Advertisement

PharmacoEconomics

, Volume 36, Issue 10, pp 1223–1252 | Cite as

Modeling Approaches in Cost-Effectiveness Analysis of Disease-Modifying Therapies for Relapsing–Remitting Multiple Sclerosis: An Updated Systematic Review and Recommendations for Future Economic Evaluations

  • Luis Hernandez
  • Malinda O’Donnell
  • Maarten Postma
Systematic Review

Abstract

Background

Numerous cost-effectiveness analyses (CEAs) of disease-modifying therapies (DMTs) for relapsing–remitting multiple sclerosis (RRMS) have been published in the last three decades. Literature reviews of the modeling methods and results from these CEAs have also been published. The last literature review that focused on modeling methods, without country or time horizon in the inclusion criteria, included studies published up to 2012. Since then, new DMTs have become available, and new models and data sources have been used to assess their cost effectiveness.

Objective

The aim of this systematic review was to provide a detailed and comprehensive description of the relevant aspects of economic models used in CEAs of DMTs for RRMS, to understand how these models have progressed from recommendations provided in past reviews, what new approaches have been developed, what issues remain, and how they could be addressed.

Methods

EMBASE, MEDLINE, Cochrane Central Register of Controlled Trials (CENTRAL), the National Health System (NHS) Economic Evaluations Database, the Health Technology Assessment (HTA) Database, and EconLit were searched for cost-effectiveness studies of DMTs for RRMS that used decision-analytic models, published in English between 1 January 2012 and 24 December 2017. The inclusion criteria were as follows: being a full economic evaluation, a decision-analytic model was used, the target population concerned adult patients with RRMS, and being available in full-text format. Studies were not excluded based on the methodological quality. The background information of the included studies, as well as specific information on the components of the economic models related to the areas of recommendation from previous reviews were extracted.

Results

Twenty-three studies from ten countries were included. The model structure of these studies has converged over time, characterizing the course of disease progression in terms of changes in disability and the occurrence of relapses over time. Variations were found in model approach; data sources for the natural course of the disease and comparative efficacy between DMTs; number of lines of treatment modeled; long-term efficacy waning and treatment discontinuation assumptions; type of withdrawal; and criteria for selecting adverse events. Main areas for improvement include using long-term time horizons and societal perspective; reporting relevant health outcomes; conducting scenario analyses using different sources of natural history and utility values; and reporting how the model was validated.

Conclusion

The structure of economic models used in CEAs of DMTs for RRMS has converged over time. However, variation remains in terms of model approach, inputs, and assumptions. Though some recommendations from previous reviews have been incorporated in later models, areas for improvement remain.

Notes

Acknowledgements

The authors would like to thank David January, PhD, Lead Market Access Writer at Evidera, for his contribution to resolve the disagreements between the reviewers during the abstract and full-text screening.

Author Contributions

Luis Hernandez was the leading author who conducted the study design, literature search, data extraction, and writing of the manuscript, and will serve as guarantor for the content of the manuscript. Malinda O’Donnell participated in the literature search, data extraction, and writing of the manuscript. Maarten Postma participated in the study design and review of the manuscript.

Compliance with Ethical Standards

Funding

No funding was received for this study or manuscript.

Conflict of interest

Luis Hernandez and Malinda O’Donnell are employees of Evidera, a company that provides consulting and other research services to pharmaceutical, device, government, and non-government organizations. As part of his role at Evidera, Luis Hernandez has provided consulting services to pharmaceutical companies, manufacturers of disease-modifying therapies covered in this review. Maarten Postma is a Professor and researcher at the University of Groningen. Maarten Postma has received grants and honoraria from various pharmaceutical companies all unrelated to this research, but sometimes in the area of multiple sclerosis and from companies developing, producing, and marketing multiple sclerosis drugs.

Supplementary material

40273_2018_683_MOESM1_ESM.docx (44 kb)
Supplementary material 1 (DOCX 44 kb)

References

  1. 1.
    Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372(9648):1502–17.  https://doi.org/10.1016/S0140-6736(08)61620-7.PubMedCrossRefGoogle Scholar
  2. 2.
    Zwibel HL. Contribution of impaired mobility and general symptoms to the burden of multiple sclerosis. Adv Ther. 2009;26(12):1043–57.  https://doi.org/10.1007/s12325-009-0082-x.PubMedCrossRefGoogle Scholar
  3. 3.
    Pompili M, Forte A, Palermo M, Stefani H, Lamis DA, Serafini G, et al. Suicide risk in multiple sclerosis: a systematic review of current literature. J Psychosom Res. 2012;73(6):411–7.  https://doi.org/10.1016/j.jpsychores.2012.09.011.PubMedCrossRefGoogle Scholar
  4. 4.
    Campbell JD, Ghushchyan V, Brett McQueen R, Cahoon-Metzger S, Livingston T, Vollmer T, et al. Burden of multiple sclerosis on direct, indirect costs and quality of life: national US estimates. Mult Scler Relat Disord. 2014;3(2):227–36.  https://doi.org/10.1016/j.msard.2013.09.004.PubMedCrossRefGoogle Scholar
  5. 5.
    Klevan G, Jacobsen CO, Aarseth JH, Myhr KM, Nyland H, Glad S, et al. Health related quality of life in patients recently diagnosed with multiple sclerosis. Acta Neurol Scand. 2014;129(1):21–6.  https://doi.org/10.1111/ane.12142.PubMedCrossRefGoogle Scholar
  6. 6.
    Multiple Sclerosis International Federation (MSIF). Atlas of MS 2013: Mapping multiple sclerosis around the world. 2013. https://www.msif.org/wp-content/uploads/2014/09/Atlas-of-MS.pdf. Accessed December 23 2017.
  7. 7.
    McDowell TY, Amr S, Langenberg P, Royal W, Bever C, Culpepper WJ, et al. Time of birth, residential solar radiation and age at onset of multiple sclerosis. Neuroepidemiology. 2010;34(4):238–44.  https://doi.org/10.1159/000297749.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Wallin MT, Culpepper WJ, Coffman P, Pulaski S, Maloni H, Mahan CM, et al. The Gulf War era multiple sclerosis cohort: age and incidence rates by race, sex and service. Brain. 2012;135(Pt 6):1778–85.  https://doi.org/10.1093/brain/aws099.PubMedCrossRefGoogle Scholar
  9. 9.
    Owens GM. Economic burden of multiple sclerosis and the role of managed sare organizations in multiple sclerosis management. Am J Manag Care. 2016;22(6 Suppl):s151–8.PubMedGoogle Scholar
  10. 10.
    Kobelt G, Thompson A, Berg J, Gannedahl M, Eriksson J, Group MS, et al. New insights into the burden and costs of multiple sclerosis in Europe. Mult Scler. 2017;23(8):1123–36.  https://doi.org/10.1177/1352458517694432.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS, Thompson AJ, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;83(3):278–86.  https://doi.org/10.1212/WNL.0000000000000560.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    National Multiple Sclerois Society UK. What is MS? Types of MS. https://www.mssociety.org.uk/what-is-ms/types-of-ms. Accessed December 23 2017.
  13. 13.
    National Multiple Sclerois Society US. What is MS? Types of MS. https://www.nationalmssociety.org/What-is-MS/Types-of-MS. Accessed December 23 2017.
  14. 14.
    Trapp BD, Nave KA. Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci. 2008;31:247–69.  https://doi.org/10.1146/annurev.neuro.30.051606.094313.PubMedCrossRefGoogle Scholar
  15. 15.
    National Multiple Sclerois Society US. Treating MS: Medications. https://www.nationalmssociety.org/Treating-MS/Medications. Accessed December 23 2017.
  16. 16.
    Wingerchuk DM, Weinshenker BG. Disease modifying therapies for relapsing multiple sclerosis. BMJ. 2016;354:i3518.  https://doi.org/10.1136/bmj.i3518.PubMedCrossRefGoogle Scholar
  17. 17.
    Ontaneda D, Fox RJ. Progressive multiple sclerosis. Curr Opin Neurol. 2015;28(3):237–43.  https://doi.org/10.1097/WCO.0000000000000195.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Ontaneda D, Fox RJ, Chataway J. Clinical trials in progressive multiple sclerosis: lessons learned and future perspectives. Lancet Neurol. 2015;14(2):208–23.  https://doi.org/10.1016/S1474-4422(14)70264-9.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    US Food and Drug Administration (FDA). FDA News Release: FDA approved new drug to treat multiple sclerosis [ocrelizumab]. 2017. https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm549325.htm. Accessed December 23 2017.
  20. 20.
    European Medicines Agency (EMA). Press release: New medicine for multiple sclerosis [ocrelizumab]. 2017. https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm549325.htm. Accessed December 23 2017.
  21. 21.
    Vargas DL, Tyor WR. Update on disease-modifying therapies for multiple sclerosis. J Investig Med. 2017;65(5):883–91.  https://doi.org/10.1136/jim-2016-000339.PubMedCrossRefGoogle Scholar
  22. 22.
    Shimizu Y, Ikeguchi R, Kitagawa K. When and how disease-modifying drugs for multiple sclerosis should be changed in daily practice. Clini Experimen Neuroimmunol. 2017;8(1):71–80.  https://doi.org/10.1111/cen3.12380.CrossRefGoogle Scholar
  23. 23.
    Hartung DM, Bourdette DN, Ahmed SM, Whitham RH. The cost of multiple sclerosis drugs in the US and the pharmaceutical industry: too big to fail? Neurology. 2015;84(21):2185–92.  https://doi.org/10.1212/WNL.0000000000001608.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Brown MG. Cost of disease-modifying therapies for multiple sclerosis. Neurology. 2015;84(21):e181–5.  https://doi.org/10.1212/WNL.0000000000001676.PubMedCrossRefGoogle Scholar
  25. 25.
    Iannazzo S, Iliza AC, Perrault L. Disease-modifying therapies for multiple sclerosis: a systematic literature review of cost-effectiveness studies. Pharmacoeconomics. 2017.  https://doi.org/10.1007/s40273-017-0577-2.CrossRefGoogle Scholar
  26. 26.
    Hawton A, Shearer J, Goodwin E, Green C. Squinting through layers of fog: assessing the cost effectiveness of treatments for multiple sclerosis. Appl Health Econ Health Policy. 2013;11(4):331–41.  https://doi.org/10.1007/s40258-013-0034-0.PubMedCrossRefGoogle Scholar
  27. 27.
    Guo S, Pelligra C, Saint-Laurent Thibault C, Hernandez L, Kansal A. Cost-effectiveness analyses in multiple sclerosis: a review of modelling approaches. Pharmacoeconomics. 2014;32(6):559–72.  https://doi.org/10.1007/s40273-014-0150-1.PubMedCrossRefGoogle Scholar
  28. 28.
    School of Health and Related Research (ScHARR): University of Sheffield—Center for Bayesian Statistic in Health Economics. Cost effectiveness of beta interferons and glatiramer acetate in the management of multiple sclerosis: Final report to the National Institute for Clinical Excellence. 2002. https://www.nice.org.uk/guidance/ta32/documents/assessment-report-on-the-use-of-beta-interferon-and-glatiramer-acetate-for-multiple-sclerosis-scharr-report2. Accessed December 28 2017.
  29. 29.
    Yamamoto D, Campbell JD. Cost-effectiveness of multiple sclerosis disease-modifying therapies: a systematic review of the literature. Autoimmune Dis. 2012.  https://doi.org/10.1155/2012/784364.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Thompson JP, Abdolahi A, Noyes K. Modelling the cost effectiveness of disease-modifying treatments for multiple sclerosis: issues to consider. Pharmacoeconomics. 2013;31(6):455–69.  https://doi.org/10.1007/s40273-013-0063-4.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Koeser L, McCrone P. Cost-effectiveness of natalizumab in multiple sclerosis: an updated systematic review. Expert Rev Pharmacoecon Outcomes Res. 2013;13(2):171–82.  https://doi.org/10.1586/erp.13.14.PubMedCrossRefGoogle Scholar
  32. 32.
    Allen F, Montgomery S, Maruszczak M, Kusel J, Adlard N. Convergence yet continued complexity: a systematic review and critique of health economic models of relapsing-remitting multiple sclerosis in the United Kingdom. Value Health. 2015;18(6):925–38.  https://doi.org/10.1016/j.jval.2015.05.006.PubMedCrossRefGoogle Scholar
  33. 33.
    Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33(11):1444–52.PubMedCrossRefGoogle Scholar
  34. 34.
    Ebers GC, Heigenhauser L, Daumer M, Lederer C, Noseworthy JH. Disability as an outcome in MS clinical trials. Neurology. 2008;71(9):624–31.  https://doi.org/10.1212/01.wnl.0000313034.46883.16.PubMedCrossRefGoogle Scholar
  35. 35.
    Ebers GC. Commentary: outcome measures were flawed. BMJ. 2010;340:c2693.  https://doi.org/10.1136/bmj.c2693.PubMedCrossRefGoogle Scholar
  36. 36.
    Yang H, Duchesneau E, Foster R, Guerin A, Ma E, Thomas NP. Cost-effectiveness analysis of ocrelizumab versus subcutaneous interferon beta-1a for the treatment of relapsing multiple sclerosis. J Med Econ. 2017;20(10):1056–65.  https://doi.org/10.1080/13696998.2017.1355310.PubMedCrossRefGoogle Scholar
  37. 37.
    Frasco MA, Shih T, Incerti D, Diaz Espinosa O, Vania DK, Thomas N. Incremental net monetary benefit of ocrelizumab relative to subcutaneous interferon β-1a. J Med Econ. 2017;20(10):1074–82.  https://doi.org/10.1080/13696998.2017.1357564.PubMedCrossRefGoogle Scholar
  38. 38.
    Dashputre AA, Kamal KM, Pawar G. Cost-effectiveness of peginterferon beta-1a and alemtuzumab in relapsing-remitting multiple sclerosis. J Manag Care Spec Pharm. 2017;23(6):666–76.  https://doi.org/10.18553/jmcp.2017.23.6.666.PubMedCrossRefGoogle Scholar
  39. 39.
    Bozkaya D, Livingston T, Migliaccio-Walle K, Odom T. The cost-effectiveness of disease-modifying therapies for the treatment of relapsing-remitting multiple sclerosis. J Med Econ. 2017;20(3):297–302.  https://doi.org/10.1080/13696998.2016.1258366.PubMedCrossRefGoogle Scholar
  40. 40.
    Mauskopf J, Fay M, Iyer R, Sarda S, Livingston T. Cost-effectiveness of delayed-release dimethyl fumarate for the treatment of relapsing forms of multiple sclerosis in the United States. J Med Econ. 2016;19(4):432–42.  https://doi.org/10.3111/13696998.2015.1135805.PubMedCrossRefGoogle Scholar
  41. 41.
    Hernandez L, Guo S, Kinter E, Fay M. Cost-effectiveness analysis of peginterferon beta-1a compared with interferon beta-1a and glatiramer acetate in the treatment of relapsing-remitting multiple sclerosis in the United States. J Med Econ. 2016;19(7):684–95.  https://doi.org/10.3111/13696998.2016.1157080.PubMedCrossRefGoogle Scholar
  42. 42.
    Zhang X, Hay JW, Niu X. Cost effectiveness of fingolimod, teriflunomide, dimethyl fumarate and intramuscular interferon-β1a in relapsing-remitting multiple sclerosis. CNS Drugs. 2015;29(1):71–81.  https://doi.org/10.1007/s40263-014-0207-x.PubMedCrossRefGoogle Scholar
  43. 43.
    Pan F, Goh JW, Cutter G, Su W, Pleimes D, Wang C. Long-term cost-effectiveness model of interferon beta-1b in the early treatment of multiple sclerosis in the United States. Clin Ther. 2012;34(9):1966–76.  https://doi.org/10.1016/j.clinthera.2012.07.010.PubMedCrossRefGoogle Scholar
  44. 44.
    Lee S, Baxter DC, Limone B, Roberts MS, Coleman CI. Cost-effectiveness of fingolimod versus interferon beta-1a for relapsing remitting multiple sclerosis in the United States. J Med Econ. 2012;15(6):1088–96.  https://doi.org/10.3111/13696998.2012.693553.PubMedCrossRefGoogle Scholar
  45. 45.
    Agashivala N, Kim E. Cost-effectiveness of early initiation of fingolimod versus delayed initiation after 1 year of intramuscular interferon beta-1a in patients with multiple sclerosis. Clin Ther. 2012;34(7):1583–90.  https://doi.org/10.1016/j.clinthera.2012.06.012.PubMedCrossRefGoogle Scholar
  46. 46.
    Dembek C, White LA, Quach J, Szkurhan A, Rashid N, Blasco MR. Cost-effectiveness of injectable disease-modifying therapies for the treatment of relapsing forms of multiple sclerosis in Spain. Eur J Health Econ. 2014;15(4):353–62.  https://doi.org/10.1007/s10198-013-0478-z.PubMedCrossRefGoogle Scholar
  47. 47.
    Darbà J, Kaskens L, Sánchez-De La Rosa R. Cost-effectiveness of glatiramer acetate and interferon beta-1a for relapsing-remitting multiple sclerosis, based on the CombiRx study. J Med Econ. 2014;17(3):215–22.  https://doi.org/10.3111/13696998.2014.890936.PubMedCrossRefGoogle Scholar
  48. 48.
    La Rosa Sánchez-De. R, Sabater E, Casado MA, Arroyo R. Cost-effectiveness analysis of disease modifiying drugs (interferons and glatiramer acetate) as first line treatments in remitting-relapsing multiple sclerosis patients. J Med Econ. 2012;15(3):424–33.  https://doi.org/10.3111/13696998.2012.654868.CrossRefGoogle Scholar
  49. 49.
    Montgomery SM, Kusel J, Nicholas R, Adlard N. Costs and effectiveness of fingolimod versus alemtuzumab in the treatment of highly active relapsing-remitting multiple sclerosis in the UK: re-treatment, discount, and disutility. J Med Econ. 2017;20(9):962–73.  https://doi.org/10.1080/13696998.2017.1345748.PubMedCrossRefGoogle Scholar
  50. 50.
    Montgomery SM, Maruszczak MJ, Slater D, Kusel J, Nicholas R, Adlard N. A discrete event simulation to model the cost-utility of fingolimod and natalizumab in rapidly evolving severe relapsing-remitting multiple sclerosis in the UK. J Med Econ. 2017;20(5):474–82.  https://doi.org/10.1080/13696998.2016.1276070.PubMedCrossRefGoogle Scholar
  51. 51.
    Nikfar S, Kebriaeezadeh A, Dinarvand R, Abdollahi M, Sahraian MA, Henry D, et al. Cost-effectiveness of different interferon beta products for relapsing-remitting and secondary progressive multiple sclerosis: decision analysis based on long-term clinical data and switchable treatments. DARU, J Pharmaceut Sci. 2013.  https://doi.org/10.1186/2008-2231-21-50.CrossRefGoogle Scholar
  52. 52.
    Imani A, Golestani M. Cost-utility analysis of disease-modifying drugs in relapsing-remitting multiple sclerosis in Iran. Iran J Neurol. 2012;11(3):87–90.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Soini E, Joutseno J, Sumelahti ML. Cost-utility of first-line disease-modifying treatments for relapsing-remitting multiple sclerosis. Clin Ther. 2017;39(3):537–57.  https://doi.org/10.1016/j.clinthera.2017.01.028.PubMedCrossRefGoogle Scholar
  54. 54.
    Hernandez L, Guo S, Toro-Diaz H, Carroll S, Syed Farooq SF. Peginterferon beta-1a versus other self-injectable disease-modifying therapies in the treatment of relapsing-remitting multiple sclerosis in Scotland: a cost-effectiveness analysis. J Med Econ. 2017;20(3):228–38.  https://doi.org/10.1080/13696998.2016.1247712.PubMedCrossRefGoogle Scholar
  55. 55.
    Su W, Kansal A, Vicente C, Deniz B, Sarda S. The cost-effectiveness of delayed-release dimethyl fumarate for the treatment of relapsing-remitting multiple sclerosis in Canada. J Med Econ. 2016;19(7):718–27.  https://doi.org/10.3111/13696998.2016.1164174.PubMedCrossRefGoogle Scholar
  56. 56.
    Chevalier J, Chamoux C, Hammès F, Chicoye A. Cost-effectiveness of treatments for relapsing remitting multiple sclerosis: a french societal perspective. PLoS One. 2016;11(3):e0150703.  https://doi.org/10.1371/journal.pone.0150703.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    O’Day K, Meyer K, Stafkey-Mailey D, Watson C. Cost-effectiveness of natalizumab vs fingolimod for the treatment of relapsing-remitting multiple sclerosis: analyses in Sweden. J Med Econ. 2015;18(4):295–302.  https://doi.org/10.3111/13696998.2014.991786.PubMedCrossRefGoogle Scholar
  58. 58.
    Maruszczak MJ, Montgomery SM, Griffiths MJS, Bergvall N, Adlard N. Cost-utility of fingolimod compared with dimethyl fumarate in highly active relapsing-remitting multiple sclerosis (RRMS) in England. J Med Econ. 2015;18(11):874–85.  https://doi.org/10.3111/13696998.2015.1056794.PubMedCrossRefGoogle Scholar
  59. 59.
    Eddy DM, Hollingworth W, Caro JJ, Tsevat J, McDonald KM, Wong JB, et al. Model transparency and validation: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force–7. Value Health. 2012;15(6):843–50.  https://doi.org/10.1016/j.jval.2012.04.012.PubMedCrossRefGoogle Scholar
  60. 60.
    Weinshenker BG, Bass B, Rice GP, Noseworthy J, Carriere W, Baskerville J, et al. The natural history of multiple sclerosis: a geographically based study. I. Clinical course and disability. Brain. 1989;112(Pt 1):133–46.PubMedCrossRefGoogle Scholar
  61. 61.
    National Institute for Health and Care Excellence. Teriflunomide for treating relapsing-remitting multiple sclerosis: Final appraisal determination. 2013. https://www.nice.org.uk/guidance/ta303/documents/multiple-sclerosis-relapsing-teriflunomide-final-appraisal-determination3. Accessed March 2016.
  62. 62.
    National Institute for Health and Care Excellence. Dimethyl fumarate for treating relapsing-remitting multiple sclerosis: Final appraisal determination. 2014. https://www.nice.org.uk/guidance/gid-tag340/resources/multiple-sclerosis-relapsingremitting-dimethyl-fumarate-final-appraisal-determination-document2. Accessed March 2016.
  63. 63.
    Biogen Idec Ltd. Dimethyl Fumarate for the Treatment of Adult Patients with Relapsing Remitting Multiple Sclerosis (TA320). Manufacturer submission of evidence to NICE. London. London: National Institute for Health and Care Excellence; 2013.Google Scholar
  64. 64.
    Palace J, Bregenzer T, Tremlett H, Oger J, Zhu F, Boggild M, et al. UK multiple sclerosis risk-sharing scheme: a new natural history dataset and an improved Markov model. BMJ Open. 2014;4(1):e004073.  https://doi.org/10.1136/bmjopen-2013-004073.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Tremlett H, Zhao Y, Rieckmann P, Hutchinson M. New perspectives in the natural history of multiple sclerosis. Neurology. 2010;74(24):2004–15.  https://doi.org/10.1212/WNL.0b013e3181e3973f.PubMedCrossRefGoogle Scholar
  66. 66.
    National Institute for Health and Care Excellence. Alemtuzumab for treating relapsing-remitting multiple sclerosis: Final appraisal determination. 2014. https://www.nice.org.uk/guidance/ta312/documents/multiple-sclerosis-relapsingremitting-alemtuzumab-fad-document2. Accessed March 2016.
  67. 67.
    National Institute for Health and Clinical Excellence. Natalizumab for the treatment of adults with highly active relapsing-remitting multiple sclerosis: Final appraisal determination. 2007. https://www.nice.org.uk/guidance/TA127/documents/multiple-sclerosis-natalizumab-for-the-treatment-of-adults-with-highly-active-relapsingremitting-multiple-sclerosis-final-appraisal-determination3. Accessed March 2016.
  68. 68.
    National Institute for Health and Clinical Excellence. Fingolimod for the treatment of highly active relapsing-remitting multiple sclerosis: Final appraisal determination. 2012. https://www.nice.org.uk/guidance/TA254/documents/multiple-sclerosis-relapsingremitting-fingolimod-final-appraisal-determination-document2. Accessed March 2016.
  69. 69.
    North American Registry for Care and Research in Multiple Sclerosis (NARCRMS). 2017. http://www.narcrms.org/overview/. Accessed March 11 2018.
  70. 70.
    Minden SL, Frankel D, Hadden L, Perloff J, Srinath KP, Hoaglin DC. The Sonya Slifka Longitudinal Multiple Sclerosis Study: methods and sample characteristics. Mult Scler J. 2006;12(1):24–38.  https://doi.org/10.1191/135248506ms1262oa.CrossRefGoogle Scholar
  71. 71.
    Ebers GC, Daumer M. Natural history of MS. Eur J Neurol. 2008;15(9):881–2.  https://doi.org/10.1111/j.1468-1331.2008.02245.x.PubMedCrossRefGoogle Scholar
  72. 72.
    Rudick RA, LaRocca N, Hudson LD, MSOAC. Multiple sclerosis outcome assessments consortium: genesis and initial project plan. Mult Scler J. 2014;20(1):12–7.  https://doi.org/10.1177/1352458513503392.CrossRefGoogle Scholar
  73. 73.
    Tolley K, Hutchinson M, You X, Wang P, Sperling B, Taneja A, et al. A network meta-analysis of efficacy and evaluation of safety of subcutaneous pegylated interferon beta-1a versus other injectable therapies for the treatment of relapsing-remitting multiple sclerosis. PLoS One. 2015;10(6):e0127960.  https://doi.org/10.1371/journal.pone.0127960.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Fogarty E, Schmitz S, Tubridy N, Walsh C, Barry M. Comparative efficacy of disease-modifying therapies for patients with relapsing remitting multiple sclerosis: systematic review and network meta-analysis. Mult Scler Relat Disord. 2016;9:23–30.  https://doi.org/10.1016/j.msard.2016.06.001.PubMedCrossRefGoogle Scholar
  75. 75.
    Siddiqui MK, Khurana IS, Budhia S, Hettle R, Harty G, Wong SL. Systematic literature review and network meta-analysis of cladribine tablets versus alternative disease-modifying treatments for relapsing-remitting multiple sclerosis. Curr Med Res Opin. 2017.  https://doi.org/10.1080/03007995.2017.1407303.PubMedCrossRefGoogle Scholar
  76. 76.
    Roberts M, Russell LB, Paltiel AD, Chambers M, McEwan P, Krahn M, et al. Conceptualizing a model: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force–2. Value Health. 2012;15(6):804–11.  https://doi.org/10.1016/j.jval.2012.06.016.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Tornatore C, Phillips JT, Khan O, Miller AE, Barnes CJ. Practice patterns of US neurologists in patients with CIS, RRMS, or RIS: a consensus study. Neurol Clin Pract. 2012;2(1):48–57.  https://doi.org/10.1212/CPJ.0b013e31824cb09b.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Dorr J, Paul F. The transition from first-line to second-line therapy in multiple sclerosis. Curr Treat Options Neurol. 2015;17(6):354.  https://doi.org/10.1007/s11940-015-0354-5.PubMedCrossRefGoogle Scholar
  79. 79.
    Torkildsen O, Myhr KM, Bo L. Disease-modifying treatments for multiple sclerosis—a review of approved medications. Eur J Neurol. 2016;23(Suppl 1):18–27.  https://doi.org/10.1111/ene.12883.PubMedCrossRefGoogle Scholar
  80. 80.
    Fernandez O, Delvecchio M, Edan G, Fredrikson S, Gionvannoni G, Hartung HP, et al. Survey of diagnostic and treatment practices for multiple sclerosis in Europe. Eur J Neurol. 2017;24(3):516–22.  https://doi.org/10.1111/ene.13236.PubMedCrossRefGoogle Scholar
  81. 81.
    Lyon J. New inroads against multiple sclerosis. JAMA. 2018;319(1):9–11.  https://doi.org/10.1001/jama.2017.14033.PubMedCrossRefGoogle Scholar
  82. 82.
    Asseburg C, Svensson J, Andersson E, Persson U, Willis M. Cost-effectiveness depends on the subsequent treatment sequence: an example from multiple sclerosis. Value Health. 2016;19(7):375.  https://doi.org/10.1016/j.jval.2016.09.167.CrossRefGoogle Scholar
  83. 83.
    Zheng Y, Pan F, Sorensen S. Modeling treatment sequences in pharmacoeconomic models. Pharmacoeconomics. 2017;35(1):15–24.  https://doi.org/10.1007/s40273-016-0455-3.PubMedCrossRefGoogle Scholar
  84. 84.
    Coles AJ, Twyman CL, Arnold DL, Cohen JA, Confavreux C, Fox EJ, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet. 2012;380(9856):1829–39.  https://doi.org/10.1016/S0140-6736(12)61768-1.PubMedCrossRefGoogle Scholar
  85. 85.
    Calabresi PA, Kieseier BC, Arnold DL, Balcer LJ, Boyko A, Pelletier J, et al. Pegylated interferon beta-1a for relapsing-remitting multiple sclerosis (ADVANCE): a randomised, phase 3, double-blind study. Lancet Neurol. 2014;13(7):657–65.  https://doi.org/10.1016/S1474-4422(14)70068-7.PubMedCrossRefGoogle Scholar
  86. 86.
    Fox RJ, Miller DH, Phillips JT, Hutchinson M, Havrdova E, Kita M, et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med. 2012;367(12):1087–97.  https://doi.org/10.1056/NEJMoa1206328.PubMedCrossRefGoogle Scholar
  87. 87.
    Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K, et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med. 2012;367(12):1098–107.  https://doi.org/10.1056/NEJMoa1114287.PubMedCrossRefGoogle Scholar
  88. 88.
    Calabresi PA, Radue EW, Goodin D, Jeffery D, Rammohan KW, Reder AT, et al. Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13(6):545–56.  https://doi.org/10.1016/S1474-4422(14)70049-3.PubMedCrossRefGoogle Scholar
  89. 89.
    Freedman MS, Patry DG, Grand’Maison F, Myles ML, Paty DW, Selchen DH, et al. Treatment optimization in multiple sclerosis. Can J Neurol Sci. 2004;31(2):157–68.PubMedCrossRefGoogle Scholar
  90. 90.
    Vemer P, Corro Ramos I, van Voorn GA, Al MJ, Feenstra TL. AdViSHE: a validation-assessment tool of health-economic models for decision makers and model users. Pharmacoeconomics. 2016;34(4):349–61.  https://doi.org/10.1007/s40273-015-0327-2.PubMedCrossRefGoogle Scholar
  91. 91.
    Biogen. Biogen and AbbVie Announce the Voluntary Worldwide Withdrawal of Marketing Authorizations for ZINBRYTA® (daclizumab) for Relapsing Multiple Sclerosis. http://media.biogen.com/press-release/autoimmune-diseases/biogen%C2%A0and-abbvie-announce%C2%A0-voluntary%C2%A0worldwide-withdrawal-marketi. Accessed March 3 2018.
  92. 92.
    Freedman MS. Treatment options for patients with multiple sclerosis who have a suboptimal response to interferon-beta therapy. Eur J Neurol. 2014;21(3):377–87.  https://doi.org/10.1111/ene.12299.PubMedCrossRefGoogle Scholar
  93. 93.
    Meyer-Moock S, Feng YS, Maeurer M, Dippel FW, Kohlmann T. Systematic literature review and validity evaluation of the Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Functional Composite (MSFC) in patients with multiple sclerosis. BMC Neurol. 2014;14:58.  https://doi.org/10.1186/1471-2377-14-58.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    van Munster CE, Uitdehaag BM. Outcome measures in clinical trials for multiple sclerosis. CNS Drugs. 2017;31(3):217–36.  https://doi.org/10.1007/s40263-017-0412-5.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Cohen JA, Reingold SC, Polman CH, Wolinsky JS. International Advisory Committee on Clinical Trials in Multiple S. Disability outcome measures in multiple sclerosis clinical trials: current status and future prospects. Lancet Neurol. 2012;11(5):467–76.  https://doi.org/10.1016/S1474-4422(12)70059-5.PubMedCrossRefGoogle Scholar
  96. 96.
    Fischer JS, Rudick RA, Cutter GR, Reingold SC. The multiple sclerosis functional composite measure (MSFC): an integrated approach to MS clinical outcome assessment. Mult Scler J. 1999;5(4):244–50.  https://doi.org/10.1177/135245859900500409.CrossRefGoogle Scholar
  97. 97.
    Rudick RA, Cutter G, Baier M, Fisher E, Dougherty D, Weinstock-Guttman B, et al. Use of the Multiple Sclerosis Functional Composite to predict disability in relapsing MS. Neurology. 2001;56(10):1324–30.PubMedCrossRefGoogle Scholar
  98. 98.
    Honarmand K, Akbar N, Kou N, Feinstein A. Predicting employment status in multiple sclerosis patients: the utility of the MS functional composite. J Neurol. 2011;258(2):244–9.  https://doi.org/10.1007/s00415-010-5736-8.PubMedCrossRefGoogle Scholar
  99. 99.
    Ozakbas S, Ormeci B, Idiman E. Utilization of the multiple sclerosis functional composite in follow-up: relationship to disease phenotype, disability and treatment strategies. J Neurol Sci. 2005;232(1):65–9.  https://doi.org/10.1016/j.jns.2005.01.008.PubMedCrossRefGoogle Scholar
  100. 100.
    Miller DM, Rudick RA, Cutter G, Baier M, Fischer JS. Clinical significance of the multiple sclerosis functional composite: relationship to patient-reported quality of life. Arch Neurol. 2000;57(9):1319–24.  https://doi.org/10.1001/archneur.57.9.1319.PubMedCrossRefGoogle Scholar
  101. 101.
    Cohen JA, Cutter GR, Fischer JS, et al. Use of the multiple sclerosis functional composite as an outcome measure in a phase 3 clinical trial. Arch Neurol. 2001;58(6):961–7.  https://doi.org/10.1001/archneur.58.6.961.PubMedCrossRefGoogle Scholar
  102. 102.
    Bever CT Jr, Grattan L, Panitch HS, Johnson KP. The brief repeatable battery of neuropsychological tests for multiple sclerosis: a preliminary serial study. Mult Scler. 1995;1(3):165–9.  https://doi.org/10.1177/135245859500100306.PubMedCrossRefGoogle Scholar
  103. 103.
    Cadavid D, Phillips G, Dong-Si T, Tran J, Xu L. Efficacy and safety of anti LINGO-1 for the treatment of relapsing forms of multiple sclerosis: design of the phase 2 SYNERGY trial (P3.154). Neurology. 2014;82(10 Supplement):154. http://n.neurology.org/content/82/10_Supplement/P3.154. Accessed 3 Mar 2018.
  104. 104.
    Mellion M, Edwards KR, Hupperts R, Drulović J, Montalban X, Hartung H-P. Efficacy results from the phase 2b SYNERGY study: treatment of disabling multiple sclerosis with the anti-LINGO-1 monoclonal antibody opicinumab (S33.004). Neurology. 2017;88(16):S33.044. http://n.neurology.org/content/88/16_Supplement/S33.004. Accessed 3 Mar 2018.
  105. 105.
    Caro JJ. Discretely Integrated Condition Event (DICE) Simulation for Pharmacoeconomics. Pharmacoeconomics. 2016;34(7):665–72.  https://doi.org/10.1007/s40273-016-0394-z.PubMedCrossRefGoogle Scholar
  106. 106.
    Caro JJ, Moller J. Adding events to a markov model using DICE simulation. Med Decis Making. 2018;38(2):235–45.  https://doi.org/10.1177/0272989X17715636.PubMedCrossRefGoogle Scholar
  107. 107.
    Guo S, Hernandez L, Saint-Laurent Thibault C, Proskorovsky I, Phillips GA. Predicting the long-term clinical effectiveness of daclizumab in relapsing-remitting multiple sclerosis: a new modeling framework using discrete event simulation. Value Health. 2013;16(3):A101.  https://doi.org/10.1016/j.jval.2013.03.478.CrossRefGoogle Scholar
  108. 108.
    Scalfari A, Neuhaus A, Degenhardt A, Rice GP, Muraro PA, Daumer M, et al. The natural history of multiple sclerosis: a geographically based study 10: relapses and long-term disability. Brain. 2010;133(Pt 7):1914–29.  https://doi.org/10.1093/brain/awq118.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Novartis Pharmaceuticals UK Ltd. Fingolimod for the Treatment of Relapsing-Remitting Multiple Sclerosis in Adults (TA254). Manufacturer submission of evidence to NICE. London: National Institute for Health and Clinical Excellence; 2011.Google Scholar
  110. 110.
    Orme M, Kerrigan J, Tyas D, Russell N, Nixon R. The effect of disease, functional status, and relapses on the utility of people with multiple sclerosis in the UK. Value Health. 2007;10(1):54–60.  https://doi.org/10.1111/j.1524-4733.2006.00144.x.PubMedCrossRefGoogle Scholar
  111. 111.
    Patzold U, Pocklington PR. Course of multiple sclerosis. First results of a prospective study carried out of 102 MS patients from 1976 to 1980. Acta Neurol Scand. 1982;65(4):248–66.PubMedCrossRefGoogle Scholar
  112. 112.
    Holmberg M, Murtonen A, Elovaara I, Sumelahti ML. Increased Female MS Incidence and Differences in Gender-Specific Risk in Medium- and High-Risk Regions in Finland from 1981 to 2010. Mult Scler Int. 2013;2013:182516.  https://doi.org/10.1155/2013/182516.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Biogen Idec Ltd. Natalizumab (Tysabri®) for the Treatment of Adults with Highly Active Relapsing Remitting Multiple Sclerosis (TA127). Manufacturer submission of evidence to NICE. London: National Institute for Health and Clinical Excellence; 2007.Google Scholar
  114. 114.
    Thompson JP, Noyes K, Dorsey ER, Schwid SR, Holloway RG. Quantitative risk-benefit analysis of natalizumab. Neurology. 2008;71(5):357–64.  https://doi.org/10.1212/01.wnl.0000319648.65173.7a.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Tremlett H, Yinshan Z, Devonshire V. Natural history of secondary-progressive multiple sclerosis. Mult Scler. 2008;14(3):314–24.  https://doi.org/10.1177/1352458507084264.PubMedCrossRefGoogle Scholar
  116. 116.
    Tremlett H, Zhao Y, Devonshire V, Neurologists UBC. Natural history comparisons of primary and secondary progressive multiple sclerosis reveals differences and similarities. J Neurol. 2009;256(3):374–81.  https://doi.org/10.1007/s00415-009-0039-7.PubMedCrossRefGoogle Scholar
  117. 117.
    Bell C, Graham J, Earnshaw S, Oleen-Burkey M, Castelli-Haley J, Johnson K. Cost-effectiveness of four immunomodulatory therapies for relapsing-remitting multiple sclerosis: a Markov model based on long-term clinical data. J Manag Care Pharm. 2007;13(3):245–61.  https://doi.org/10.18553/jmcp.2007.13.3.245.PubMedCrossRefGoogle Scholar
  118. 118.
    Goodkin DE, Hertsgaard D, Rudick RA. Exacerbation rates and adherence to disease type in a prospectively followed-up population with multiple sclerosis. Implications for clinical trials. Arch Neurol. 1989;46(10):1107–12.PubMedCrossRefGoogle Scholar
  119. 119.
    Carra A, Onaha P, Sinay V, Alvarez F, Luetic G, Bettinelli R, et al. A retrospective, observational study comparing the four available immunomodulatory treatments for relapsing-remitting multiple sclerosis. Eur J Neurol. 2003;10(6):671–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Genzyme. Teriflunomide for the Treatment of Relapsing-Remitting Multiple Sclerosis in Adults (TA303). Manufacturer submission of evidence to NICE. London: National Institute for Health and Care Excellence; 2013.Google Scholar
  121. 121.
    Hutchinson M, Fox RJ, Havrdova E, Kurukulasuriya NC, Sarda SP, Agarwal S, et al. Efficacy and safety of BG-12 (dimethyl fumarate) and other disease-modifying therapies for the treatment of relapsing-remitting multiple sclerosis: a systematic review and mixed treatment comparison. Curr Med Res Opin. 2014;30(4):613–27.  https://doi.org/10.1185/03007995.2013.863755.PubMedCrossRefGoogle Scholar
  122. 122.
    Phillips JT, Giovannoni G, Lublin FD, O’Connor PW, Polman CH, Willoughby E, et al. Sustained improvement in Expanded Disability Status Scale as a new efficacy measure of neurological change in multiple sclerosis: treatment effects with natalizumab in patients with relapsing multiple sclerosis. Mult Scler. 2011;17(8):970–9.  https://doi.org/10.1177/1352458511399611.PubMedCrossRefGoogle Scholar
  123. 123.
    Genzyme. Alemtuzumab for the Treatment of Relapsing Remitting Multiple Sclerosis in Adults (TA32). Manufacturer submission of evidence to NICE. London: National Institute for Health and Care Excellence; 2013.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Luis Hernandez
    • 1
    • 2
  • Malinda O’Donnell
    • 1
  • Maarten Postma
    • 2
    • 3
    • 4
  1. 1.EvideraWalthamUSA
  2. 2.Department of Health SciencesUniversity of Groningen, University Medical Center Groningen (UMCG)GroningenThe Netherlands
  3. 3.Unit of Pharmacotherapy, -Epidemiology and -EconomicsUniversity of Groningen, Groningen Research Institute of Pharmacy (GRIP)GroningenThe Netherlands
  4. 4.Department of Economics, Econometrics and Finance, Faculty of Economics and BusinessUniversity of GroningenGroningenThe Netherlands

Personalised recommendations