Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Physical and Physiological Profiles of Taekwondo Athletes


Taekwondo has evolved into a modern-day Olympic combat sport. The physical and physiological demands of modern-day taekwondo competition require athletes to be competent in several aspects of fitness. This review critically explores the physical and physiological characteristics of taekwondo athletes and presents implications for training and research. International taekwondo athletes possess low levels of body fat and a somatotype that characterises a blend of moderate musculoskeletal tissue and relative body linearity. While there is some variation in the maximum oxygen uptake of taekwondo athletes, moderate to high levels of cardio-respiratory fitness are necessary to support the metabolic demands of fighting and to facilitate recovery between consecutive matches. Taekwondo athletes demonstrate high peak anaerobic power characteristics of the lower limbs and this attribute appears to be conducive to achieving success in international competition. The ability to generate and sustain power output using both concentric and ‘stretch-shortening cycle’ muscle actions of the lower limbs may be important to support the technical and tactical actions in combat. Taekwondo competitors also display moderate to high maximum dynamic strength characteristics of the lower and upper extremities, and moderate endurance properties of the trunk and hip flexor musculature. The dynamic nature of the technical and tactical actions in the sport demand high flexibility of the lower limbs. More extensive research is required into the physical and physiological characteristics of taekwondo athletes to extend existing knowledge and to permit specialised conditioning for different populations within the sport.

This is a preview of subscription content, log in to check access.


  1. 1.

    World Taekwondo Federation. Competition Rules. Accessed 22 Jan 2013.

  2. 2.

    Pieter W, Heijmans J. Training and competition in taekwondo. J Asian Martial Arts. 2003;12:8–22.

  3. 3.

    Bridge CA, Jones MA, Hitchen P, et al. Heart rate responses to Taekwondo training in experienced practitioners. J Strength Cond Res. 2007;21:718–23.

  4. 4.

    Bridge CA, Jones MA, Drust B. Physiological responses and perceived exertion during international Taekwondo competition. Int J Sports Physiol Perform. 2009;4:485–93.

  5. 5.

    Markovic G, Misigoj-Durakovic M, Trninic S. Fitness profile of elite Croatian female taekwondo athletes. Coll Antropol. 2005;29:93–9.

  6. 6.

    Pieter W. Performance characteristics of elite taekwondo athletes. Korean J Sports Sci. 1991;3:94–117.

  7. 7.

    Casolino E, Cortis C, Lupo C, et al. Physiological versus psychological evaluation in taekwondo elite athletes. Int J Sports Physiol Perform. 2012;7:322–31.

  8. 8.

    Heller J, Peric T, Dlouha R, et al. Physiological profiles of male and female taekwon-do (ITF) black belts. J Sport Sci. 1998;16:243–9.

  9. 9.

    Campos FA, Bertuzzi R, Dourado AC, et al. Energy demands in taekwondo athletes during combat simulation. Eur J Appl Physiol. 2012;112:1221–8.

  10. 10.

    Santos VG, Franchini E, Lima-Silva AE. Relationship between attack and skipping in Taekwondo contests. J Strength Cond Res. 2011;25:1743–51.

  11. 11.

    Matsushigue KA, Hartmann K, Franchini E. Taekwondo: physiological responses and match analysis. J Strength Cond Res. 2009;23:1112–7.

  12. 12.

    Bridge CA, Jones MA, Drust B. The activity profile in international Taekwondo competition is modulated by weight category. Int J Sports Physiol Perform. 2011;6:344–57.

  13. 13.

    Tornello F, Capranica L, Chiodo S, et al. Time-motion analysis of youth Olympic Taekwondo combats. J Strength Cond Res. 2013;27:223–8.

  14. 14.

    Bridge CA, McNaughton LR, Close GL, et al. Taekwondo exercise protocols do not recreate the physiological responses of championship combat. Int J Sports Med. 2013;34:573–81.

  15. 15.

    Capranica L, Lupo C, Cortis C, et al. Salivary cortisol and alpha-amylase reactivity to taekwondo competition in children. Eur J Appl Physiol. 2012;112:647–52.

  16. 16.

    Chiodo S, Tessitore A, Cortis C, et al. Effects of official Taekwondo competitions on all-out performances of elite athletes. J Strength Cond Res. 2011;25:334–9.

  17. 17.

    Bouhlel E, Jouini A, Gmada N, et al. Heart rate and blood lactate responses during taekwondo training and competition. Sci Sports. 2006;21:285–90.

  18. 18.

    Ball N, Nolan E, Wheeler K. Anthropometrical, physiological, and tracked power profiles of elite taekwondo athletes 9 weeks before the Olympic competition phase. J Strength Cond Res. 2011;25:2752–63.

  19. 19.

    Kim HB, Stebbins CL, Chai JH, et al. Taekwondo training and fitness in female adolescents. J Sports Sci. 2011;29:133–8.

  20. 20.

    Brito CJ, Roas AF, Brito IS, et al. Methods of body mass reduction by combat sport athletes. Int J Sport Nutr Exerc Metab. 2012;22:89–97.

  21. 21.

    Kazemi M, Shearer H, Choung YS. Pre-competition habits and injuries in Taekwondo athletes. BMC Musculoskelet Disord. 2005;6:26.

  22. 22.

    Tsai ML, Chou KM, Chang CK, et al. Changes of mucosal immunity and antioxidation activity in elite male Taiwanese taekwondo athletes associated with intensive training and rapid weight loss. Br J Sports Med. 2011;45:729–34.

  23. 23.

    Langan-Evans C, Close G, Morton J. Making weight in combat sports. Strength Cond J. 2011;33:25–39.

  24. 24.

    Rodriguez NR, DiMarco NM, Langley S. Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance. J Am Diet Assoc. 2009;109:509–27.

  25. 25.

    Olds T, Kang S. Anthropometric characteristics of adult male Korean taekwondo players. Seoul, Korea: First Olympic Taekwondo Scientific Congress; 2000. p. 69–75.

  26. 26.

    Baldi M, Dianno M, Andrade D, et al. Comparison of physical fitness of two different levels of taekwondo athletes. R Bras Ci Mov. 1990;4:26–31.

  27. 27.

    Toskovic NN, Blessing D, Williford HN. Physiologic profile of recreational male and female novice and experienced Tae Kwon Do practitioners. J Sports Med Phys Fit. 2004;44:164–72.

  28. 28.

    Fleming S, Costarelli V. Nutrient intake and body composition in relation to making weight in young male taekwondo players. Nutr Food Sci. 2007;37:358–66.

  29. 29.

    Rivera M, Rivera-Brown A, Frontera W. Health related physical fitness characteristics of elite Puerto Rican athletes. J Strength Cond Res. 1998;12:199–203.

  30. 30.

    Taaffe D, Pieter W. Physical and physiological characteristics of elite taekwondo athletes, vol. 3. In: Commonwealth and International Proceedings. Auckland, New Zealand; 1990. p. 80–8.

  31. 31.

    Hoffman J. Norms for fitness, performance, and health. Champaign (IL): Human Kinetics; 2006.

  32. 32.

    Reilly T, George K, Marfell-Jones M, et al. How well do skinfold equations predict percent body fat in elite soccer players? Int J Sports Med. 2009;30:607–13.

  33. 33.

    Carter J, Heath B. Somatotyping: development and applications. Cambridge: Cambridge University Press; 1990.

  34. 34.

    Pieter W, Taaffe D. Physique comparisons between junior and senior elite taekwondo athletes. In: International Congress on Youth, Leisure and Physical Activity and Kinanthropometry IV, Brussels, Belgium; 1990. p. 189–197.

  35. 35.

    Pieter W. Body build of elite junior taekwondo athletes. Acta Kinesiologiae Universitatis Tartuensis. 2008;13:99–106.

  36. 36.

    Pieter W. Somatotypes of young taekwondo athletes: implications for talent identification. In: Jürimäe T, Jürimäe J, editor. Proceedings of the 7th International Scientific Conference of the International Association of Sport Kinetics; 2001. p. 192–5.

  37. 37.

    Dotan R, Mitchell C, Cohen R, et al. Child-adult differences in muscle activation—a review. Pediatr Exerc Sci. 2012;24:2–21.

  38. 38.

    Ghorbanzadeh B, Mündroglus S, Akalan C, et al. Determination of taekwondo national team selection criterions by measuring physical and physiological parameters. Ann Biol. 2011;2:184–94.

  39. 39.

    Kazemi M, Waalen J, Morgan C, et al. A profile of Olympic taekwondo competitors. J Sports Sci Med. 2006;CSSI-1:114–21.

  40. 40.

    Sadowski J, Gierczuk D, Miller J, et al. Success factors in elite WTF taekwondo competitors. Arch Budo. 2012;8:141–6.

  41. 41.

    Sadowski J, Gierczuk D, Miller J, et al. Success factors in male WTF taekwondo juniors. J Combat Sports Martial Arts. 2012;1:47–51.

  42. 42.

    Pieter W, Mateo C, Bercades L. Determinants of performance in taekwondo. Med Sci Sports Exerc. 2002;34(Supp1):65.

  43. 43.

    Franchini E, Del Vecchio FB, Matsushigue KA, et al. Physiological profiles of elite judo athletes. Sports Med. 2011;41:147–66.

  44. 44.

    Aziz AR, Tan B, Teh KC. Physiological responses during matches and profile of elite Pencak Silat Exponents. J Sports Sci Med. 2002;1:147–55.

  45. 45.

    Zupan MF, Arata AW, Dawson LH, et al. Wingate Anaerobic Test peak power and anaerobic capacity classifications for men and women intercollegiate athletes. J Strength Cond Res. 2009;23:2598–604.

  46. 46.

    Coppin E, Heath EM, Bressel E, et al. Wingate anaerobic test reference values for male power athletes. Int J Sports Physiol Perform. 2011;7:232–6.

  47. 47.

    Maud P, Foster C. Physiological assessment of human fitness. Champaign: Human Kinetics; 2006.

  48. 48.

    Lin W, Yen K, Doris C, et al. Anaerobic capacity of elite Taiwanese Taekwondo athletes. Sci Sports. 2006;21:291–3.

  49. 49.

    Zabukovec R, Tiidus P. Physiological and anthropometric profile of elite kickboxers. J Strength Cond Res. 1995;9:240–2.

  50. 50.

    Bercades L, Pieter W, Lochner L, et al. Short-term muscle endurance in young taekwondo athletes. In: Varnes J, Gamble D, Horodyski MB, editor. 1995 ICHPER.SD 38th World Congress Proceedings. Gainesville: The University of Florida College of Health and Human Performance; 1995. p. 167–169.

  51. 51.

    Taaffe D, Pieter W, Yeh K. Short-term muscle power of junior taekwondo athletes. In: International Congress and Exposition on Sports Medicine and Human Performance, Vancouver; 1991. p. 16–20.

  52. 52.

    Pérez-Gómez J, Alcaraz P, Diaz Cuenca A. Fitness and body composition in national junior taekwondokas. First International Congress on Sport Sciences UCAM. Professional Challenges in the European. Higher Educ. 2008;5:35.

  53. 53.

    Chaabene H, Hachana Y, Franchini E, et al. Physical and physiological profile of elite karate athletes. Sports Med. 2012;42:829–43.

  54. 54.

    Green HJ, Fraser IG, Ranney DA. Male and female differences in enzyme activities of energy metabolism in vastus lateralis muscle. J Neurol Sci. 1984;65:323–31.

  55. 55.

    Komi PV, Karlsson J. Skeletal muscle fibre types, enzyme activities and physical performance in young males and females. Acta Physiol Scand. 1978;103:210–8.

  56. 56.

    Chiodo S, Tessitore A, Lupo C, et al. Effects of official youth taekwondo competitions on jump and strength performance. Eur J Sport Sci. 2012;12:113–20.

  57. 57.

    Yoon J. Physiological profiles of elite senior wrestlers. Sports Med. 2002;32:225–33.

  58. 58.

    Ghosh A. Heart rate, oxygen consumption and blood lactate response to training in amateur boxing. Int J Appl Sports Sci. 2010;22:1–12.

  59. 59.

    Billat VL, Demarle A, Slawinski J, et al. Physical and training characteristics of top-class marathon runners. Med Sci Sports Exerc. 2001;33:2089–97.

  60. 60.

    Butios S, Tasika N. Changes in heart rate and blood lactate concentration as intensity parameters during simulated Taekwondo competition. J Sports Med Phys Fitness. 2007;47:179–85.

  61. 61.

    Khanna G, Manna I. Study of the physiological profile of Indian boxers. J Sports Sci Med. 2006;5:90–8.

  62. 62.

    Bassett DR Jr, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32:70–84.

  63. 63.

    Winsley RJ, Fulford J, Roberts AC, et al. Sex difference in peak oxygen uptake in prepubertal children. J Sci Med Sport. 2009;12:647–51.

  64. 64.

    Obert P, Mandigouts S, Nottin S, et al. Cardiovascular responses to endurance training in children: effect of gender. Eur J Clin Invest. 2003;33:199–208.

  65. 65.

    Noorul H, Pieter W, Erie Z. Physical fitness of recreational adolescent taekwondo athletes. Braz J Biomotricity. 2008;2:230–40.

  66. 66.

    Cetin C, Karatosun H, Baydar ML, et al. A regression equation to predict true maximal oxygen consumption of taekwondo athletes using a field test. Saudi Med J. 2005;26:848–50.

  67. 67.

    Glassford RG, Baycroft GH, Sedgwick AW, et al. Comparison of maximal oxygen uptake values determined by predicted and actual methods. J Appl Physiol. 1965;20:509–13.

  68. 68.

    Saltin B, Astrand PO. Maximal oxygen uptake in athletes. J Appl Physiol. 1967;23:353–8.

  69. 69.

    Âstrand P, Rodahl K, Dahl H, et al. Text book of work physiology—physiological basis of exercise. 4th ed. Champaign: Human Kinetics; 2003.

  70. 70.

    Girard O, Chevalier R, Leveque F, et al. Specific incremental field test for aerobic fitness in tennis. Br J Sports Med. 2006;40:791–6.

  71. 71.

    Wilkinson M, Leedale-Brown D, Winter EM. Validity of a squash-specific fitness test. Int J Sports Physiol Perform. 2009;4:29–40.

  72. 72.

    Casolino E, Lupo C, Cortis C, et al. Technical and tactical analysis of youth taekwondo performance. J Strength Cond Res. 2012;26:1489–95.

  73. 73.

    Teng W, Keong C, Ghosh K, et al. Effects of a Resistance Training Programme on Isokinetic Peak Torque and Anaerobic Power of 13–16 Years Old Taekwondo Athletes. Int J Sports Sci Engineering. 2008;2:111–21.

  74. 74.

    Cetin C, Kececi AD, Erdogan A, et al. Influence of custom-made mouth guards on strength, speed and anaerobic performance of taekwondo athletes. Dent Traumatol. 2009;25:272–6.

  75. 75.

    Pieter W. Isokinetic leg strength of taekwondo practitioners. Asian J Phys Educ. 1989;12:55–64.

  76. 76.

    Kannus P. Isokinetic evaluation of muscular performance: implications for muscle testing and rehabilitation. Int J Sports Med. 1994;15(Suppl 1):S11–8.

  77. 77.

    Svensson M, Drust B. Testing soccer players. J Sports Sci. 2005;23:601–18.

  78. 78.

    Peterson M. Power. In: Miller T, editor. National Strength and Conditioning Association: NSCA’s guide to tests and assessments, Human Kinetics; 2012. p. 217–252.

  79. 79.

    Newton R, Cormie P, Kraemer W. Power training. In: Hoffman JR, editor. National Strength and Conditioning Association: NSCA’s guide to program design; 2012. p. 95–117.

  80. 80.

    Patterson D, Peterson D. Vertical jump and leg power norms for young adults. Meas Phys Educ Exerc Sci. 2004;8:33–41.

  81. 81.

    Liu D, Sartor MA, Nader GA, et al. Skeletal muscle gene expression in response to resistance exercise: sex specific regulation. BMC Genomics. 2010;11:659.

  82. 82.

    Pieter W, Bercades L. Strength and power in filipino varsity taekwondo. Mov Culture. 2010;10:67–72.

  83. 83.

    Leard JS, Cirillo MA, Katsnelson E, et al. Validity of two alternative systems for measuring vertical jump height. J Strength Cond Res. 2007;21:1296–9.

  84. 84.

    Castagna C, Ganzetti M, Ditroilo M, et al. Concurrent validity of vertical jump performance assessment systems. J Strength Cond Res. 2013;27:761–8.

  85. 85.

    Bosquet L, Berryman N, Dupuy O. A comparison of 2 optical timing systems designed to measure flight time and contact time during jumping and hopping. J Strength Cond Res. 2009;23:2660–5.

  86. 86.

    Moir G. Muscular strength. In: Miller T, editor. National Strength and Conditioning Association: NSCA’s guide to tests and assessments, Human Kinetics; 2012. p. 147–192.

  87. 87.

    Moir G. Muscular endurance. In: Miller T, editor. National Strength and Conditioning Association: NSCA’s guide to tests and assessments, Human Kinetics; 2012. p. 193–217.

  88. 88.

    Triplett NS. Speed and Agility. In: Miller T. editors. National Strength and Conditioning Association: NSCA’s guide to tests and assessments, Human Kinetics. 2012;253–274.

  89. 89.

    Sheppard JM, Young WB. Agility literature review: classifications, training and testing. J Sports Sci. 2006;24:919–32.

  90. 90.

    Suzana M, Pieter W. Motor ability profile of junior and senior taekwondo club athletes. Brazilian J Biomotricity. 2009;3:325–33.

  91. 91.

    Pieter F, Pieter W. Speed and force in selected Taekwondo techniques. Biol Sport. 1995;12:257–66.

  92. 92.

    Falco C, Alvarez O, Castillo I, et al. Influence of the distance in a roundhouse kick’s execution time and impact force in Taekwondo. J Biomech. 2009;42:242–8.

  93. 93.

    Jakubiak N, Saunders DH. The feasibility and efficacy of elastic resistance training for improving the velocity of the Olympic Taekwondo turning kick. J Strength Cond Res. 2008;22:1194–7.

  94. 94.

    Borms J, Roy P. Flexibility. In: Eston R, Reilly T, editors. Kinanthropometry and exercise physiology laboratory manual: volume 1: Anthropometry, Routledge; 2001 p. 117–47.

  95. 95.

    Wasik J. Structure of movement of a turning technique used in the event of special techniques in Taekwon-do ITF. Arch Budo. 2009;5:111–5.

  96. 96.

    Hui SS, Yuen PY. Validity of the modified back-saver sit-and-reach test: a comparison with other protocols. Med Sci Sports Exerc. 2000;32:1655–9.

  97. 97.

    Fong SM, Ng S, Chung L. Health through martial arts training: physical fitness and reaction time in adolescent Taekwondo practitioners. Health. 2013;5:1–5.

  98. 98.

    Batterham A, Hopkins W. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;1:50–7.

  99. 99.

    Lohman T. Skinfolds and body density and their relation to body fatness: a review. Hum Biol. 1981;53:181–225.

  100. 100.

    Siri W. Body composition from fluid spaces and density. In: Brozek J, Henshel J, editors. Techniques for measuring body composition. Washington, DC: National Academy of Sciences Research Council; 1961. p. 223–4.

  101. 101.

    Pieter W, Taaffe D. Peak torque and strength ratios of elite taekwondo athletes. In: Commonwealth and International Proceedings. Auckland. 1990;3:67–79.

  102. 102.

    Wilmore J. The use of actual, predicted and constant residual volumes in the assessment of body composition by underwater weighing. Med Sci Sports Exerc. 1969;1:87–90.

  103. 103.

    Thompson WR, Vinueza C. Physiologic profile of Tae Kwon Do black belts. Sports Med Train Rehabil. 1991;3:49–53.

  104. 104.

    Drabik P. Estimation of the anaerobic threshold in male taekwondo athletes by using six different methods. Biol Sport. 1995;12:25–34.

  105. 105.

    Slaughter M, Lohman T, Boileau R, et al. Skinfold equations for estimation of body fatness in children and youth. Hum Biol. 1988;60:709–23.

  106. 106.

    Ross W, Marfell-Jones M. Kineanthropometry. In: MacDougall, JD Wenger HA, Green HJ, editors. Physiological testing of the high-performance athletes. Champaign (IL): Human Kinetics. 1991. p. 223–308.

  107. 107.

    Seliger V. Methods and results of physical fitness national population study, vol I–III. Prague: Charles University; 1975.

  108. 108.

    Lohman T. Advances in body composition assessment. Champaign (IL): Human Kinetics; 1992.

  109. 109.

    Lohman T, Boileau R, Slaushter M. Body composition in children and youths. In: Boileau R, editor. Advances in pediatric sport science. Champaign (IL): Human Kinetics; 1984. p. 29–58.

  110. 110.

    Melhim AF. Aerobic and anaerobic power responses to the practice of taekwon-do. B J Sports Med. 2001;35:231–4.

  111. 111.

    Jackson A, Pollock M. Practical assessment of body composition. Phys Sports Med. 1985;13:76–80.

  112. 112.

    Durnin JV, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr. 1974;32:77–97.

  113. 113.

    Deurenberg-Yap M, Schmidt G, van Staveren WA, et al. The paradox of low body mass index and high body fat percentage among Chinese, Malays and Indians in Singapore. Int J Obes Relat Metab Disord. 2000;24:1011–7.

  114. 114.

    Erie Z, Pieter W. Physical fitness in recreational child taekwondo participants. In: Hume P, Stewart A. editor, Kinanthropometry XI: 2008 Pre-Olympic congress anthropometry research. Auckland, New Zealand: Auckland University of Technology; 2008. p. 90–95.

  115. 115.

    Siri W. Gross composition of the body. In: Lawrence JH, Tobias CA, editors. Advances in biological and medical physics IV. 1956. p. 45–56.

  116. 116.

    Fritzsche J, Raschkam C. Body composition and the somatotype of German top taekwondo practitioners, vol 17. Institute of Sports Sciences Johann Wolfgang Goethe University, Frankfurt/Main Papers Anthropology; 2008. p. 58–71.

  117. 117.

    Faulkner J. Physiology of swimming and diving. In: Falls H, editor, Exercise physiology. Baltimore: Academic Press; 1968.

  118. 118.

    Sant’Ana J, Silva J, Guglielmo L. Physiological variables identified in progressive specific test for taekwondo. Motriz Rev. 2009;15:611–20.

  119. 119.

    Úbeda N, Palacios Gil-Antuñano N, Montalvo Z. Eating habits and body composition of Spanish elite athletes in combat. Nutr Hosp. 2010;25:414–421.

  120. 120.

    Pilz-Burstein R, Ashkenazi Y, Yaakobovitz Y, et al. Hormonal response to Taekwondo fighting simulation in elite adolescent athletes. Eur J Appl Physiol. 2010;110:1283–90.

  121. 121.

    Yuhasz M. The effects of sports training on body fat in men with prediction of optimal body weight. Doctoral Thesis, University of Illinois, Urbana, Illionis; 1966.

  122. 122.

    Jackson AS, Pollock ML, Ward A. Generalized equations for predicting body density of women. Med Sci Sports Exerc. 1980;12:175–81.

  123. 123.

    Lohman T. Research relating to assessment of skeletal status. In: Roche AF, editor. Body composition assessment in youth and adults. Columbus, Oh: Ross Laboratories; 1985. p. 38–41.

  124. 124.

    Durnin J, Rahaman M. The assessment of the amount of fat in the human body from measurements of skinfold thickness. Br J Nutr. 1967;21:681–9.

  125. 125.

    Rahmani-Nia F, Rahnama N, Masoumi S. The effects of physical exercise on soluble transferrin receptor and other indicators of iron status in female taekwondoist. Int J Sports Sci Eng. 2007;1:189–94.

  126. 126.

    Markovic G, Vucetic V, Cardinale M. Heart rate and lactate responses to taekwondo fight in elite women performers. Biol Sport. 2008;25:135–46.

  127. 127.

    Lee YW, Shin KW, Paik IY, et al. Immunological impact of Taekwondo competitions. Int J Sports Med. 2012;33:58–66.

  128. 128.

    Chan K, Pieter W, Moloney K. Kinathropometric profile of recreational taekwondo athletes. Biol Sport. 2003;20:175–80.

  129. 129.

    León H, Viramontes J, Veitía W. Anthropological estimation of the body shape of Cuban elite combat athletes from Olympic sports. Antropo. 2009;19:23–32.

  130. 130.

    Perandini L, Siqueira-Pereira T, Okuno N, et al. Relationship between vagal withdrawal and reactivation indices and aerobic capacity in taekwondo athletes. Rev Bras Cineantropom Desempenho Hum. 2010;12:8–13.

  131. 131.

    Cubrilo D, Djordjevic D, Zivkovic V, et al. Oxidative stress and nitrite dynamics under maximal load in elite athletes: relation to sport type. Mol Cell Biochem. 2011;355:273–9.

Download references


No sources of funding were used to assist in the preparation of this review. The authors declare that they have no conflicts of interest.

Author information

Correspondence to Craig A. Bridge.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bridge, C.A., Ferreira da Silva Santos, J., Chaabène, H. et al. Physical and Physiological Profiles of Taekwondo Athletes. Sports Med 44, 713–733 (2014).

Download citation


  • Female Athlete
  • Anaerobic Power
  • Wingate Test
  • Muscular Power
  • Combat Sport