biophys. 2012;523(1):73–6.PubMedCentralPubMedGoogle Scholar
  62. 62.
    Christakos S, Dhawan P, Porta A, et al. Vitamin D and intestinal calcium absorption. Mol Cell Endocrinol. 2011;347(1–2):25–9.PubMedCentralPubMedGoogle Scholar
  63. 63.
    Wacker M, Holick MF. Vitamin D - effects on skeletal and extraskeletal health and the need for supplementation. Nutrients. 2013;5(1):111–48.PubMedCentralPubMedGoogle Scholar
  64. 64.
    Pasco JA, Henry MJ, Kotowicz MA, et al. Seasonal periodicity of serum vitamin D and parathyroid hormone, bone resorption, and fractures: the Geelong osteoporosis study. J Bone Miner Res. 2004;19(5):752–8.PubMedGoogle Scholar
  65. 65.
    Villareal DT, Civitelli R, Chines A, et al. Subclinical vitamin D deficiency in postmenopausal women with low vertebral bone mass. J Clin Endocrinol Metab. 1991;72(3):628–34.PubMedGoogle Scholar
  66. 66.
    Holick MF. The role of vitamin D for bone health and fracture prevention. Curr Osteoporos Rep. 2006;4(3):96–102.PubMedGoogle Scholar
  67. 67.
    Wagner CL, Greer FR. Prevention of rickets and vitamin D deficiency in infants, children, and adolescents. Pediatrics. 2008;122(5):1142–52.PubMedGoogle Scholar
  68. 68.
    Shaw NJ, Mughal MZ. Vitamin D and child health part 1 (skeletal aspects). Arch Dis Child. 2013;98(5):363–7.PubMedGoogle Scholar
  69. 69.
    Kremer R, Campbell PP, Reinhardt T, et al. Vitamin D status and its relationship to body fat, final height, and peak bone mass in young women. J Clin Endocrinol Metab. 2009;94(1):67–73.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Pekkinen M, Viljakainen H, Saarnio E, et al. Vitamin D is a major determinant of bone mineral density at school age. PLoS One. 2012;e40090.Google Scholar
  71. 71.
    Jones BH, Thacker SB, Gilchrist J, et al. Prevention of lower extremity stress fractures in athletes and soldiers: a systematic review. Epidemiol Rev. 2002;24(2):228–47.PubMedGoogle Scholar
  72. 72.
    Iwamoto J, Sato Y, Takeda T, et al. Analysis of stress fractures in athletes based on our clinical experience. World J Orthop. 2011;2(1):7–12.PubMedCentralPubMedGoogle Scholar
  73. 73.
    Bennell KL, Malcolm SA, Thomas SA, et al. Risk factors for stress fractures in track and field athletes. A twelve-month prospective study. Am J Sports Med. 1996;24(6):810–8.PubMedGoogle Scholar
  74. 74.
    Haydari M, Rahnama N, Khayambashi K, et al. Association between bone mass and injuries in professional jumpers. Br J Sports Med. 2010;44:i5.Google Scholar
  75. 75.
    Pope CG, Pope HG, Menard W, et al. Clinical features of muscle dysmorphia among males with body dysmorphic disorder. Body Image. 2005;2(4):395–400.PubMedCentralPubMedGoogle Scholar
  76. 76.
    Baum A. Eating disorders in the male athlete. Sports Med. 2006;36(1):1–6.PubMedGoogle Scholar
  77. 77.
    Chen YT, Tenforde AS, Fredericson M. Update on stress fractures in female athletes: epidemiology, treatment, and prevention. Curr Rev Musculoskelet Med. 2013;6(2):173–81.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Marquez S, Molinero O. Energy availability, menstrual dysfunction and bone health in sports; an overview of the female athlete triad. Nutr Hosp. 2013;28(4):1010–7.PubMedGoogle Scholar
  79. 79.
    Nieves JW, Melsop K, Curtis M, et al. Nutritional factors that influence change in bone density and stress fracture risk among young female cross-country runners. PM R. 2010;2(8):740–50.PubMedGoogle Scholar
  80. 80.
    Lewis RM, Redzic M, Thomas DT. The effects of season-long vitamin D supplementation on collegiate swimmers and divers. Int J Sport Nutr Exerc Metab. 2013;23(5):431–40.Google Scholar
  81. 81.
    Bellows M, Tanguay J, Crouse SF, et al. In: Vitamin D deficiency in TAMU female basketball players and supplement effectiveness. Int J Exerc Sci: Conference proceedings; 2013.Google Scholar
  82. 82.
    Trivedi DP, Doll R, Khaw KT. Effect of four monthly oral vitamin D3 (cholecalciferol) supplementation on fractures and mortality in men and women living in the community: randomised double blind controlled trial. BMJ. 2003;326(7387):469.PubMedCentralPubMedGoogle Scholar
  83. 83.
    Winzenberg T, Powell S, Shaw KA, et al. Effects of vitamin D supplementation on bone density in healthy children: systematic review and meta-analysis. BMJ. 2011;342:c7254.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Wesner ML. Nutrient effects on stress reaction to bone. Can Fam Physician. 2012;58(11):1226–30.PubMedCentralPubMedGoogle Scholar
  85. 85.
    Looker AC, Mussolino ME. Serum 25-hydroxyvitamin D and hip fracture risk in older U.S. white adults. J Bone Miner Res. 2008;23(1):143–50.PubMedGoogle Scholar
  86. 86.
    Thacher TD, Clarke BL. Vitamin D insufficiency. Mayo Clin Proc. 2011;86(1):50–60.PubMedCentralPubMedGoogle Scholar
  87. 87.
    Lappe J, Cullen D, Haynatzki G, et al. Calcium and vitamin D supplementation decreases incidence of stress fractures in female navy recruits. J Bone Miner Res. 2008;23(5):741–9.PubMedGoogle Scholar
  88. 88.
    von Domarus C, Brown J, Barvencik F, et al. How much vitamin D do we need for skeletal health? Clin Orthop Relat Res. 2011;469(11):3127–33.Google Scholar
  89. 89.
    Shuler FD, Wingate MK, Moore GH, et al. Sports health benefits of vitamin D. Sports Health. 2012;4(6):496–501.PubMedCentralPubMedGoogle Scholar
  90. 90.
    Girgis CM, Clifton-Bligh RJ, Hamrick MW, et al. The roles of vitamin D in skeletal muscle: form, function, and metabolism. Endocr Rev. 2013;34(1):33–83.PubMedGoogle Scholar
  91. 91.
    Pfeifer M, Begerow B, Minne HW. Vitamin D and muscle function. Osteoporos Int. 2002;13(3):187–94.PubMedGoogle Scholar
  92. 92.
    Willis KS, Peterson NJ, Larson-Meyer DE. Should we be concerned about the vitamin D status of athletes? Int J Sport Nutr Exerc Metab. 2008;18(2):204–24.PubMedGoogle Scholar
  93. 93.
    Rejnmark L. Effects of vitamin D on muscle function and performance: a review of evidence from randomized controlled trials. Ther Adv Chronic Dis. 2011;2(1):25–37.PubMedCentralPubMedGoogle Scholar
  94. 94.
    Girgis CM, Clifton-Bligh RJ, Turner N, et al. Effects of vitamin D in skeletal muscle: falls, strength, athletic performance and insulin sensitivity. Clin Endocrinol (Oxf). 2013;80(2):169–81.Google Scholar
  95. 95.
    Ward KA, Das G, Berry JL, et al. Vitamin D status and muscle function in post-menarchal adolescent girls. J Clin Endocrinol Metab. 2009;94(2):559–63.PubMedGoogle Scholar
  96. 96.
    Marantes I, Achenbach SJ, Atkinson EJ, et al. Is vitamin D a determinant of muscle mass and strength? J Bone Miner Res. 2011;26(12):2860–71.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Barker T, Henriksen VT, Martins TB, et al. Higher serum 25-hydroxyvitamin D concentrations associate with a faster recovery of skeletal muscle strength after muscular injury. Nutrients. 2013;5(4):1253–75.PubMedCentralPubMedGoogle Scholar
  98. 98.
    Barker T, Martins TB, Hill HR, et al. Circulating pro-inflammatory cytokines are elevated and peak power output correlates with 25-hydroxyvitamin D in vitamin D insufficient adults. Eur J Appl Physiol. 2013;113(6):1523–34.PubMedGoogle Scholar
  99. 99.
    Close GL, Leckey J, Patterson M, et al. The effects of vitamin D(3) supplementation on serum total 25[OH]D concentration and physical performance: a randomised dose-response study. Br J Sports Med. 2013;47(11):692–6.PubMedGoogle Scholar
  100. 100.
    Barker T, Martins TB, Hill HR, et al. Vitamin D sufficiency associates with an increase in anti-inflammatory cytokines after intense exercise in humans. Cytokine. 2014;65(2):134–7.PubMedGoogle Scholar
  101. 101.
    Hamilton B, Whiteley R, Farooq A, et al. Vitamin D concentration in 342 professional football players and association with lower limb isokinetic function. J Sci Med Sport. 2014;17(1):139–43.PubMedGoogle Scholar
  102. 102.
    Wyon MA, Koutedakis Y, Wolman R, et al. The influence of winter vitamin D supplementation on muscle function and injury occurrence in elite ballet dancers: a controlled study. J Sci Med Sport. 2014;17(1):8–12.PubMedGoogle Scholar
  103. 103.
    Ceglia L. Vitamin D and skeletal muscle tissue and function. Mol Aspects Med. 2008;29(6):407–14.PubMedGoogle Scholar
  104. 104.
    Haussler MR, Jurutka PW, Mizwicki M, et al. Vitamin D receptor (VDR)-mediated actions of 1alpha,25(OH)(2)vitamin D(3): genomic and non-genomic mechanisms. Best Pract Res Clin Endocrinol Metab. 2011;25(4):543–59.PubMedGoogle Scholar
  105. 105.
    Boland R, Norman A, Ritz E, et al. Presence of a 1,25-dihydroxy-vitamin D3 receptor in chick skeletal muscle myoblasts. Biochem Biophys Res Commun. 1985;128(1):305–11.PubMedGoogle Scholar
  106. 106.
    Simpson RU, Thomas GA, Arnold AJ. Identification of 1,25-dihydroxyvitamin D3 receptors and activities in muscle. J Biol Chem. 1985;260(15):8882–91.PubMedGoogle Scholar
  107. 107.
    Costa EM, Blau HM, Feldman D. 1,25-dihydroxyvitamin D3 receptors and hormonal responses in cloned human skeletal muscle cells. Endocrinology. 1986;119(5):2214–20.PubMedGoogle Scholar
  108. 108.
    Bischoff HA, Borchers M, Gudat F, et al. In situ detection of 1,25-dihydroxyvitamin D3 receptor in human skeletal muscle tissue. Histochem J. 2001;33(1):19–24.PubMedGoogle Scholar
  109. 109.
    Bischoff-Ferrari HA, Borchers M, Gudat F, et al. Vitamin D receptor expression in human muscle tissue decreases with age. J Bone Miner Res. 2004;19(2):265–9.PubMedGoogle Scholar
  110. 110.
    Wang Y, Deluca HF. Is the vitamin D receptor found in muscle? Endocrinology. 2011;152(2):354–63.PubMedGoogle Scholar
  111. 111.
    Girgis CM, Mokbel N, Minn Cha K, et al. The vitamin D receptor (VDR) is expressed in skeletal muscle of male mice and modulates 25-hydroxyvitamin D (25OHD) uptake in myofibers. Endocrinology. 2014; Epub ahead of print.Google Scholar
  112. 112.
    de Boland AR, Boland RL. Rapid changes in skeletal muscle calcium uptake induced in vitro by 1,25-dihydroxyvitamin D3 are suppressed by calcium channel blockers. Endocrinology. 1987;120(5):1858–64.PubMedGoogle Scholar
  113. 113.
    Selles J, Boland R. Rapid stimulation of calcium uptake and protein phosphorylation in isolated cardiac muscle by 1,25-dihydroxyvitamin D3. Mol Cell Endocrinol. 1991;77(1–3):67–73.PubMedGoogle Scholar
  114. 114.
    Sato Y, Iwamoto J, Kanoko T, et al. Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: a randomized controlled trial. Cerebrovasc Dis. 2005;20(3):187–92.PubMedGoogle Scholar
  115. 115.
    Girgis CM, Clifton-Bligh RJ, Mokbel N, et al. Vitamin D signaling regulates proliferation, differentiation, and myotube size in C2C12 skeletal muscle cells. Endocrinology. 2014;155(2):347–57.PubMedGoogle Scholar
  116. 116.
    Bhat M, Kalam R, Qadri SS, et al. Vitamin D deficiency-induced muscle wasting occurs through the ubiquitin proteasome pathway and is partially corrected by calcium in male rats. Endocrinology. 2013;154(11):4018–29.PubMedGoogle Scholar
  117. 117.
    Kottler ML. Is vitamin D a key factor in muscle health? Endocrinology. 2013;154(11):3963–4.PubMedGoogle Scholar
  118. 118.
    Foo LH, Zhang Q, Zhu K, et al. Low vitamin D status has an adverse influence on bone mass, bone turnover, and muscle strength in chinese adolescent girls. J Nutr. 2009;139(5):1002–7.PubMedGoogle Scholar
  119. 119.
    Gomez-Alonso C, Naves-Diaz ML, Fernandez-Martin JL, et al. Vitamin D status and secondary hyperparathyroidism: the importance of 25-hydroxyvitamin D cut-off levels. Kidney Int Suppl. 2003;85:S44–8.PubMedGoogle Scholar
  120. 120.
    Miura A, Sato H, Whipp BJ, et al. The effect of glycogen depletion on the curvature constant parameter of the power-duration curve for cycle ergometry. Ergonomics. 2000;43(1):133–41.PubMedGoogle Scholar
  121. 121.
    Jensen MD. Fatty acid oxidation in human skeletal muscle. J Clin Invest. 2002;110(11):1607–9.PubMedCentralPubMedGoogle Scholar
  122. 122.
    Smogorzewski M, Piskorska G, Borum PR, et al. Chronic renal failure, parathyroid hormone and fatty acids oxidation in skeletal muscle. Kidney Int. 1988;33(2):555–60.PubMedGoogle Scholar
  123. 123.
    Sinha A, Hollingsworth KG, Ball S, et al. Improving the vitamin D status of vitamin D deficient adults is associated with improved mitochondrial oxidative function in skeletal muscle. J Clin Endocrinol Metab. 2013;98(3):E509–13.PubMedGoogle Scholar
  124. 124.
    Bouillon R, Verstuyf A. Vitamin D, mitochondria, and muscle. J Clin Endocrinol Metab. 2013;98(3):961–3.PubMedGoogle Scholar
  125. 125.
    Tague SE, Smith PG. Vitamin D receptor and enzyme expression in dorsal root ganglia of adult female rats: modulation by ovarian hormones. J Chem Neuroanat. 2011;41(1):1–12.PubMedCentralPubMedGoogle Scholar
  126. 126.
    Dubin AE, Patapoutian A. Nociceptors: the sensors of the pain pathway. J Clin Invest. 2010;120(11):3760–72.PubMedCentralPubMedGoogle Scholar
  127. 127.
    Tague SE, Clarke GL, Winter MK, et al. Vitamin D deficiency promotes skeletal muscle hypersensitivity and sensory hyperinnervation. J Neurosci. 2011;31(39):13728–38.PubMedCentralPubMedGoogle Scholar
  128. 128.
    Saleh FN, Schirmer H, Sundsfjord J, et al. Parathyroid hormone and left ventricular hypertrophy. Eur Heart J. 2003;24(22):2054–60.PubMedGoogle Scholar
  129. 129.
    McCarty MF. Nutritional modulation of parathyroid hormone secretion may influence risk for left ventricular hypertrophy. Med Hypotheses. 2005;64(5):1015–21.PubMedGoogle Scholar
  130. 130.
    Westerblad H, Allen DG, Lannergren J. Muscle fatigue: lactic acid or inorganic phosphate the major cause? News Physiol Sci. 2002;17:17–21.PubMedGoogle Scholar
  131. 131.
    Gorostiaga EM, Navarro-Amezqueta I, Calbet JA, et al. Energy metabolism during repeated sets of leg press exercise leading to failure or not. PLoS One. 2012;7(7):e40621.PubMedCentralPubMedGoogle Scholar
  132. 132.
    van Ballegooijen AJ, Visser M, Cotch MF, et al. Serum vitamin D and parathyroid hormone in relation to cardiac structure and function: the ICELAND-MI substudy of AGES-Reykjavik. J Clin Endocrinol Metab. 2013;98(6):2544–52.PubMedCentralPubMedGoogle Scholar
  133. 133.
    Baggish AL, Wood MJ. Athlete’s heart and cardiovascular care of the athlete: scientific and clinical update. Circulation. 2011;123(23):2723–5.PubMedGoogle Scholar
  134. 134.
    Katholi RE, Couri DM. Left ventricular hypertrophy: major risk factor in patients with hypertension: update and practical clinical applications. Int J Hypertens. 2011;2011:495349.PubMedCentralPubMedGoogle Scholar
  135. 135.
    Allison RJ, Close GL, Farooq A, et al. Severely vitamin D-deficient athletes present smaller hearts than sufficient athletes. Eur J Prev Cardiol. 2014 (Epub ahead of print).Google Scholar
  136. 136.
    Chinellato I, Piazza M, Sandri M, et al. Vitamin D serum levels and markers of asthma control in Italian children. J Pediatr. 2011;158(3):437–41.PubMedGoogle Scholar
  137. 137.
    Black PN, Scragg R. Relationship between serum 25-hydroxyvitamin D and pulmonary function in the third National Health and Nutrition Examination Survey. Chest. 2005;128(6):3792–8.PubMedGoogle Scholar
  138. 138.
    Rehan VK, Torday JS, Peleg S, et al. 1Alpha,25-dihydroxy-3-epi-vitamin D3, a natural metabolite of 1alpha,25-dihydroxy vitamin D3: production and biological activity studies in pulmonary alveolar type II cells. Mol Genet Metab. 2002;76(1):46–56.PubMedGoogle Scholar
  139. 139.
    Vedala SR, Paul N, Mane AB. Difference in pulmonary function test among the athletic and sedentary population. Natl J Physiol Pharm Pharmacol. 2013;3(2):118–23.Google Scholar
  140. 140.
    Ardestani A, Parker B, Mathur S, et al. Relation of vitamin D level to maximal oxygen uptake in adults. Am J Cardiol. 2011;107(8):1246–9.PubMedGoogle Scholar
  141. 141.
    Mowry DA, Costello MM, Heelan KA. Association among cardiorespiratory fitness, body fat, and bone marker measurements in healthy young females. J Am Osteopath Assoc. 2009;109(10):534–9.PubMedGoogle Scholar
  142. 142.
    Gregory SM, Parker BA, Capizzi JA, et al. Changes in vitamin D are not associated with changes in cardiorespiratory fitness. Clin Med Res. 2013;2(4):68–72.Google Scholar
  143. 143.
    Forney LA, Earnest CP, Henagan TM, et al. Vitamin D status, body composition, and fitness measures in college-aged students. J Strength Cond Res. 2014;28(3):814–24.PubMedGoogle Scholar
  144. 144.
    Alessio HM, Hagerman AE, Fulkerson BK, et al. Generation of reactive oxygen species after exhaustive aerobic and isometric exercise. Med Sci Sports Exerc. 2000;32(9):1576–81.PubMedGoogle Scholar
  145. 145.
    Gleeson M. Immune function in sport and exercise. J Appl Physiol. 2007;103(2):693–9.PubMedGoogle Scholar
  146. 146.
    Sureda A, Ferrer MD, Tauler P, et al. Effects of exercise intensity on lymphocyte H2O2 production and antioxidant defences in soccer players. Br J Sports Med. 2009;43(3):186–90.PubMedGoogle Scholar
  147. 147.
    Kakanis MW, Peake J, Brenu EW, et al. The open window of susceptibility to infection after acute exercise in healthy young male elite athletes. Exerc Immunol Rev. 2010;16:119–37.PubMedGoogle Scholar
  148. 148.
    Shephard RJ, Shek PN. Effects of exercise and training on natural killer cell counts and cytolytic activity: a meta-analysis. Sports Med. 1999;28(3):177–95.PubMedGoogle Scholar
  149. 149.
    Walsh NP, Gleeson M, Shephard RJ, et al. Position statement. part one: immune function and exercise. Exerc Immunol Rev. 2011;17:6–63.PubMedGoogle Scholar
  150. 150.
    Schleithoff SS, Zittermann A, Tenderich G, et al. Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr. 2006;83(4):754–9.PubMedGoogle Scholar
  151. 151.
    Peterson CA, Heffernan ME. Serum tumor necrosis factor-alpha concentrations are negatively correlated with serum 25(OH)D concentrations in healthy women. J Inflamm. 2008;24(5):10.Google Scholar
  152. 152.
    Adams JS, Ren S, Liu PT, et al. Vitamin D-directed rheostatic regulation of monocyte antibacterial responses. J Immunol. 2009;182(7):4289–95.PubMedCentralPubMedGoogle Scholar
  153. 153.
    Yusupov E, Li-Ng M, Pollack S, et al. Vitamin D and serum cytokines in a randomized clinical trial. Int J Endocrinol. 2010;2010:pii: 305054.Google Scholar
  154. 154.
    Barnes MS, Horigan G, Cashman KD, et al. Maintenance of wintertime vitamin D status with cholecalciferol supplementation is not associated with alterations in serum cytokine concentrations among apparently healthy younger or older adults. J Nutr. 2011;141(3):476–81.PubMedGoogle Scholar
  155. 155.
    Khoo AL, Chai LY, Koenen HJ, et al. Regulation of cytokine responses by seasonality of vitamin D status in healthy individuals. Clin Exp Immunol. 2011;164(1):72–9.PubMedCentralPubMedGoogle Scholar
  156. 156.
    Barker T, Martins TB, Hill HR, et al. Different doses of supplemental vitamin D maintain interleukin-5 without altering skeletal muscle strength: a randomized, double-blind, placebo-controlled study in vitamin D sufficient adults. Nutr Metab (Lond). 2012;9(1):16.Google Scholar
  157. 157.
    Willis KS, Smith DT, Broughton KS, et al. Vitamin D status and biomarkers of inflammation in runners. Open Access J Sports Med. 2012;3:35–42.PubMedCentralPubMedGoogle Scholar
  158. 158.
    He C, Handzlik M, Fraser WD, et al. Influence of vitamin D status on respiratory infection incidence and immune function during 4 months of winter training in endurance sport athletes. Exerc Immunol Rev. 2013;19:86–101.PubMedGoogle Scholar
  159. 159.
    He C, Fraser WD, Gleeson M. Influence of vitamin D metabolites on plasma cytokine concentrations in endurance sport athletes and on multiantigen stimulated cytokine production by whole blood and peripheral blood mononuclear cell cultures. ISRN Nutr. 2014;2014:820524.PubMedCentralPubMedGoogle Scholar
  160. 160.
    van Etten E, Mathieu C. Immunoregulation by 1,25-dihydroxyvitamin D3: basic concepts. J Steroid Biochem Mol Biol. 2005;97(1–2):93–101.PubMedGoogle Scholar
  161. 161.
    Dixon BM, Barker T, McKinnon T, et al. Positive correlation between circulating cathelicidin antimicrobial peptide (hCAP18/LL-37) and 25-hydroxyvitamin D levels in healthy adults. BMC Res Notes. 2012;24(5):575.Google Scholar
  162. 162.
    Autier P, Boniol M, Pizot C, et al. Vitamin D status and ill health: a systematic review. Lancet Diab Endo. 2014;2(1):76–89.Google Scholar
  163. 163.
    Deluca HF, Cantorna MT. Vitamin D: its role and uses in immunology. FASEB J. 2001;15(14):2579–85.PubMedGoogle Scholar
  164. 164.
    Christakos S, Hewison M, Gardner DG, et al. Vitamin D: beyond bone. Ann N Y Acad Sci. 2013;1287:45–58.PubMedCentralPubMedGoogle Scholar
  165. 165.
    Shab-Bidar S, Neyestani TR, Djazayery A, et al. Improvement of vitamin D status resulted in amelioration of biomarkers of systemic inflammation in the subjects with type 2 diabetes. Diabetes Metab Res Rev. 2012;28(5):424–30.PubMedGoogle Scholar
  166. 166.
    Zhang Y, Leung DY, Richers BN, et al. Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1. J Immunol. 2012;188(5):2127–35.PubMedCentralPubMedGoogle Scholar
  167. 167.
    Larson-Meyer DE, Willis KS. Vitamin D and athletes. Curr Sports Med Rep. 2010;9(4):220–6.PubMedGoogle Scholar
  168. 168.
    Mastorakos G, Pavlatou M, Diamanti-Kandarakis E, et al. Exercise and the stress system. Hormones. 2005;4(2):73–89.PubMedGoogle Scholar
  169. 169.
    Calle MC, Fernandez ML. Effects of resistance training on the inflammatory response. Nutr Res Pract. 2010;4(4):259–69.PubMedCentralPubMedGoogle Scholar
  170. 170.
    Cantorna MT, Zhu Y, Froicu M, et al. Vitamin D status, 1,25-dihydroxyvitamin D3, and the immune system. Am J Clin Nutr. 2004;80(6 Suppl):1717S–20S.PubMedGoogle Scholar
  171. 171.
    Hewison M. Vitamin D and the immune system: new perspectives on an old theme. Endocrinol Metab Clin North Am. 2010;39(2):365–79.PubMedCentralPubMedGoogle Scholar
  172. 172.
    Jeffery LE, Wood AM, Qureshi OS, et al. Availability of 25-hydroxyvitamin D(3) to APCs controls the balance between regulatory and inflammatory T cell responses. J Immunol. 2012;189(11):5155–64.PubMedCentralPubMedGoogle Scholar
  173. 173.
    Hewison M, Freeman L, Hughes SV, et al. Differential regulation of vitamin D receptor and its ligand in human monocyte-derived dendritic cells. J Immunol. 2003;170(11):5382–90.PubMedGoogle Scholar
  174. 174.
    Prietl B, Pilz S, Wolf M, et al. Vitamin D supplementation and regulatory T cells in apparently healthy subjects: vitamin D treatment for autoimmune diseases? Isr Med Assoc J. 2010;12(3):136–9.PubMedGoogle Scholar
  175. 175.
    Bock G, Prietl B, Mader JK, et al. The effect of vitamin D supplementation on peripheral regulatory T cells and beta cell function in healthy humans: a randomized controlled trial. Diabetes Metab Res Rev. 2011;27(8):942–5.PubMedGoogle Scholar
  176. 176.
    Peterson RA. Regulatory T-cells: diverse phenotypes integral to immune homeostasis and suppression. Toxicol Pathol. 2012;40(2):186–204.PubMedGoogle Scholar
  177. 177.
    Spence L, Brown WJ, Pyne DB, et al. Incidence, etiology, and symptomatology of upper respiratory illness in elite athletes. Med Sci Sports Exerc. 2007;39(4):577–86.PubMedGoogle Scholar
  178. 178.
    White JH. Vitamin D signaling, infectious diseases, and regulation of innate immunity. Infect Immun. 2008;76(9):3837–43.PubMedCentralPubMedGoogle Scholar
  179. 179.
    Di Nardo A, Vitiello A, Gallo RL. Cutting edge: mast cell antimicrobial activity is mediated by expression of cathelicidin antimicrobial peptide. J Immunol. 2003;170(5):2274–8.PubMedGoogle Scholar
  180. 180.
    Guo C, Sinnott B, Niu B, et al. Synergistic induction of human cathelicidin antimicrobial peptide gene expression by vitamin D and stilbenoids. Mol Nutr Food Res. 2014;58(3):528–36.PubMedGoogle Scholar
  181. 181.
    Vandamme D, Landuyt B, Luyten W, et al. A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell Immunol. 2012;280(1):22–35.PubMedGoogle Scholar
  182. 182.
    Liu PT, Stenger S, Li H, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311(5768):1770–3.PubMedGoogle Scholar
  183. 183.
    Shirakawa AK, Nagakubo D, Hieshima K, et al. 1,25-dihydroxyvitamin D3 induces CCR10 expression in terminally differentiating human B cells. J Immunol. 2008;180(5):2786–95.PubMedGoogle Scholar
  184. 184.
    Xiong N, Fu Y, Hu S, et al. CCR10 and its ligands in regulation of epithelial immunity and diseases. Protein Cell. 2012;3(8):571–80.PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Joshua J. Todd
    • 1
  • L. Kirsty Pourshahidi
    • 1
  • Emeir M. McSorley
    • 1
  • Sharon M. Madigan
    • 2
  • Pamela J. Magee
    • 1
  1. 1.Northern Ireland Centre for Food and HealthUniversity of UlsterColeraineNorthern Ireland, UK
  2. 2.Irish Institute of SportDublinIreland

Personalised recommendations