Advertisement

PharmacoEconomics

, Volume 34, Issue 2, pp 127–138 | Cite as

National Database for Autism Research (NDAR): Big Data Opportunities for Health Services Research and Health Technology Assessment

  • Nalin Payakachat
  • J. Mick Tilford
  • Wendy J. Ungar
Practical Application

Abstract

The National Database for Autism Research (NDAR) is a US National Institutes of Health (NIH)-funded research data repository created by integrating heterogeneous datasets through data sharing agreements between autism researchers and the NIH. To date, NDAR is considered the largest neuroscience and genomic data repository for autism research. In addition to biomedical data, NDAR contains a large collection of clinical and behavioral assessments and health outcomes from novel interventions. Importantly, NDAR has a global unique patient identifier that can be linked to aggregated individual-level data for hypothesis generation and testing, and for replicating research findings. As such, NDAR promotes collaboration and maximizes public investment in the original data collection. As screening and diagnostic technologies as well as interventions for children with autism are expensive, health services research (HSR) and health technology assessment (HTA) are needed to generate more evidence to facilitate implementation when warranted. This article describes NDAR and explains its value to health services researchers and decision scientists interested in autism and other mental health conditions. We provide a description of the scope and structure of NDAR and illustrate how data are likely to grow over time and become available for HSR and HTA.

Keywords

Autism Spectrum Disorder Health Technology Assessment Health Service Research Autism Research Early Intensive Behavioral Intervention 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Nalin Payakachat, J. Mick Tilford, and Wendy J. Ungar conceptualized the manuscript and prepared the final draft. We wish to thank the National Database for Autism Research (NDAR) staff, Dan Hall and Dr. Svetlana Novikova, who assisted in providing information that contributed to this manuscript.

Compliance with Ethical Standards

Funding

This study was supported by the National Institute of Mental Health (NIMH; Grant No. R03MH102495) with Nalin Payakachat serving as the principal investigator. The content of this article is solely the responsibility of the authors and does not necessarily represent the official views of the NIMH or the National Institutes of Health.

Conflict of interest

Nalin Payakachat and J. Mick Tilford serve on a grant that seeks to identify novel uses in the NDAR. Wendy J. Ungar declares no conflict of interest.

References

  1. 1.
    Zerhouni E. Medicine. The NIH Roadmap. Science. 2003;302(5642):63–72.CrossRefPubMedGoogle Scholar
  2. 2.
    Insel TR, Volkow ND, Landis SC, Li TK, Battey JF, Sieving P. Limits to growth: why neuroscience needs large-scale science. Nat Neurosci. 2004;7(5):426–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Westfall JM, Mold J, Fagnan L. Practice-based research–”Blue Highways” on the NIH roadmap. JAMA. 2007;297(4):403–6.CrossRefPubMedGoogle Scholar
  4. 4.
    National Institutes of Health. National Database for Autism Research (NDAR). https://ndar.nih.gov/. Accessed 23 Apr 2015.
  5. 5.
    Hall D, Huerta M, McAuliffe M, Farber G. Sharing heterogeneous data: the National Database for Autism Research. Neuroinform. 2012;10(4):331–9.CrossRefGoogle Scholar
  6. 6.
    Torgerson C, Quinn C, Dinov I, Liu Z, Petrosyan P, Pelphrey K, et al. Interacting with the National Database for Autism Research (NDAR) via the LONI Pipeline workflow environment. Brain Imaging Behav. 2015;9(1):89–103.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Di Martino A, Yan CG, Li Q, Denio E, Castellanos FX, Alaerts K, et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol Psychiatry. 2014;19(6):659–67.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Johnson SB, Whitney G, McAuliffe M, Wang H, McCreedy E, Rozenblit L, et al. Using global unique identifiers to link autism collections. J Am Med Inform Assoc. 2010;17(6):689–95.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Luo XZ, Kennedy D, Cohen Z. Neuroimaging informatics tools and resources clearinghouse (NITRC) resource announcement. Neuroinform. 2009;7(1):55–6.CrossRefGoogle Scholar
  10. 10.
    National Institutes of Health Blueprint for Neuroscience Research. NITRC Computational Environment. 2015. https://aws.amazon.com/marketplace/pp/B00AW0MBLO#product-details. Accessed 28 Apr 2015.
  11. 11.
    Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515(7526):216–21.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Supekar K, Uddin L, Khouzam A, Phillips J, Gaillard W, Kenworthy L, et al. Brain hyperconnectivity in children with autism and its links to social deficits. Cell Rep. 2013;5(3):738–47.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Wei T, Chesnut S, Barnard-Brak L, Richman D. Psychometric analysis of the Social Communication Questionnaire using an item-response theory framework: implications for the use of the lifetime and current forms. J Psychopathol Behav Assess. 2015;37(3)469–80.CrossRefGoogle Scholar
  14. 14.
    Payakachat N, Tilford JM, Kovacs E, Kuhlthau K. Autism spectrum disorders: a review of measures for clinical, health services and cost-effectiveness applications. Expert Rev Pharmacoecon Outcomes Res. 2012;12(4):485–503.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Payakachat N, Tilford JM, Kuhlthau KA, van Exel NJ, Kovacs E, Bellando J, et al. Predicting health utilities for children with autism spectrum disorders. Autism Res. 2014;7(6):649–63.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Lavelle TA, Weinstein MC, Newhouse JP, Munir K, Kuhlthau KA, Prosser LA. Economic burden of childhood autism spectrum disorders. Pediatrics. 2014;133(3):e520–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Penner M, Rayar M, Bashir N, Roberts SW, Hancock-Howard R, Coyte P. Cost-effectiveness analysis comparing pre-diagnosis autism spectrum disorder (ASD)-targeted intervention with Ontario’s Autism Intervention Program. J Autism Dev Disord. 2015;45(9):2833–47.CrossRefGoogle Scholar
  18. 18.
    Wang L, Mandell DS, Lawer L, Cidav Z, Leslie DL. Healthcare service use and costs for autism spectrum disorder: a comparison between medicaid and private insurance. J Autism Dev Disord. 2013;43(5):1057–64.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Ungar WJ. Next generation sequencing and health technology assessment in autism spectrum disorder. J Can Acad Child Adolesc Psychiatry. 2015;24(2):123–7.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Dawson G, Rogers S, Munson J, Smith M, Winter J, Greenson J, et al. Randomized, controlled trial of an intervention for toddlers with autism: the Early Start Denver Model. Pediatrics. 2010;125(1):e17–23.CrossRefPubMedGoogle Scholar
  21. 21.
    Webb SJ, Jones EJH, Kelly J, Dawson G. The motivation for very early intervention for infants at high risk for autism spectrum disorders. Int J Speech Lang Pathol. 2014;16(1):36–42.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Ontario Personalized Medicine Network Subcommittee Report. Evaluating our current health technology assessment capabilities in light of personalized medicine technologies. 2013. http://www.ontariogenomics.ca/personalized-medicine/personalized-medicine-resources. Accessed 15 Apr 2015.
  23. 23.
    Buchanan J, Wordsworth S, Schuh A. Issues surrounding the health economic evaluation of genomic technologies. Pharmacogenomics. 2013;14(15):1833–47.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Damiano CR, Mazefsky CA, White SW, Dichter GS. Future directions for research in autism spectrum disorders. J Clin Child Adolesc Psychol. 2014;43(5):828–43.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Coury DL, Swedo SE, Thurm AE, Miller DT, Veenstra-Vanderweele JM, Carbone PS, et al. Treating the whole person with autism: the proceedings of the autism speaks national autism conference. Curr Probl Pediatr Adolesc Health Care. 2014;44:26–47.CrossRefPubMedGoogle Scholar
  26. 26.
    Mazefsky CA, Oswald DP, Day TN, Eack SM, Minshew NJ, Lainhart JE. ASD, a psychiatric disorder, or both? Psychiatric diagnoses in adolescents with high-functioning ASD. J Clin Child Adolesc Psychol. 2012;41:516–23.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Warren Z, McPheeters ML, Sathe N, Foss-Feig JH, Glasser A, Veenstra-Vanderweele J. A systematic review of early intensive intervention for autism spectrum disorders. Pediatrics. 2011;127(5):e1303–11.CrossRefPubMedGoogle Scholar
  28. 28.
    Reichow B, Steiner AM, Volkmar F. Cochrane review: social skills groups for people aged 6 to 21 with autism spectrum disorders (ASD). Evid Based Child Health. 2013;8:266–315.CrossRefPubMedGoogle Scholar
  29. 29.
    Taylor JL, McPheeters ML, Sathe NA, Dove D, Veenstra-Vanderweele J, Warren Z. A systematic review of vocational interventions for young adults with autism spectrum disorders. Pediatrics. 2012;130:531–8.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Casey BJ, Craddock N, Cuthbert BN, Hyman SE, Lee FS, Ressler KJ. DSM-5 and RDoC: progress in psychiatry research? Nat Rev Neurosci. 2013;14(11):810–4.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Easter Seals Florida, Inc. Treasure Coast Early Steps System of Care. Palm Beach, Martin, St. Lucie, Indian River and Okeechobee Counties. http://www.easterseals.com/florida/shared-components/document-library/tces-enrollment-packet-fy14/2014-17-tces-provider-1.pdf. Accessed 28 Aug 2015.
  32. 32.
    Early intervention service descriptions, billing codes and rates. Early intervention provided handbook. Illinois Department of Human Services, Community Health and Prevention, Bureau of Early Intervention; 1 Sep 2009. https://www.dhs.state.il.us/OneNetLibrary/27897/documents/Manuals/CHP/EI/EIServiceDescriptionManual.pdf. Accessed 28 Aug 2015.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Nalin Payakachat
    • 1
  • J. Mick Tilford
    • 1
    • 2
  • Wendy J. Ungar
    • 3
    • 4
  1. 1.Division of Pharmaceutical Evaluation and PolicyUniversity of Arkansas for Medical SciencesLittle RockUSA
  2. 2.Department of Health Policy and ManagementUniversity of Arkansas for Medical SciencesLittle RockUSA
  3. 3.Child Health Evaluative SciencesThe Hospital for Sick ChildrenTorontoCanada
  4. 4.Institute of Health Policy, Management and EvaluationUniversity of TorontoTorontoCanada

Personalised recommendations