Skip to main content
Log in

Application of ‘Live Low-Train High’ for Enhancing Normoxic Exercise Performance in Team Sport Athletes

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background and Objective

Hypoxic training techniques are increasingly used by athletes in an attempt to improve performance in normoxic environments. The ‘live low-train high (LLTH)’ model of hypoxic training may be of particular interest to athletes because LLTH protocols generally involve shorter hypoxic exposures (approximately two to five sessions per week of <3 h) than other traditional hypoxic training techniques (e.g. live high-train high or live high-train low). However, the methods employed in LLTH studies to date vary greatly with respect to exposure times, training intensities, training modalities, degrees of hypoxia and performance outcomes assessed. Whilst recent reviews provide some insight into how LLTH may be applied to enhance performance, little attention has been given to how training intensity/modality may specifically influence subsequent performance in normoxia. Therefore, this systematic review aims to evaluate the normoxic performance outcomes of the available LLTH literature, with a particular focus on training intensity and modality.

Data Sources and Study Selection

A systematic search was conducted to capture all LLTH studies with a matched normoxic (control) training group and the assessment of performance under normoxic conditions. Studies were excluded if no training was completed during the hypoxic exposures, or if these exposures exceeded 3 h per day. Four electronic databases were searched (PubMed, SPORTDiscus™, EMBASE and Web of Science) during August 2013, and these searches were supplemented by additional manual searches until December 2013.

Results

After the electronic and manual searches, 40 papers were deemed to meet the inclusion criteria, representing 31 separate studies. Within these 31 studies, four types of LLTH were identified: (1) continuous low-intensity training in hypoxia (CHT, n = 16), (2) interval hypoxic training (IHT, n = 4), (3) repeated sprint training in hypoxia (RSH, n = 3) and (4) resistance training in hypoxia (RTH, n = 4). Four studies also used a combination of CHT and IHT. The majority of studies reported no difference in normoxic performance between the hypoxic and normoxic training groups (n = 19), while nine reported greater improvements in the hypoxic group and three reported poorer outcomes compared with the control group. Selection of training intensity (including matching relative or absolute intensity between normoxic and hypoxic groups) was identified as a key factor in mediating the subsequent normoxic performance outcomes. Five studies included some form of normoxic training for the hypoxic group and 14 studies assessed performance outcomes not specific to the training intensity/modality completed during the training intervention.

Conclusion

Four modes of LLTH are identified in the current literature (CHT, IHT, RSH and RTH), with training mode and intensity appearing to be key factors in mediating subsequent performance responses in normoxia. Improvements in normoxic performance appear most likely following high-intensity, short-term and intermittent training (e.g. IHT, RSH). LLTH programmes should carefully apply the principles of training and testing specificity and include some high-intensity training in normoxia. For RTH, it is unclear whether the associated adaptations are greater than those of traditional (maximal) resistance training programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Billaut F, Gore CJ, Aughey R. Enhancing team-sport athlete performance: is altitude training relevant? Sports Med. 2012;42(9):751–67.

    Article  PubMed  Google Scholar 

  2. Wilber RL, Stray-Gundersen J, Levine BD. Effect of hypoxic “dose” on physiological responses and sea-level performance. Med Sci Sports Exerc. 2007;39(9):1590–9.

    Article  PubMed  Google Scholar 

  3. Gore C, Sharpe K, Garvican-Lewis L, et al. Altitude training and haemoglobin mass from the optimised carbon monoxide re-breathing method: a meta-analysis. Br J Sports Med. 2013;47(Suppl 1):i31–9.

    Article  PubMed Central  PubMed  Google Scholar 

  4. McLean BD, Buttifant D, Gore CJ, et al. Physiological and performance responses to a pre-season altitude training camp in elite team sport athletes. Int J Sports Physiol Perform. 2013;8(4):391–9.

    PubMed  Google Scholar 

  5. Buchheit M, Racinais S, Bilsborough JC, et al., editors. Live high-train low in the heat: an efficient new training model? 17th Annual Congress of the European College of Sport Sciences, Bruges; 2012.

  6. Billaut F. A higher calling, but does altitude training work? 2011. http://theconversation.edu.au/a-higher-calling-but-does-altitude-training-work-3055. Accessed 10 Oct 2012.

  7. Millet GP, Roels B, Schmitt L, et al. Combining hypoxic methods for peak performance. Sports Med. 2010;40(1):1–25.

    Article  PubMed  Google Scholar 

  8. Bonetti DL, Hopkins WG. Sea-level exercise performance following adaptation to hypoxia: a meta-analysis. Sports Med. 2009;39(2):107–27.

    Article  PubMed  Google Scholar 

  9. Zoll J, Ponsot E, Dufour S, et al. Exercise training in normobaric hypoxia in endurance runners: III. Muscular adjustments of selected gene transcripts. J Appl Physiol. 2006;100(4):1258–66.

    Article  CAS  PubMed  Google Scholar 

  10. Vogt M, Puntschart A, Geiser J, et al. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J Appl Physiol. 2001;91(1):173–82.

    CAS  PubMed  Google Scholar 

  11. Hamlin M, Marshall H, Hellemans J, et al. Effect of intermittent hypoxic training on 20 km time trial and 30 s anaerobic performance. Scand J Med Sci Sports. 2010;20(4):651–61.

    Article  CAS  PubMed  Google Scholar 

  12. Faiss R, Léger B, Vesin J-M, et al. Significant molecular and systemic adaptations after repeated sprint training in hypoxia. PLoS ONE. 2013;8(2):e56522.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Nishimura A, Sugita M, Kato K, et al. Hypoxia increases muscle hypertrophy induced by resistance training. Int J Sports Physiol Perform. 2010;5(4):497–508.

    PubMed  Google Scholar 

  14. Manimmanakorn A, Hamlin MJ, Ross JJ, et al. Effects of low-load resistance training combined with blood flow restriction or hypoxia on muscle function and performance in netball athletes. J Sci Med Sport. 2013;16(4):337–42.

    Article  PubMed  Google Scholar 

  15. Manimmanakorn A, Manimmanakorn N, Taylor R, et al. Effects of resistance training combined with vascular occlusion or hypoxia on neuromuscular function in athletes. Eur J Appl Physiol. 2013;113(7):1767–74.

    Article  PubMed  Google Scholar 

  16. Faiss R, Girard O, Millet GP. Advancing hypoxic training in team sports: from intermittent hypoxic training to repeated sprint training in hypoxia. Br J Sports Med. 2013;47(Suppl 1):i45–50.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Millet GP, Faiss R. Hypoxic conditions and exercise-to-rest ratio are likely paramount. Sports Med. 2012;42(12):1081–3 (author reply 3–5).

  18. Millet GP, Faiss R, Brocherie F, et al. Hypoxic training and team sports: a challenge to traditional methods? Br J Sports Med. 2013;47(Suppl 1):i6–7.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Schmutz S, Dapp C, Wittwer M, et al. A hypoxia complement differentiates the muscle response to endurance exercise. Exp Physiol. 2010;95(6):723–35.

    Article  PubMed  Google Scholar 

  20. Lecoultre V, Boss A, Tappy L, et al. Training in hypoxia fails to further enhance endurance performance and lactate clearance in well-trained men and impairs glucose metabolism during prolonged exercise. Exp Physiol. 2010;95(2):315–30.

    Article  CAS  PubMed  Google Scholar 

  21. Truijens MJ, Toussaint HM, Dow J, et al. Effect of high-intensity hypoxic training on sea-level swimming performances. J Appl Physiol. 2003;94(2):733–43.

    CAS  PubMed  Google Scholar 

  22. Roels B, Bentley DJ, Coste O, et al. Effects of intermittent hypoxic training on cycling performance in well-trained athletes. Eur J Appl Physiol. 2007;101(3):359–68.

    Article  PubMed  Google Scholar 

  23. Roels B, Thomas C, Bentley DJ, et al. Effects of intermittent hypoxic training on amino and fatty acid oxidative combustion in human permeabilized muscle fibers. J Appl Physiol. 2007;102(1):79–86.

    Article  CAS  PubMed  Google Scholar 

  24. Ponsot E, Dufour SP, Zoll J, et al. Exercise training in normobaric hypoxia in endurance runners: II. Improvement of mitochondrial properties in skeletal muscle. J Appl Physiol. 2006;100(4):1249–57.

    Article  CAS  PubMed  Google Scholar 

  25. Roels B, Millet GP, Marcoux CJ, et al. Effects of hypoxic interval training on cycling performance. Med Sci Sports Exerc. 2005;37(1):138–46.

    Article  PubMed  Google Scholar 

  26. Messonnier L, Geyssant A, Hintzy F, et al. Effects of training in normoxia and normobaric hypoxia on time to exhaustion at the maximum rate of oxygen uptake. Eur J Appl Physiol. 2004;92(4–5):470–6.

    PubMed  Google Scholar 

  27. Friedmann B, Kinscherf R, Borisch S, et al. Effects of low-resistance/high-repetition strength training in hypoxia on muscle structure and gene expression. Pflugers Arch. 2003;446(6):742–51.

    Article  CAS  PubMed  Google Scholar 

  28. Ventura N, Hoppeler H, Seiler R, et al. The response of trained athletes to six weeks of endurance training in hypoxia or normoxia. Int J Sports Med. 2003;24(3):166–72.

    Article  CAS  PubMed  Google Scholar 

  29. Geiser J, Vogt M, Billeter R, et al. Training high-living low: changes of aerobic performance and muscle structure with training at simulated altitude. Int J Sports Med. 2001;22(8):579–85.

    Article  CAS  PubMed  Google Scholar 

  30. Bailey DM, Davies B, Young IS. Intermittent hypoxic training: implications for lipid peroxidation induced by acute normoxic exercise in active men. Clin Sci. 2001;101(5):465–75.

    Article  CAS  PubMed  Google Scholar 

  31. Messonnier L, Freund H, Feasson L, et al. Blood lactate exchange and removal abilities after relative high-intensity exercise: effects of training in normoxia and hypoxia. Eur J Appl Physiol. 2001;84(5):403–12.

    Article  CAS  PubMed  Google Scholar 

  32. Meeuwsen T, Hendriksen IJ, Holewijn M. Training-induced increases in sea-level performance are enhanced by acute intermittent hypobaric hypoxia. Eur J Appl Physiol. 2001;84(4):283–90.

    Article  CAS  PubMed  Google Scholar 

  33. Levine BD, Friedman DB, Engfred K, et al. The effect of normoxic or hypobaric hypoxic endurance training on the hypoxic ventilatory response. Med Sci Sports Exerc. 1992;24(7):769–75.

    Article  CAS  PubMed  Google Scholar 

  34. Morton JP, Cable NT. Effects of intermittent hypoxic training on aerobic and anaerobic performance. Ergonomics. 2005;48(11–14):1535–46.

    Article  PubMed  Google Scholar 

  35. Bailey DM, Davies B, Baker J. Training in hypoxia: modulation of metabolic and cardiovascular risk factors in men. Med Sci Sports Exerc. 2000;32(6):1058–66.

    Article  CAS  PubMed  Google Scholar 

  36. Mao TY, Fu LL, Wang JS. Hypoxic exercise training causes erythrocyte senescence and rheological dysfunction by depressed Gardos channel activity. J Appl Physiol. 2011;111(2):382–91.

    Article  CAS  PubMed  Google Scholar 

  37. Czuba M, Waskiewicz Z, Zajac A, et al. The effects of intermittent hypoxic training on aerobic capacity and endurance performance in cyclists. J Sports Sci Med. 2011;10(1):175–83.

    PubMed Central  PubMed  Google Scholar 

  38. Hendriksen IJ, Meeuwsen T. The effect of intermittent training in hypobaric hypoxia on sea-level exercise: a cross-over study in humans. Eur J Appl Physiol. 2003;88(4–5):396–403.

    Article  PubMed  Google Scholar 

  39. Beidleman B, Muza S, Fulco C, et al. Intermittent hypoxic exposure does not improve endurance performance at altitude. Med Sci Sports Exerc. 2009;41(6):1317.

    Article  PubMed  Google Scholar 

  40. Emonson DL, Aminuddin AHK, Wight RL, et al. Training-induced increases in sea level VO2 max and endurance are not enhanced by acute hypobaric exposure. Eur J Appl Physiol Occup Physiol. 1997;76(1):8–12.

    CAS  PubMed  Google Scholar 

  41. Debevec T, Amon M, Keramidas ME, et al. Normoxic and hypoxic performance following 4 weeks of normobaric hypoxic training. Aviat Space Environ Med. 2010;81(4):387–93.

    Article  CAS  PubMed  Google Scholar 

  42. Terrados N, Melichna J, Sylvén C, et al. Effects of training at simulated altitude on performance and muscle metabolic capacity in competitive road cyclists. Eur J Appl Physiol Occup Physiol. 1988;57(2):203–9.

    CAS  PubMed  Google Scholar 

  43. Kime R, Karlsen T, Nioka S, et al. Discrepancy between cardiorespiratory system and skeletal muscle in elite cyclists after hypoxic training. Dyn Med. 2003;2(1):4.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Haufe S, Wiesner S, Engeli S, et al. Influences of normobaric hypoxia training on metabolic risk markers in human subjects. Med Sci Sports Exerc. 2008;40(11):1939–44.

    Article  PubMed  Google Scholar 

  45. Dufour SP, Ponsot E, Zoll J, et al. Exercise training in normobaric hypoxia in endurance runners: I. Improvement in aerobic performance capacity. J Appl Physiol. 2006;100(4):1238–48.

    Article  CAS  PubMed  Google Scholar 

  46. Engfred K, Kjaer M, Secher NH, et al. Hypoxia and training-induced adaptation of hormonal responses to exercise in humans. Eur J Appl Physiol Occup Physiol. 1994;68(4):303–9.

    CAS  PubMed  Google Scholar 

  47. Mounier R, Pialoux V, Roels B, et al. Effect of intermittent hypoxic training on HIF gene expression in human skeletal muscle and leukocytes. Eur J Appl Physiol. 2009;105(4):515–24.

    Article  PubMed  Google Scholar 

  48. Galvin HM, Cooke K, Sumners DP, et al. Repeated sprint training in normobaric hypoxia. Br J Sports Med. 2013;47(Suppl 1):i74–9.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Puype J, Van Proeyen K, Raymackers JM, et al. Sprint interval training in hypoxia stimulates glycolytic enzyme activity. Med Sci Sports Exerc. 2013;45(11):2166–74.

    Article  CAS  PubMed  Google Scholar 

  50. Ho J-Y, Kuo T-Y, Liu K-L, et al. Combining normobaric hypoxia with short-term resistance training has no additive beneficial effect on muscular performance and body composition. J Strength Cond Res. 2014;28(4):935–41.

    PubMed  Google Scholar 

  51. Buchheit M, Kuitunen S, Voss SC, et al. Physiological strain associated with high-intensity hypoxic intervals in highly trained young runners. J Strength Cond Res. 2012;26(1):94–105.

    Article  PubMed  Google Scholar 

  52. Garvican LA, Hammond K, Varley MC, et al. Lower running performance and exacerbated fatigue in soccer played at 1600 m. Int J Sports Physiol Perform. 2014;9:397–404.

    PubMed  Google Scholar 

  53. Buchheit M. Repeated-sprint performance in team sport players: associations with measures of aerobic fitness, metabolic control and locomotor function. Int J Sports Med. 2012;33(3):230–9.

    Article  CAS  PubMed  Google Scholar 

  54. Calbet JA, Rådegran G, Boushel R, et al. On the mechanisms that limit oxygen uptake during exercise in acute and chronic hypoxia: role of muscle mass. J Physiol. 2009;587(2):477–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: part I. Cardiopulmonary emphasis. Sports Med. 2013;43(5):313–38.

    Article  PubMed  Google Scholar 

  56. Lepretre P-M, Koralsztein J-P, Billat VL. Effect of exercise intensity on relationship between VO2max and cardiac output. Med Sci Sports Exerc. 2004;36:1357–63.

    Article  PubMed  Google Scholar 

  57. Desplanches D, Hoppeler H, Linossier MT, et al. Effects of training in normoxia and normobaric hypoxia on human muscle ultrastructure. Pflugers Arch. 1993;425(3–4):263–7.

    Article  CAS  PubMed  Google Scholar 

  58. Bailey DM, Davies B, Castell LM, et al. Physical exercise and normobaric hypoxia: independent modulators of peripheral cholecystokinin metabolism in man. J Appl Physiol. 2001;90(1):105–13.

    CAS  PubMed  Google Scholar 

  59. Wang HY, Hu Y, Wang SH, et al. Association of androgen receptor CAG repeat polymorphism with VO(2)max response to hypoxic training in North China Han men. Int J Androl. 2010;33(6):794–9.

    Article  CAS  PubMed  Google Scholar 

  60. Schoenfeld BJ. Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med. 2013;43(3):179–94.

    Article  PubMed  Google Scholar 

  61. McCaulley GO, McBride JM, Cormie P, et al. Acute hormonal and neuromuscular responses to hypertrophy, strength and power type resistance exercise. Eur J Appl Physiol. 2009;105(5):695–704.

    Article  CAS  PubMed  Google Scholar 

  62. Takarada Y, Takazawa H, Sato Y, et al. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol. 2000;88(6):2097–106.

    CAS  PubMed  Google Scholar 

  63. Takarada Y, Sato Y, Ishii N. Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur J Appl Physiol. 2002;86(4):308–14.

    Article  PubMed  Google Scholar 

  64. Girard O, Brocherie F, Millet GP. On the use of mobile inflatable hypoxic marquees for sport-specific altitude training in team sports. Br J Sports Med. 2013;47(Suppl 1):i121–3.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Kathryn Duncan for her generous contribution during the systematic review process. No funding has been received for the preparation of this manuscript and the authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blake D. McLean.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McLean, B.D., Gore, C.J. & Kemp, J. Application of ‘Live Low-Train High’ for Enhancing Normoxic Exercise Performance in Team Sport Athletes. Sports Med 44, 1275–1287 (2014). https://doi.org/10.1007/s40279-014-0204-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-014-0204-8

Keywords

Navigation