Sports Medicine

, Volume 44, Issue 11, pp 1505–1518 | Cite as

Physical Activity, Air Pollution and the Brain

  • Inge Bos
  • Patrick De Boever
  • Luc Int Panis
  • Romain MeeusenEmail author
Review Article


This review introduces an emerging research field that is focused on studying the effect of exposure to air pollution during exercise on cognition, with specific attention to the impact on concentrations of brain-derived neurotrophic factor (BDNF) and inflammatory markers. It has been repeatedly demonstrated that regular physical activity enhances cognition, and evidence suggests that BDNF, a neurotrophin, plays a key role in the mechanism. Today, however, air pollution is an environmental problem worldwide and the high traffic density, especially in urban environments and cities, is a major cause of this problem. During exercise, the intake of air pollution increases considerably due to an increased ventilation rate and particle deposition fraction. Recently, air pollution exposure has been linked to adverse effects on the brain such as cognitive decline and neuropathology. Inflammation and oxidative stress seem to play an important role in inducing these health effects. We believe that there is a need to investigate whether the well-known benefits of regular physical activity on the brain also apply when physical activity is performed in polluted air. We also report our findings about exercising in an environment with ambient levels of air pollutants. Based on the latter results, we hypothesize that traffic-related air pollution exposure during exercise may inhibit the positive effect of exercise on cognition.


BDNF Level Nucleus Tractus Solitarius BDNF Expression Neural Plasticity Vagal Nerve Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Inge Bos was supported by a PhD fellowship of the Flemish Institute for Technological Research (VITO). Inge Bos, Patrick De Boever, Luc Int Panis and Romain Meeusen have no conflicts of interest that are directly relevant to the content of this review. All authors made substantial contributions to this manuscript from inception to submission.

Supplementary material

40279_2014_222_MOESM1_ESM.docx (45 kb)
Supplementary material 1 (DOCX 45 kb)
40279_2014_222_MOESM2_ESM.docx (27 kb)
Supplementary material 2 (DOCX 28 kb)
40279_2014_222_MOESM3_ESM.docx (47 kb)
Supplementary material 3 (DOCX 48 kb)


  1. 1.
    de Geus B, Van Hoof E, Aerts I, et al. Cycling to work: influence on indexes of health in untrained men and women in Flanders. Coronary heart disease and quality of life. Scand J Med Sci Sports. 2008;18(4):498–510. doi: 10.1111/j.1600-0838.2007.00729.x.PubMedGoogle Scholar
  2. 2.
    Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: the evidence. CMAJ. 2006;174(6):801–9. doi: 10.1503/cmaj.051351.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Macera CA, Hootman JM, Sniezek JE. Major public health benefits of physical activity. Arthritis Rheum. 2003;49(1):122–8. doi: 10.1002/art.10907.PubMedGoogle Scholar
  4. 4.
    US DHHS. Physical activity and health: a report of the Surgeon General. Atlanta: US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion; 1996.Google Scholar
  5. 5.
    Masley S, Roetzheim R, Gualtieri T. Aerobic exercise enhances cognitive flexibility. J Clin Psychol Med Settings. 2009;16(2):186–93. doi: 10.1007/s10880-009-9159-6.PubMedGoogle Scholar
  6. 6.
    Colcombe S, Kramer AF. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci. 2003;14(2):125–30.PubMedGoogle Scholar
  7. 7.
    Antunes HK, Stella SG, Santos RF, et al. Depression, anxiety and quality of life scores in seniors after an endurance exercise program. Rev Bras Psiquiatr. 2005;27(4):266–71 S1516-44462005000400003.PubMedGoogle Scholar
  8. 8.
    Erickson KI, Weinstein AM, Lopez OL. Physical activity, brain plasticity, and Alzheimer’s disease. Arch Med Res. 2012;43(8):615–21. doi: 10.1016/j.arcmed.2012.09.008.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Winchester J, Dick MB, Gillen D, et al. Walking stabilizes cognitive functioning in Alzheimer’s disease (AD) across one year. Arch Gerontol Geriatr. 2013;56(1):96–103. doi: 10.1016/j.archger.2012.06.016.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Nabkasorn C, Miyai N, Sootmongkol A, et al. Effects of physical exercise on depression, neuroendocrine stress hormones and physiological fitness in adolescent females with depressive symptoms. Eur J Public Health. 2006;16(2):179–84. doi: 10.1093/eurpub/cki159.PubMedGoogle Scholar
  11. 11.
    Vaynman S, Ying Z, Gomez-Pinilla F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci. 2004;20(10):2580–90. doi: 10.1111/j.1460-9568.2004.03720.x.PubMedGoogle Scholar
  12. 12.
    Chen B, Kan H. Air pollution and population health: a global challenge. Environ Health Prev Med. 2008;13(2):94–101. doi: 10.1007/s12199-007-0018-5.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Calderón-Garcidueñas L, Mora-Tiscareno A, Ontiveros E, et al. Air pollution, cognitive deficits and brain abnormalities: a pilot study with children and dogs. Brain Cogn. 2008;68(2):117–27. doi: 10.1016/j.bandc.2008.04.008.PubMedGoogle Scholar
  14. 14.
    Block ML, Calderón-Garcidueñas L. Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 2009;32(9):506–16. doi: 10.1016/j.tins.2009.05.009.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Genc S, Zadeoglulari Z, Fuss SH, et al. The adverse effects of air pollution on the nervous system. J Toxicol. 2012;2012:782462. doi: 10.1155/2012/782462.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Guxens M, Sunyer J. A review of epidemiological studies on neuropsychological effects of air pollution. Swiss Med Wkly. 2012;141:w13322. doi: 10.4414/smw.2011.13322.PubMedGoogle Scholar
  17. 17.
    Int Panis L, de Geus B, Vandenbulcke G, et al. Exposure to particulate matter in traffic: a comparison of cyclists and car passengers. Atmos Environ. 2010;44:2263–70.Google Scholar
  18. 18.
    Bos I, De Boever P, Vanparijs J, et al. Subclinical effects of aerobic training in urban environment. Med Sci Sports Exerc. 2013;45(3):439–47. doi: 10.1249/MSS.0b013e31827767fc.PubMedGoogle Scholar
  19. 19.
    Bos I, De Boever P, Int Panis L, et al. Negative effects of ultrafine particle exposure during forced exercise on the expression of brain-derived neurotrophic factor in the hippocampus of rats. Neuroscience. 2012;223:131–9. doi: 10.1016/j.neuroscience.2012.07.057.PubMedGoogle Scholar
  20. 20.
    Bos I, Jacobs L, Nawrot TS, et al. No exercise-induced increase in serum BDNF after cycling near a major traffic road. Neurosci Lett. 2011;500(2):129–32. doi: 10.1016/j.neulet.2011.06.019.PubMedGoogle Scholar
  21. 21.
    Air quality guidelines for Europe. 2nd ed. WHO Regional Publications, European Series. Vol. 91. World Health Organization; 2000.Google Scholar
  22. 22.
    World Urbanization Prospects: the 2011 Revision. United Nations, Department of Economic and Social Affairs PD; 2012.Google Scholar
  23. 23.
    Brook RD, Franklin B, Cascio W, et al. Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation. 2004;109(21):2655–71. doi: 10.1161/01.CIR.0000128587.30041.C8.PubMedGoogle Scholar
  24. 24.
    Brook RD, Rajagopalan S, Pope CA 3rd, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation. 2010;121(21):2331–78. doi: 10.1161/CIR.0b013e3181dbece1.PubMedGoogle Scholar
  25. 25.
    Mills NL, Donaldson K, Hadoke PW, et al. Adverse cardiovascular effects of air pollution. Nat Clin Pract Cardiovasc Med. 2009;6(1):36–44. doi: 10.1038/ncpcardio1399.PubMedGoogle Scholar
  26. 26.
    Ostro B. Outdoor air pollution: assessing the environmental burden of disease at national and local levels. Geneva: World Health Organization; 2004.Google Scholar
  27. 27.
    Cohen A, Anderson R, Ostro B, et al. Urban air pollution. In: Ezzati M, Lopez AD, Rodgers A, Murray CJ, editors. Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors. Geneva: World Health Organization; 2004. p. 1353–433.Google Scholar
  28. 28.
    Seaton A, MacNee W, Donaldson K, et al. Particulate air pollution and acute health effects. Lancet. 1995;345(8943):176–8.PubMedGoogle Scholar
  29. 29.
    Pope CA 3rd, Dockery DW. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc. 2006;56(6):709–42.PubMedGoogle Scholar
  30. 30.
    Zhu Y, Hinds WC, Kim S, et al. Concentration and size distribution of ultrafine particles near a major highway. J Air Waste Manag Assoc. 2002;52(9):1032–42.PubMedGoogle Scholar
  31. 31.
    Hagler GSW, Baldauf RW, Thoma ED, et al. Ultrafine particles near a major roadway in Raleigh, North Carolina: downwind attenuation and correlation with traffic-related pollutants. Atmos Environ. 2009;43(6):1229–34. doi: 10.1016/j.atmosenv.2008.11.024.Google Scholar
  32. 32.
    Lim SS, Vos T, Flaxman AD, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2224–60. doi: 10.1016/S0140-6736(12)61766-8.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Brook RD, Rajagopalan S. Can what you breathe trigger a stroke within hours? Comment on “ambient air pollution and the risk of acute ischemic stroke”. Arch Intern Med. 2012;172(3):235–6. doi: 10.1001/archinternmed.2011.1214.PubMedGoogle Scholar
  34. 34.
    Li XY, Yu XB, Liang WW, et al. Meta-analysis of association between particulate matter and stroke attack. CNS Neurosci Ther. 2012;18(6):501–8. doi: 10.1111/j.1755-5949.2012.00325.x.PubMedGoogle Scholar
  35. 35.
    Corea F, Silvestrelli G, Baccarelli A, et al. Airborne pollutants and lacunar stroke: a case cross-over analysis on stroke unit admissions. Neurol Int. 2012;4(2):e11. doi: 10.4081/ni.2012.e11.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Mateen FJ, Brook RD. Air pollution as an emerging global risk factor for stroke. JAMA. 2011;305(12):1240–1. doi: 10.1001/jama.2011.352.PubMedGoogle Scholar
  37. 37.
    Calderón-Garcidueñas L, Azzarelli B, Acuna H, et al. Air pollution and brain damage. Toxicol Pathol. 2002;30(3):373–89.PubMedGoogle Scholar
  38. 38.
    Calderón-Garcidueñas L, Maronpot RR, Torres-Jardon R, et al. DNA damage in nasal and brain tissues of canines exposed to air pollutants is associated with evidence of chronic brain inflammation and neurodegeneration. Toxicol Pathol. 2003;31(5):524–38.PubMedGoogle Scholar
  39. 39.
    Calderón-Garcidueñas L, Solt AC, Henriquez-Roldan C, et al. Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-42 and alpha-synuclein in children and young adults. Toxicol Pathol. 2008;36(2):289–310. doi: 10.1177/0192623307313011.PubMedGoogle Scholar
  40. 40.
    Calderón-Garcidueñas L, Reed W, Maronpot RR, et al. Brain inflammation and Alzheimer’s-like pathology in individuals exposed to severe air pollution. Toxicol Pathol. 2004;32(6):650–8. doi: 10.1080/01926230490520232.PubMedGoogle Scholar
  41. 41.
    Suglia SF, Gryparis A, Wright RO, et al. Association of black carbon with cognition among children in a prospective birth cohort study. Am J Epidemiol. 2008;167(3):280–6. doi: 10.1093/aje/kwm308.PubMedGoogle Scholar
  42. 42.
    Chen JC, Schwartz J. Neurobehavioral effects of ambient air pollution on cognitive performance in US adults. Neurotoxicology. 2009;30(2):231–9. doi: 10.1016/j.neuro.2008.12.011.PubMedGoogle Scholar
  43. 43.
    Ranft U, Schikowski T, Sugiri D, et al. Long-term exposure to traffic-related particulate matter impairs cognitive function in the elderly. Environ Res. 2009;109(8):1004–11. doi: 10.1016/j.envres.2009.08.003.PubMedGoogle Scholar
  44. 44.
    Wellenius GA, Boyle LD, Coull BA, et al. Residential proximity to nearest major roadway and cognitive function in community-dwelling seniors: results from the MOBILIZE Boston Study. J Am Geriatr Soc. 2012;60(11):2075–80. doi: 10.1111/j.1532-5415.2012.04195.x.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Weuve J, Puett RC, Schwartz J, et al. Exposure to particulate air pollution and cognitive decline in older women. Arch Intern Med. 2012;172(3):219–27. doi: 10.1001/archinternmed.2011.683.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Bos I, De Boever P, Emmerechts J, et al. Changed gene expression in brains of mice exposed to traffic in a highway tunnel. Inhal Toxicol. 2012;24(10):676–86. doi: 10.3109/08958378.2012.714004.PubMedGoogle Scholar
  47. 47.
    Farina F, Sancini G, Battaglia C, et al. Milano summer particulate matter (PM10) triggers lung inflammation and extra pulmonary adverse events in mice. PLoS One. 2013;8(2):e56636. doi: 10.1371/journal.pone.0056636.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Campbell A, Oldham M, Becaria A, et al. Particulate matter in polluted air may increase biomarkers of inflammation in mouse brain. Neurotoxicology. 2005;26(1):133–40. doi: 10.1016/j.neuro.2004.08.003.PubMedGoogle Scholar
  49. 49.
    Guo L, Zhu N, Guo Z, et al. Particulate matter (PM10) exposure induces endothelial dysfunction and inflammation in rat brain. J Hazard Mater. 2012;213–214:28–37. doi: 10.1016/j.jhazmat.2012.01.034.PubMedGoogle Scholar
  50. 50.
    Gerlofs-Nijland ME, van Berlo D, Cassee FR, et al. Effect of prolonged exposure to diesel engine exhaust on proinflammatory markers in different regions of the rat brain. Part Fibre Toxicol. 2010;7:12. doi: 10.1186/1743-8977-7-12.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Tin Tin Win S, Yamamoto S, Ahmed S, et al. Brain cytokine and chemokine mRNA expression in mice induced by intranasal instillation with ultrafine carbon black. Toxicol Lett. 2006;163(2):153–60. doi: 10.1016/j.toxlet.2005.10.006.Google Scholar
  52. 52.
    Win-Shwe TT, Yamamoto S, Fujitani Y, et al. Spatial learning and memory function-related gene expression in the hippocampus of mouse exposed to nanoparticle-rich diesel exhaust. Neurotoxicology. 2008;29(6):940–7. doi: 10.1016/j.neuro.2008.09.007.PubMedGoogle Scholar
  53. 53.
    Levesque S, Taetzsch T, Lull ME, et al. Diesel exhaust activates and primes microglia: air pollution, neuroinflammation, and regulation of dopaminergic neurotoxicity. Environ Health Perspect. 2011;119(8):1149–55. doi: 10.1289/ehp.1002986.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Campbell A, Araujo JA, Li H, et al. Particulate matter induced enhancement of inflammatory markers in the brains of apolipoprotein E knockout mice. J Nanosci Nanotechnol. 2009;9(8):5099–104.PubMedGoogle Scholar
  55. 55.
    Kleinman MT, Araujo JA, Nel A, et al. Inhaled ultrafine particulate matter affects CNS inflammatory processes and may act via MAP kinase signaling pathways. Toxicol Lett. 2008;178(2):127–30. doi: 10.1016/j.toxlet.2008.03.001.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Guerra R, Vera-Aguilar E, Uribe-Ramirez M, et al. Exposure to inhaled particulate matter activates early markers of oxidative stress, inflammation and unfolded protein response in rat striatum. Toxicol Lett. 2013;222(2):146–54. doi: 10.1016/j.toxlet.2013.07.012.PubMedGoogle Scholar
  57. 57.
    Morgan TE, Davis DA, Iwata N, et al. Glutamatergic neurons in rodent models respond to nanoscale particulate urban air pollutants in vivo and in vitro. Environ Health Perspect. 2011;119(7):1003–9. doi: 10.1289/ehp.1002973.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Win-Shwe TT, Yamamoto S, Fujitani Y, et al. Nanoparticle-rich diesel exhaust affects hippocampal-dependent spatial learning and NMDA receptor subunit expression in female mice. Nanotoxicology. 2012;6(5):543–53. doi: 10.3109/17435390.2011.590904.PubMedGoogle Scholar
  59. 59.
    Win-Shwe TT, Fujimaki H, Fujitani Y, et al. Novel object recognition ability in female mice following exposure to nanoparticle-rich diesel exhaust. Toxicol Appl Pharmacol. 2012;262(3):355–62. doi: 10.1016/j.taap.2012.05.015.PubMedGoogle Scholar
  60. 60.
    Veronesi B, Makwana O, Pooler M, et al. Effects of subchronic exposures to concentrated ambient particles. VII. Degeneration of dopaminergic neurons in Apo E-/- mice. Inhal Toxicol. 2005;17(4–5):235–41. doi: 10.1080/08958370590912888.PubMedGoogle Scholar
  61. 61.
    Levesque S, Surace MJ, McDonald J, et al. Air pollution & the brain: subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease. J Neuroinflammation. 2011;8:105. doi: 10.1186/1742-2094-8-105.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Fonken LK, Xu X, Weil ZM, et al. Air pollution impairs cognition, provokes depressive-like behaviors and alters hippocampal cytokine expression and morphology. Mol Psychiatry. 2011;16(10):987–95, 973. doi: 10.1038/mp.2011.76.
  63. 63.
    Hougaard KS, Saber AT, Jensen KA, et al. Diesel exhaust particles: effects on neurofunction in female mice. Basic Clin Pharmacol Toxicol. 2009;105(2):139–43. doi: 10.1111/j.1742-7843.2009.00407.x.PubMedGoogle Scholar
  64. 64.
    Allen JL, Conrad K, Oberdörster G, et al. Developmental exposure to concentrated ambient particles and preference for immediate reward in mice. Environ Health Perspect. 2013;121(1):32–8. doi: 10.1289/ehp.1205505.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Zanchi AC, Venturini CD, Saiki M, et al. Chronic nasal instillation of residual-oil fly ash (ROFA) induces brain lipid peroxidation and behavioral changes in rats. Inhal Toxicol. 2008;20(9):795–800. doi: 10.1080/08958370802009060.PubMedGoogle Scholar
  66. 66.
    Zanchi AC, Saiki M, Saldiva PH, et al. Hippocampus lipid peroxidation induced by residual oil fly ash intranasal instillation versus habituation to the open field. Inhal Toxicol. 2010;22(1):84–8. doi: 10.3109/08958370902936931.PubMedGoogle Scholar
  67. 67.
    Yokota S, Takashima H, Ohta R, et al. Nasal instillation of nanoparticle-rich diesel exhaust particles slightly affects emotional behavior and learning capability in rats. J Toxicol Sci. 2011;36(3):267–76.PubMedGoogle Scholar
  68. 68.
    Win-Shwe TT, Mitsushima D, Yamamoto S, et al. Extracellular glutamate level and NMDA receptor subunit expression in mouse olfactory bulb following nanoparticle-rich diesel exhaust exposure. Inhal Toxicol. 2009;21(10):828–36. doi: 10.1080/08958370802538068.PubMedGoogle Scholar
  69. 69.
    Zhang H, Liu H, Davies KJ, et al. Nrf2-regulated phase II enzymes are induced by chronic ambient nanoparticle exposure in young mice with age-related impairments. Free Radic Biol Med. 2012;52(9):2038–46. doi: 10.1016/j.freeradbiomed.2012.02.042.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Ljubimova JY, Kleinman MT, Karabalin NM, et al. Gene expression changes in rat brain after short and long exposures to particulate matter in Los Angeles basin air: comparison with human brain tumors. Exp Toxicol Pathol. 2013;65(7–8):1063–71. doi: 10.1016/j.etp.2013.04.002.PubMedGoogle Scholar
  71. 71.
    van Berlo D, Albrecht C, Knaapen AM, et al. Comparative evaluation of the effects of short-term inhalation exposure to diesel engine exhaust on rat lung and brain. Arch Toxicol. 2010;84(7):553–62. doi: 10.1007/s00204-010-0551-7.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Sirivelu MP, MohanKumar SM, Wagner JG, et al. Activation of the stress axis and neurochemical alterations in specific brain areas by concentrated ambient particle exposure with concomitant allergic airway disease. Environ Health Perspect. 2006;114(6):870–4.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Tin Tin Win S, Mitsushima D, Yamamoto S, et al. Changes in neurotransmitter levels and proinflammatory cytokine mRNA expressions in the mice olfactory bulb following nanoparticle exposure. Toxicol Appl Pharmacol. 2008;226(2):192–8. doi: 10.1016/j.taap.2007.09.009.Google Scholar
  74. 74.
    Voss MW, Nagamatsu LS, Liu-Ambrose T, et al. Exercise, brain, and cognition across the life span. J Appl Physiol. 2011;111(5):1505–13. doi: 10.1152/japplphysiol.00210.2011.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Hillman CH, Motl RW, Pontifex MB, et al. Physical activity and cognitive function in a cross-section of younger and older community-dwelling individuals. Health Psychol. 2006;25(6):678–87. doi: 10.1037/0278-6133.25.6.678.PubMedGoogle Scholar
  76. 76.
    Yaffe K, Barnes D, Nevitt M, et al. A prospective study of physical activity and cognitive decline in elderly women: women who walk. Arch Intern Med. 2001;161(14):1703–8.PubMedGoogle Scholar
  77. 77.
    Singh-Manoux A, Hillsdon M, Brunner E, et al. Effects of physical activity on cognitive functioning in middle age: evidence from the Whitehall II prospective cohort study. Am J Public Health. 2005;95(12):2252–8. doi: 10.2105/AJPH.2004.055574.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Brown AD, McMorris CA, Longman RS, et al. Effects of cardiorespiratory fitness and cerebral blood flow on cognitive outcomes in older women. Neurobiol Aging. 2010;31(12):2047–57. doi: 10.1016/j.neurobiolaging.2008.11.002.PubMedGoogle Scholar
  79. 79.
    Stroth S, Hille K, Spitzer M, et al. Aerobic endurance exercise benefits memory and affect in young adults. Neuropsychol Rehabil. 2009;19(2):223–43. doi: 10.1080/09602010802091183.PubMedGoogle Scholar
  80. 80.
    Erickson KI, Voss MW, Prakash RS, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108(7):3017–22. doi: 10.1073/pnas.1015950108.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Smith PJ, Blumenthal JA, Hoffman BM, et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med. 2010;72(3):239–52. doi: 10.1097/PSY.0b013e3181d14633.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Kulak W, Sobaniec W. Molecular mechanisms of brain plasticity: neurophysiologic and neuroimaging studies in the developing patients. Rocz Akad Med Bialymst. 2004;49:227–36.PubMedGoogle Scholar
  83. 83.
    van Praag H, Christie BR, Sejnowski TJ, et al. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A. 1999;96(23):13427–31.PubMedPubMedCentralGoogle Scholar
  84. 84.
    van Praag H. Neurogenesis and exercise: past and future directions. Neuromolecular Med. 2008;10(2):128–40. doi: 10.1007/s12017-008-8028-z.PubMedGoogle Scholar
  85. 85.
    Stranahan AM, Khalil D, Gould E. Running induces widespread structural alterations in the hippocampus and Entorhinal cortex. Hippocampus. 2007;17(11):1017–22. doi: 10.1002/Hipo.20348.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Dietrich MO, Andrews ZB, Horvath TL. Exercise-induced synaptogenesis in the hippocampus is dependent on UCP2-regulated mitochondrial adaptation. J Neurosci. 2008;28(42):10766–71. doi: 10.1523/JNEUROSCI.2744-08.2008.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Burdette JH, Laurienti PJ, Espeland MA, et al. Using network science to evaluate exercise-associated brain changes in older adults. Front Aging Neurosci. 2010;2:23. doi: 10.3389/fnagi.2010.00023.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Voss MW, Prakash RS, Erickson KI, et al. Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Front Aging Neurosci. 2010;2. doi: 10.3389/fnagi.2010.00032.
  89. 89.
    Chaddock L, Erickson KI, Prakash RS, et al. A functional MRI investigation of the association between childhood aerobic fitness and neurocognitive control. Biol Psychol. 2012;89(1):260–8. doi: 10.1016/j.biopsycho.2011.10.017.PubMedGoogle Scholar
  90. 90.
    Ferris LT, Williams JS, Shen CL. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med Sci Sports Exerc. 2007;39(4):728–34. doi: 10.1249/mss.0b013e31802f04c7.PubMedGoogle Scholar
  91. 91.
    Vaynman S, Gomez-Pinilla F. License to run: exercise impacts functional plasticity in the intact and injured central nervous system by using neurotrophins. Neurorehabil Neural Repair. 2005;19(4):283–95. doi: 10.1177/1545968305280753.PubMedGoogle Scholar
  92. 92.
    Griffin EW, Bechara RG, Birch AM, et al. Exercise enhances hippocampal-dependent learning in the rat: evidence for a BDNF-related mechanism. Hippocampus. 2009;19(10):973–80. doi: 10.1002/hipo.20631.PubMedGoogle Scholar
  93. 93.
    Murer MG, Yan Q, Raisman-Vozari R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol. 2001;63(1):71–124.PubMedGoogle Scholar
  94. 94.
    Numakawa T, Suzuki S, Kumamaru E, et al. BDNF function and intracellular signaling in neurons. Histol Histopathol. 2010;25(2):237–58.PubMedGoogle Scholar
  95. 95.
    Yamada K, Nabeshima T. Brain-derived neurotrophic factor/TrkB signaling in memory processes. J Pharmacol Sci. 2003;91(4):267–70.PubMedGoogle Scholar
  96. 96.
    Levine ES, Dreyfus CF, Black IB, et al. Brain-derived neurotrophic factor rapidly enhances synaptic transmission in hippocampal neurons via postsynaptic tyrosine kinase receptors. Proc Natl Acad Sci U S A. 1995;92(17):8074–7.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Figurov A, Pozzo-Miller LD, Olafsson P, et al. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature. 1996;381(6584):706–9. doi: 10.1038/381706a0.PubMedGoogle Scholar
  98. 98.
    Patterson SL, Abel T, Deuel TA, et al. Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron. 1996;16(6):1137–45.PubMedGoogle Scholar
  99. 99.
    Allen SJ, Watson JJ, Shoemark DK, et al. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther. 2013;138(2):155–75. doi: 10.1016/j.pharmthera.2013.01.004.PubMedGoogle Scholar
  100. 100.
    Minichiello L. TrkB signalling pathways in LTP and learning. Nat Rev Neurosci. 2009;10(12):850–60. doi: 10.1038/nrn2738.PubMedGoogle Scholar
  101. 101.
    Noble EE, Billington CJ, Kotz CM, et al. The lighter side of BDNF. Am J Physiol Regul Integr Comp Physiol. 2011;300(5):R1053–69. doi: 10.1152/ajpregu.00776.2010.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Linnarsson S, Bjorklund A, Ernfors P. Learning deficit in BDNF mutant mice. Eur J Neurosci. 1997;9(12):2581–7.PubMedGoogle Scholar
  103. 103.
    Nockher WA, Renz H. Neurotrophins in allergic diseases: from neuronal growth factors to intercellular signaling molecules. J Allergy Clin Immunol. 2006;117(3):583–9. doi: 10.1016/j.jaci.2005.11.049.PubMedGoogle Scholar
  104. 104.
    Pan W, Banks WA, Fasold MB, et al. Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology. 1998;37(12):1553–61.PubMedGoogle Scholar
  105. 105.
    Rasmussen P, Brassard P, Adser H, et al. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol. 2009;94(10):1062–9. doi: 10.1113/expphysiol.2009.048512.PubMedGoogle Scholar
  106. 106.
    Huang AM, Jen CJ, Chen HF, et al. Compulsive exercise acutely upregulates rat hippocampal brain-derived neurotrophic factor. J Neural Transm. 2006;113(7):803–11. doi: 10.1007/s00702-005-0359-4.PubMedGoogle Scholar
  107. 107.
    Soya H, Nakamura T, Deocaris CC, et al. BDNF induction with mild exercise in the rat hippocampus. Biochem Biophys Res Commun. 2007;358(4):961–7. doi: 10.1016/j.bbrc.2007.04.173.PubMedGoogle Scholar
  108. 108.
    Adlard PA, Perreau VM, Engesser-Cesar C, et al. The timecourse of induction of brain-derived neurotrophic factor mRNA and protein in the rat hippocampus following voluntary exercise. Neurosci Lett. 2004;363(1):43–8. doi: 10.1016/j.neulet.2004.03.058.PubMedGoogle Scholar
  109. 109.
    Berchtold NC, Chinn G, Chou M, et al. Exercise primes a molecular memory for brain-derived neurotrophic factor protein induction in the rat hippocampus. Neuroscience. 2005;133(3):853–61. doi: 10.1016/j.neuroscience.2005.03.026.PubMedGoogle Scholar
  110. 110.
    Seifert T, Brassard P, Wissenberg M, et al. Endurance training enhances BDNF release from the human brain. Am J Physiol Regul Integr Comp Physiol. 2010;298(2):R372–7. doi: 10.1152/ajpregu.00525.2009.PubMedGoogle Scholar
  111. 111.
    Cassilhas RC, Lee KS, Fernandes J, et al. Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience. 2012;202:309–17. doi: 10.1016/j.neuroscience.2011.11.029.PubMedGoogle Scholar
  112. 112.
    Oliff HS, Berchtold NC, Isackson P, et al. Exercise-induced regulation of brain-derived neurotrophic factor (BDNF) transcripts in the rat hippocampus. Brain Res Mol Brain Res. 1998;61(1–2):147–53.PubMedGoogle Scholar
  113. 113.
    Knaepen K, Goekint M, Heyman EM, et al. Neuroplasticity—exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects. Sports Med. 2010;40(9):765–801. doi: 10.2165/11534530-000000000-00000.PubMedGoogle Scholar
  114. 114.
    Griffin EW, Mullally S, Foley C, et al. Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiol Behav. 2011;104(5):934–41. doi: 10.1016/j.physbeh.2011.06.005.PubMedGoogle Scholar
  115. 115.
    Zoladz JA, Pilc A, Majerczak J, et al. Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men. J Physiol Pharmacol. 2008;59(Suppl 7):119–32.PubMedGoogle Scholar
  116. 116.
    Baker LD, Frank LL, Foster-Schubert K, et al. Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol. 2010;67(1):71–9. doi: 10.1001/archneurol.2009.307.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Castellano V, White LJ. Serum brain-derived neurotrophic factor response to aerobic exercise in multiple sclerosis. J Neurol Sci. 2008;269(1–2):85–91. doi: 10.1016/j.jns.2007.12.030.PubMedGoogle Scholar
  118. 118.
    Schiffer T, Schulte S, Hollmann W, et al. Effects of strength and endurance training on brain-derived neurotrophic factor and insulin-like growth factor 1 in humans. Horm Metab Res. 2009;41(3):250–4. doi: 10.1055/s-0028-1093322.PubMedGoogle Scholar
  119. 119.
    Schulz KH, Gold SM, Witte J, et al. Impact of aerobic training on immune-endocrine parameters, neurotrophic factors, quality of life and coordinative function in multiple sclerosis. J Neurol Sci. 2004;225(1–2):11–8. doi: 10.1016/j.jns.2004.06.009.PubMedGoogle Scholar
  120. 120.
    Bus BA, Molendijk ML, Penninx BJ, et al. Determinants of serum brain-derived neurotrophic factor. Psychoneuroendocrinology. 2011;36(2):228–39. doi: 10.1016/j.psyneuen.2010.07.013.PubMedGoogle Scholar
  121. 121.
    Atkinson G. Air pollution and exercise. Sports Exerc Inj. 1997;3(1):2–8.Google Scholar
  122. 122.
    Daigle CC, Chalupa DC, Gibb FR, et al. Ultrafine particle deposition in humans during rest and exercise. Inhal Toxicol. 2003;15(6):539–52. doi: 10.1080/08958370304468.PubMedGoogle Scholar
  123. 123.
    Londahl J, Massling A, Pagels J, et al. Size-resolved respiratory-tract deposition of fine and ultrafine hydrophobic and hygroscopic aerosol particles during rest and exercise. Inhal Toxicol. 2007;19(2):109–16. doi: 10.1080/08958370601051677.PubMedGoogle Scholar
  124. 124.
    Florida-James G, Donaldson K, Stone V. Athens 2004: the pollution climate and athletic performance. J Sports Sci. 2004;22(10):967–80. doi: 10.1080/02640410400000272 (discussion 80).PubMedGoogle Scholar
  125. 125.
    Peiser B, Reilly T. Environmental factors in the summer Olympics in historical perspective. J Sports Sci. 2004;22(10):981–1001. doi: 10.1080/02640410400000298 (discussion 2).PubMedGoogle Scholar
  126. 126.
    Strak M, Boogaard H, Meliefste K, et al. Respiratory health effects of ultrafine and fine particle exposure in cyclists. Occup Environ Med. 2010;67(2):118–24. doi: 10.1136/oem.2009.046847.PubMedGoogle Scholar
  127. 127.
    McCreanor J, Cullinan P, Nieuwenhuijsen MJ, et al. Respiratory effects of exposure to diesel traffic in persons with asthma. N Engl J Med. 2007;357(23):2348–58. doi: 10.1056/NEJMoa071535.PubMedGoogle Scholar
  128. 128.
    Chimenti L, Morici G, Paterno A, et al. Environmental conditions, air pollutants, and airway cells in runners: a longitudinal field study. J Sports Sci. 2009;27(9):925–35. doi: 10.1080/02640410902946493.PubMedGoogle Scholar
  129. 129.
    Rundell KW, Hoffman JR, Caviston R, et al. Inhalation of ultrafine and fine particulate matter disrupts systemic vascular function. Inhal Toxicol. 2007;19(2):133–40. doi: 10.1080/08958370601051727.PubMedGoogle Scholar
  130. 130.
    Marr LC, Ely MR. Effect of air pollution on marathon running performance. Med Sci Sports Exerc. 2010;42(3):585–91. doi: 10.1249/MSS.0b013e3181b84a85.PubMedGoogle Scholar
  131. 131.
    Cutrufello PT, Smoliga JM, Rundell KW. Small things make a big difference: particulate matter and exercise. Sports Med. 2012;42(12):1041–58. doi: 10.2165/11635170-000000000-00000.PubMedGoogle Scholar
  132. 132.
    Giles LV, Koehle MS. The health effects of exercising in air pollution. Sports Med. 2013;. doi: 10.1007/s40279-013-0108-z.Google Scholar
  133. 133.
    Zoladz JA, Pilc A. The effect of physical activity on the brain derived neurotrophic factor: from animal to human studies. J Physiol Pharmacol. 2010;61(5):533–41.PubMedGoogle Scholar
  134. 134.
    Goekint M, Roelands B, Heyman E, et al. Influence of citalopram and environmental temperature on exercise-induced changes in BDNF. Neurosci Lett. 2011;494(2):150–4. doi: 10.1016/j.neulet.2011.03.001.PubMedGoogle Scholar
  135. 135.
    Oberdörster G, Elder A, Rinderknecht A. Nanoparticles and the brain: cause for concern? J Nanosci Nanotechnol. 2009;9(8):4996–5007.PubMedPubMedCentralGoogle Scholar
  136. 136.
    Oberdörster G, Sharp Z, Atudorei V, et al. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol. 2004;16(6–7):437–45. doi: 10.1080/08958370490439597.PubMedGoogle Scholar
  137. 137.
    Czerniawska A. Experimental investigations on the penetration of 198Au from nasal mucous membrane into cerebrospinal fluid. Acta Otolaryngol. 1970;70(1):58–61.PubMedGoogle Scholar
  138. 138.
    Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci. 2000;11(1):1–18.PubMedGoogle Scholar
  139. 139.
    Oberdörster G, Sharp Z, Atudorei V, et al. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A. 2002;65(20):1531–43. doi: 10.1080/00984100290071658.PubMedGoogle Scholar
  140. 140.
    Geiser M, Rothen-Rutishauser B, Kapp N, et al. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect. 2005;113(11):1555–60.PubMedPubMedCentralGoogle Scholar
  141. 141.
    Van Amsterdam JG, Verlaan BP, Van Loveren H, et al. Air pollution is associated with increased level of exhaled nitric oxide in nonsmoking healthy subjects. Arch Environ Health. 1999;54(5):331–5. doi: 10.1080/00039899909602496.PubMedGoogle Scholar
  142. 142.
    Salvi S, Blomberg A, Rudell B, et al. Acute inflammatory responses in the airways and peripheral blood after short-term exposure to diesel exhaust in healthy human volunteers. Am J Respir Crit Care Med. 1999;159(3):702–9. doi: 10.1164/ajrccm.159.3.9709083.PubMedGoogle Scholar
  143. 143.
    Adar SD, Adamkiewicz G, Gold DR, et al. Ambient and microenvironmental particles and exhaled nitric oxide before and after a group bus trip. Environ Health Perspect. 2007;115(4):507–12. doi: 10.1289/ehp.9386.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Jacobs L, Nawrot TS, de Geus B, et al. Subclinical responses in healthy cyclists briefly exposed to traffic-related air pollution: an intervention study. Environ Health. 2010;9:64. doi: 10.1186/1476-069X-9-64.PubMedPubMedCentralGoogle Scholar
  145. 145.
    Dantzer R, O’Connor JC, Freund GG, et al. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):46–56. doi: 10.1038/nrn2297.PubMedPubMedCentralGoogle Scholar
  146. 146.
    Tracey KJ. Reflex control of immunity. Nat Rev Immunol. 2009;9(6):418–28. doi: 10.1038/nri2566.PubMedGoogle Scholar
  147. 147.
    Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8(1):57–69. doi: 10.1038/nrn2038.PubMedGoogle Scholar
  148. 148.
    Gao HM, Hong JS. Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol. 2008;29(8):357–65. doi: 10.1016/ Scholar
  149. 149.
    Yirmiya R, Goshen I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun. 2011;25(2):181–213. doi: 10.1016/j.bbi.2010.10.015.PubMedGoogle Scholar
  150. 150.
    Karlsson H, Ahlborg B, Dalman C, et al. Association between erythrocyte sedimentation rate and IQ in Swedish males aged 18–20. Brain Behav Immun. 2010;24(6):868–73. doi: 10.1016/j.bbi.2010.02.009.PubMedGoogle Scholar
  151. 151.
    Eriksson I, Gustafson Y, Fagerstrom L, et al. Urinary tract infection in very old women is associated with delirium. Int Psychogeriatr. 2011;23(3):496–502. doi: 10.1017/S1041610210001456.PubMedGoogle Scholar
  152. 152.
    Stromberg L, Lindgren U, Nordin C, et al. The appearance and disappearance of cognitive impairment in elderly patients during treatment for hip fracture. Scand J Caring Sci. 1997;11(3):167–75.PubMedGoogle Scholar
  153. 153.
    Barrientos RM, Higgins EA, Biedenkapp JC, et al. Peripheral infection and aging interact to impair hippocampal memory consolidation. Neurobiol Aging. 2006;27(5):723–32. doi: 10.1016/j.neurobiolaging.2005.03.010.PubMedGoogle Scholar
  154. 154.
    Cortese GP, Barrientos RM, Maier SF, et al. Aging and a peripheral immune challenge interact to reduce mature brain-derived neurotrophic factor and activation of TrkB, PLCgamma1, and ERK in hippocampal synaptoneurosomes. J Neurosci. 2011;31(11):4274–9. doi: 10.1523/JNEUROSCI.5818-10.2011.PubMedPubMedCentralGoogle Scholar
  155. 155.
    MohanKumar SM, Campbell A, Block M, et al. Particulate matter, oxidative stress and neurotoxicity. Neurotoxicology. 2008;29(3):479–88. doi: 10.1016/j.neuro.2007.12.004.PubMedGoogle Scholar
  156. 156.
    Wu A, Ying Z, Gomez-Pinilla F. The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition. Eur J Neurosci. 2004;19(7):1699–707. doi: 10.1111/j.1460-9568.2004.03246.x.PubMedGoogle Scholar
  157. 157.
    Vaynman S, Ying Z, Wu A, et al. Coupling energy metabolism with a mechanism to support brain-derived neurotrophic factor-mediated synaptic plasticity. Neuroscience. 2006;139(4):1221–34. doi: 10.1016/j.neuroscience.2006.01.062.PubMedGoogle Scholar
  158. 158.
    Barrientos RM. Voluntary exercise as an anti-neuroinflammatory therapeutic. Brain Behav Immun. 2011;25(6):1061–2. doi: 10.1016/j.bbi.2011.05.004.PubMedGoogle Scholar
  159. 159.
    Radak Z, Kaneko T, Tahara S, et al. Regular exercise improves cognitive function and decreases oxidative damage in rat brain. Neurochem Int. 2001;38(1):17–23.PubMedGoogle Scholar
  160. 160.
    Leem YH, Lee YI, Son HJ, et al. Chronic exercise ameliorates the neuroinflammation in mice carrying NSE/htau23. Biochem Biophys Res Commun. 2011;406(3):359–65. doi: 10.1016/j.bbrc.2011.02.046.PubMedGoogle Scholar
  161. 161.
    Ghelfi E, Rhoden CR, Wellenius GA, et al. Cardiac oxidative stress and electrophysiological changes in rats exposed to concentrated ambient particles are mediated by TRP-dependent pulmonary reflexes. Toxicol Sci. 2008;102(2):328–36. doi: 10.1093/toxsci/kfn005.PubMedGoogle Scholar
  162. 162.
    Gackière F, Saliba L, Baude A, et al. Ozone inhalation activates stress-responsive regions of the CNS. J Neurochem. 2011;117(6):961–72. doi: 10.1111/j.1471-4159.2011.07267.x.PubMedGoogle Scholar
  163. 163.
    Wheeler A, Zanobetti A, Gold DR, et al. The relationship between ambient air pollution and heart rate variability differs for individuals with heart and pulmonary disease. Environ Health Perspect. 2006;114(4):560–6.PubMedPubMedCentralGoogle Scholar
  164. 164.
    Follesa P, Biggio F, Gorini G, et al. Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bFGF in the rat brain. Brain Res. 2007;1179:28–34. doi: 10.1016/j.brainres.2007.08.045.PubMedGoogle Scholar
  165. 165.
    Osharina V, Bagaev V, Wallois F, et al. Autonomic response and Fos expression in the NTS following intermittent vagal stimulation: importance of pulse frequency. Auton Neurosci. 2006;126–127:72–80. doi: 10.1016/j.autneu.2006.03.011.PubMedGoogle Scholar
  166. 166.
    Ghosh A, Carnahan J, Greenberg ME. Requirement for BDNF in activity-dependent survival of cortical neurons. Science. 1994;263(5153):1618–23.PubMedGoogle Scholar
  167. 167.
    Chen MJ, Russo-Neustadt AA. Nitric oxide signaling participates in norepinephrine-induced activity of neuronal intracellular survival pathways. Life Sci. 2007;81(16):1280–90. doi: 10.1016/j.lfs.2007.09.003.PubMedPubMedCentralGoogle Scholar
  168. 168.
    Foley TE, Brooks LR, Gilligan LJ, et al. Brain activation patterns at exhaustion in rats that differ in inherent exercise capacity. PLoS One. 2012;7(9):e45415. doi: 10.1371/journal.pone.0045415.PubMedPubMedCentralGoogle Scholar
  169. 169.
    Herman JP, Cullinan WE. Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci. 1997;20(2):78–84.PubMedGoogle Scholar
  170. 170.
    Hartog JJ, Boogaard H, Nijland H, et al. Do the health benefits of cycling outweigh the risks? Cien Saude Colet. 2011;16(12):4731–44.PubMedGoogle Scholar
  171. 171.
    Rojas-Rueda D, de Nazelle A, Tainio M, et al. The health risks and benefits of cycling in urban environments compared with car use: health impact assessment study. BMJ. 2011;343:d4521. doi: 10.1136/bmj.d4521.PubMedPubMedCentralGoogle Scholar
  172. 172.
    Int Panis L. Cycling: health benefits and risks. Environ Health Perspect. 2011;119(3):a114. doi: 10.1289/ehp.1103227 (author reply a114–5).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Inge Bos
    • 1
    • 2
  • Patrick De Boever
    • 2
    • 3
  • Luc Int Panis
    • 2
    • 4
  • Romain Meeusen
    • 1
    • 5
    Email author
  1. 1.Department of Human Physiology, Faculty of Physical Education and PhysiotherapyVrije Universiteit BrusselBrusselsBelgium
  2. 2.Environmental Risk and Health, Flemish Institute for Technological Research (VITO)MolBelgium
  3. 3.Center for Environmental Sciences (CMK)Hasselt UniversityDiepenbeekBelgium
  4. 4.Transportation Research Institute (IMOB)Hasselt UniversityDiepenbeekBelgium
  5. 5.School of Public Health, Tropical Medicine and Rehabilitation SciencesJames Cook UniversityTownsville, QLDAustralia

Personalised recommendations