Sports Medicine

, Volume 43, Issue 8, pp 649–653 | Cite as

Neurodoping: Brain Stimulation as a Performance-Enhancing Measure

  • Nick J. DavisEmail author
Current Opinion


Doping may be defined, broadly, as the use of unauthorised means to increase performance in sport. Doping is most commonly associated with the use of drugs. In this paper, I discuss the use of emerging techniques for the modulation of brain activity in healthy people using electric or magnetic fields, and suggest how they might be used to enhance physical and mental performance in sports. I will suggest that neurodoping may have different uses in different sports, and I argue that each sport must determine whether neurodoping should be considered as cheating, or should be considered a legitimate aid to training or performance.


Transcranial Magnetic Stimulation Brain Stimulation Elite Athlete Cortical Excitability Sport Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Future and Emerging Technologies (FET) programme within the Seventh Framework Programme for Research of the European Commission, under FETOpen grant number: 222079 (HIVE). I am grateful to Dr Martyn Bracewell and Mr Simon Tomlinson and two anonymous reviewers for helpful comments. I declare no conflicts of interest in preparing this article.


  1. 1.
    Wilson S, Lockwood R, Thickbroom G, Mastaglia F. The muscle silent period following transcranial magnetic cortical stimulation. J Neurol Sci. 1993;114:216–22.PubMedCrossRefGoogle Scholar
  2. 2.
    Huang Y, Edwards M, Rounis E, Bhatia K, Rothwell J. Theta burst stimulation of the human motor cortex. Neuron. 2005;45:201–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Teneback C, Nahas Z, Speer A, Molloy M, Stallings L, Spicer K, et al. Changes in prefrontal cortex and paralimbic activity in depression following two weeks of daily left prefrontal TMS. J Neuropsychiatry Clin Neurosci. 1999;11:426–35.PubMedGoogle Scholar
  4. 4.
    Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. Neuroscientist. 2011;17(1):37–53.PubMedCrossRefGoogle Scholar
  5. 5.
    Kanai R, Chaieb L, Antal A, Walsh V, Paulus W. Frequency-dependent electrical stimulation of the visual cortex. Curr Biol. 2008;18(23):1839–43.PubMedCrossRefGoogle Scholar
  6. 6.
    Kanai R, Paulus W, Walsh V. Transcranial alternating current stimulation (tACS) modulates cortical excitability as assessed by TMS-induced phosphene thresholds. Clin Neurophysiol. 2010;121:1551–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Miranda PC, Lomarev M, Hallett M. Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol. 2006;117(7):1623–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Wagner T, Zahn M, Grodzinsky A, Pascual-Leone A. Three-dimensional head model simulation of transcranial magnetic stimulation. IEEE Trans Biomed Eng. 2004;51:1586–98.PubMedCrossRefGoogle Scholar
  9. 9.
    Cogiamanian F, Marceglia S, Ardolino G, Barbieri S, Priori A. Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas. Eur J Neurosci. 2007;26(1):242–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Pascual-Leone A, Valls-Sole J, Wassermann E, Brasil-Neto J, Cohen L, Hallett M. Effects of focal transcranial magnetic stimulation on simple reaction time to acoustic, visual and somatosensory stimuli. Brain. 1992;115:1045–59.PubMedCrossRefGoogle Scholar
  11. 11.
    Axford P, Lakany H, Conway B. The effects of transcranial stimulation on enhanced physiological tremor: a pilot study. In: 6th UKRI PG Conference in biomedical engineering and medical physics 2011. Glasgow, UK; 2011.Google Scholar
  12. 12.
    Nitsche M, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57:1899–901.PubMedCrossRefGoogle Scholar
  13. 13.
    Reis J, Schambra HM, Cohen LG, Buch ER, Fritsch B, Zarahn E, et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci USA. 2009;106(5):1590–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Vines BW, Cerruti C, Schlaug G. Dual-hemisphere tDCS facilitates greater improvements for healthy subjects’ non-dominant hand compared to uni-hemisphere stimulation. BMC Neurosci. 2008;9:103.PubMedCrossRefGoogle Scholar
  15. 15.
    Stagg C, Wylezinska M, Matthews P, Johansen-Berg H, Jezzard P, Rothwell J, et al. Neurochemical effects of theta burst stimulation as assessed by magnetic resonance spectroscopy. J Neurophysiol. 2009;101:2872–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Stagg CJ, Best JG, Stephenson MC, O’Shea J, Wylezinska M, Kineses ZT, et al. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J Neurosci. 2009;29(16):5202–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Clark VP, Coffman BA, Trumbo MC, Gasparovic C. Transcranial direct current stimulation (tDCS) produces localized and specific alterations in neurochemistry: a 1H magnetic resonance spectroscopy study. Neurosci Lett. 2011;500(1):67–71.PubMedCrossRefGoogle Scholar
  18. 18.
    Tharayil BS, Gangadhar BN, Thirthalli J, Anand L. Seizure with single-pulse transcranial magnetic stimulation in a 35-year-old otherwise-healthy patient with bipolar disorder. J ECT. 2005;21:188–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Savulescu J, Foddy B, Clayton M. Why we should allow performance enhancing drugs in sport. Brit J Sports Med. 2004;38:666–70.CrossRefGoogle Scholar
  20. 20.
    Cohen Kadosh R, Levy N, O’Shea J, Shea N, Savulescu J. The neuroethics of non-invasive brain stimulation. Curr Biol. 2012;22:R108–R11.Google Scholar
  21. 21.
    Cohen Kadosh R. Using transcranial electrical stimulation to enhance cognitive functions in the typical and atypical brain. Transl Neurosci. 2013;4:1–14.Google Scholar
  22. 22.
    Tang W-T, Zhang W-Y, Huang C-C, Young M-S, Hwang I-S. Postural tremor and control of the upper limb in air pistol shooters. J Sports Sci. 2006;24:1579–87.Google Scholar
  23. 23.
    Magnus J, Klaassen F. On the advantage of serving first in a tennis set: four years at Wimbledon. Statistician. 1999;48:247–56.Google Scholar
  24. 24.
    Schermer M. On the argument that enhancement is “cheating”. J Med Ethics. 2008;34:85–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Stokes M, Barker A, Dervinis M, Verbruggen F, Maizey L, Adams R, et al. Biophysical determinants of transcranial magnetic stimulation: effects of excitability and depth of targeted area. J Neurophysiol. 2013;109:437–44.PubMedCrossRefGoogle Scholar
  26. 26.
    Nitsche MA, Boggio PS, Fregni F, Pascual-Leone A. Treatment of depression with transcranial direct current stimulation (tDCS): a review. Exp Neurol. 2009;219(1):14–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Amiaz R, Levy D, Vainiger D, Grunhaus L, Zangen A. Repeated high-frequency transcranial magnetic stimulation over the dorsolateral prefrontal cortex reduces cigarette craving and consumption. Addiction. 2009;104:653–60.PubMedCrossRefGoogle Scholar
  28. 28.
    Csikszentmihalyi M. Flow: the psychology of optimal experience. New York: Harper & Row; 1990.Google Scholar
  29. 29.
    Snyder A, Bahramali H, Hawker T, Mitchell D. Savant-like numerosity skills revealed in normal people by magnetic pulses. Perception. 2006;35:837–45.PubMedCrossRefGoogle Scholar
  30. 30.
    Chi RP, Snyder AW. Facilitate insight by non-invasive brain stimulation. PLoS ONE. 2011;6(2).Google Scholar
  31. 31.
    Jackson S, Csikszentmihalyi M. Flow in sports: the keys to optimal experiences and performances. Champaign, IL: Human Kinetics; 1999.Google Scholar
  32. 32.
    Jackson S. Factors influencing the occurrence of flow state in elite athletes. J Appl Sport Psychol. 1995;7:138–66.CrossRefGoogle Scholar
  33. 33.
    Fuerra M, Bianco G, Santarnecchi E, Del Testa M, Rossi A, Rossi S. Frequency-dependent tuning of the human motor system induced by transcranial oscillatory potentials. J Neurosci. 2011;31(34):12165–70.CrossRefGoogle Scholar
  34. 34.
    Davis N, Tomlinson S, Morgan H. The role of beta-frequency neural oscillations in motor control. J Neurosci. 2012;32:403–4.PubMedCrossRefGoogle Scholar
  35. 35.
    Pogosyan A, Gaynor L, Eusebio A, Brown P. Boosting cortical activity at beta-band fequencies slows movement in humans. Curr Biol. 2009;19:1637–41.PubMedCrossRefGoogle Scholar
  36. 36.
    Terney D, Chaieb L, Moliadze V, Antal A, Paulus W. Increasing human brain excitability by transcranial high-frequency random noise stimulation. J Neurosci. 2008;28(52):14147–55.PubMedCrossRefGoogle Scholar
  37. 37.
    Oliviero A, Mordillo-Mateos L, Arias P, Panyavin I, Foffani G, Aguilar J. Transcranial static magnetic field stimulation of the human motor cortex. J Physiol. 2011;589(20):4949–58.PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.School of PsychologyBangor UniversityBangorUK

Personalised recommendations