, Volume 32, Issue 1, pp 29–45 | Cite as

Cost Effectiveness of the New Pneumococcal Vaccines: A Systematic Review of European Studies

  • Katelijne van de Vooren
  • Silvy Duranti
  • Alessandro Curto
  • Livio Garattini
Systematic Review



Diseases caused by Streptococcus pneumoniae (pneumococcus) are a major global public health problem. Despite their importance, information on the burden of the different pneumococcal diseases is limited and estimates vary widely.

Objective and Methods

We critically reviewed the full economic evaluations (FEEs) on the new pneumococcal conjugate vaccines (PCVs) conducted in the European Union (EU) to assess their potential contribution to public decision making. We selected the FEEs focussed on PCV-10 and PCV-13 and published in English from January 2007 until June 2013. We screened the selected articles to assess their main methodological features using a common checklist composed of epidemiological, clinical and economic items.


All the ten studies selected were based on modelling and the time horizon was always long term. Two studies focused on adults, the remaining eight on infants. Only one study based herd immunity on national data, eight used foreign data or modelling and the last did not consider it. National prices and tariffs were claimed to be sources for unit costs in all studies; however, half of them assumed price parity when one vaccine was not yet marketed, and the figures varied within the countries where more than one study was conducted. Conclusions supported the economic utility of pneumococcal vaccination in all studies, raising some concern only in (i) the independent study, which found that PCV-13 was borderline cost effective, and (ii) the study sponsored by both manufacturers, which estimated an incremental ratio slightly above the national threshold for both PCV-10 and PCV-13.


The European studies we analysed are mostly based on weak sources of data. Because of the limited information on vaccine effectiveness and lack of epidemiological and economic data, the need for extensive recourse to assumptions leads to great within- and between-study variability generated by authors’ choices.


  1. 1.
    Immunization, vaccine and biologicals. Pneumococcal disease. World Health Organization. 2011. Accessed 17 June 2013.
  2. 2.
    Immunization, vaccine and biologicals. Pneumococcal vaccines. World Health Organization. 2003. Accessed 17 June 2013.
  3. 3.
    Beutels P, Thiry N, Van Damme P. Convincing or confusing? Economic evaluations of childhood pneumococcal conjugate vaccination—a review (2002–2006). Vaccine. 2007;25(8):1355–67.PubMedCrossRefGoogle Scholar
  4. 4.
    Boonacker CW, Broos PH, Sanders EA, et al. Cost effectiveness of pneumococcal conjugate vaccination against acute otitis media in children: a review. Pharmacoeconomics. 2011;29(3):199–211.PubMedCrossRefGoogle Scholar
  5. 5.
    Farkouh RA, Klok RM, Postma MJ, et al. Cost–effectiveness models of pneumococcal conjugate vaccines: variability and impact of modeling assumptions. Expert Rev Vaccines. 2012;11(10):1235–47.PubMedCrossRefGoogle Scholar
  6. 6.
    Kim SY, Goldie SJ. Cost-effectiveness analyses of vaccination programmes. A focused review of modelling approaches. Pharmacoeconomics. 2008;26(3):191–215.PubMedCrossRefGoogle Scholar
  7. 7.
    Moberley S, Holden J, Tatham DP, Andrews RM. Vaccines for preventing pneumococcal infection in adults. Cochrane Database Syst Rev 2013;1:CD000422.Google Scholar
  8. 8.
    Tocheva AS, Jefferies JM, Rubery H, et al. Declining serotype coverage of new pneumococcal conjugate vaccines relating to the carriage of Streptococcus pneumoniae in young children. Vaccine. 2011;29(26):4400–4.PubMedCrossRefGoogle Scholar
  9. 9.
    European Centre for Disease Prevention and Control. Surveillance of invasive pneumococcal disease in Europe, 2010. Stockholm: ECDC; 2012.Google Scholar
  10. 10.
    Black S, Shinefield H, Fireman B, et al. Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Northern California Kaiser Permanente Vaccine Study Center Group. Pediatr Infect Dis J. 2000;19(3):187–95.PubMedCrossRefGoogle Scholar
  11. 11.
    Black SB, Shinefield HR, Ling S, et al. Effectiveness of heptavalent pneumococcal conjugate vaccine in children younger than five years of age for prevention of pneumonia. Pediatr Infect Dis J. 2002;21(9):810–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Fireman B, Black SB, Shinefield HR, et al. Impact of the pneumococcal conjugate vaccine on otitis media. Pediatr Infect Dis J. 2003;22(1):10–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Eskola J, Kilpi T, Palmu A, Finnish Otitis Media Study Group, et al. Efficacy of a pneumococcal conjugate vaccine against acute otitis media. N Engl J Med. 2001;344(6):403–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Prymula R, Peeters P, Chrobak V, et al. Pneumococcal capsular polysaccharides conjugated to protein D for prevention of acute otitis media caused by both Streptococcus pneumonia and non-typable Haemophilus influenza: a randomised double blind efficacy study. Lancet. 2006;367(9512):740–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Cozza V, Kanitz E, D’Ancona F, et al. Impact of childhood pneumococcal vaccination programmes and activities for pneumococcal vaccines in the EU and EEA\EFTA countries. Report VENICE II. 2012.
  16. 16.
    De Pouvourville G, Ulmann P. Nixon et al. The diffusion of health economics knowledge in Europe. The EURONHEED (European Network of Health Economic Evaluation Databases) Project. Pharmacoeconomics. 2005;23(2):113–20.PubMedCrossRefGoogle Scholar
  17. 17.
    Evers SM, Ament AJ, Colombo GL, et al. Cost-effectiveness of pneumococcal vaccination for prevention of invasive pneumococcal disease in the elderly: an update for 10 Western European countries. Eur J Clin Microbiol Infect Dis. 2007;26(8):531–40.PubMedCrossRefGoogle Scholar
  18. 18.
    Grzesiowski P, Aguiar-Ibáñez R, Kobryń A, et al. Cost-effectiveness of polysaccharide pneumococcal people aged 65 and above in Poland. Hum Vaccin Immunother. 2012;8(10):1382–94.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Silfverdal SA, Berg S, Hemlin C, et al. The cost-burden of paediatric pneumococcal disease in Sweden and the potential cost-effectiveness of prevention using 7-valent pneumococcal vaccine. Vaccine. 2009;27(10):1601–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Claes C, Reinert RR, von der Schulenburg JM. Cost effectiveness analysis of heptavalent pneumococcal conjugate vaccine in Germany considering herd immunity effects. Eur J Health Econ. 2009;10(1):25–38.PubMedCrossRefGoogle Scholar
  21. 21.
    Giorgi-Rossi P, Merito M, Borgia P. Cost-effectiveness of introducing the conjugated pneumococcal vaccine to routine free immunizations for infants in Lazio, Italy. Health Pol. 2009;89(2):225–38.CrossRefGoogle Scholar
  22. 22.
    Tilson L, Usher C, Butler K, et al. Economic evaluation of a universal childhood pneumococcal conjugate vaccination strategy in Ireland. Value Health. 2008;11(5):898–903.PubMedCrossRefGoogle Scholar
  23. 23.
    Lloyd A, Patel N, Scott DA, et al. Cost-effectiveness of heptavalent conjugate pneumococcal vaccine (Prevenar) in Germany: considering a high-risk population and herd immunity effects. Eur J Health Econ. 2008;9(1):7–15.PubMedCrossRefGoogle Scholar
  24. 24.
    Bergman A, Hjelmgren J, Ortqvist A, et al. Cost-effectiveness analysis of a universal vaccination programme with the 7-valent pneumococcal conjugate vaccine (PCV-7) in Sweden. Scand J Infect Dis. 2008;40(9):721–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Hubben GA, Bos JM, Glynn DM, et al. Enhanced decision support for policy makers using a web interface to health-economic models—illustrated with a cost-effectiveness analysis of nation-wide infant vaccination with the 7-valent pneumococcal conjugate vaccine in the Netherlands. Vaccine. 2007;25(18):3669–78.PubMedCrossRefGoogle Scholar
  26. 26.
    Rozenbaum MH, van Hoek AJ, Fleming D, et al. Vaccination of risk groups in England using the 13 valent pneumococcal conjugate vaccine: economic analysis. BMJ. 2012;26(345):e6879.CrossRefGoogle Scholar
  27. 27.
    Boccalini S, Azzari C, Resti M, et al. Economic and clinical evaluation of a catch-up dose of 13-valent pneumococcal conjugate vaccine in children already immunized with three doses of the 7-valent vaccine in Italy. Vaccine. 2011;29(51):9521–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Boccalini S, Bechini A, Levi M, Tiscione E, Gasparini R, Bonanni P. Cost-effectiveness of new adult pneumococcal vaccination strategies in Italy. Hum Vaccin Immunother. 2013;9(3).Google Scholar
  29. 29.
    Kuhlmann A, Theidel U, Pletz MW, et al. Potential cost-effectiveness and benefit-cost pneumococcal vaccination in Germany. Health Econ Rev. 2012;2(1):4.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Rozenbaum MH, Hak E, van der Werf TS, et al. Results of a cohort model analysis of the cost-effectiveness of routine immunization with 13-valent pneumococcal conjugate vaccine of those aged > or = 65 years in the Netherlands. Clin Ther. 2010;32(8):1517–32.PubMedCrossRefGoogle Scholar
  31. 31.
    Klok RM, Lindkvist RM, Ekelund M, Farkouh RA, Strutton DR. Cost-Effectiveness of a 10- Versus 13-Valent Pneumococcal Conjugate Vaccine in Denmark and Sweden. Clin Ther. 2013;35(2):119–34.PubMedCrossRefGoogle Scholar
  32. 32.
    Van Hoek AJ, Choi YH, Trotter C, et al. The cost-effectiveness of a 13-valent pneumococcal conjugate vaccination for infants in England. Vaccine. 2012;30(50):7205–13.PubMedCrossRefGoogle Scholar
  33. 33.
    By A, Sobocki P, Forsgren A, et al. Comparing health outcomes and costs of general vaccination with pneumococcal conjugate vaccines in Sweden: a Markov model. Clin Ther. 2012;34(1):177–89.PubMedCrossRefGoogle Scholar
  34. 34.
    Knerer G, Ismaila A, Pearce D. Health and economic impact of PHiD-CV in Canada and the UK: a Markov modelling exercise. J Med Econ. 2012;15(1):61–76.PubMedCrossRefGoogle Scholar
  35. 35.
    Strutton DR, Farkouh RA, Earnshaw SR, et al. Cost-effectiveness of 13-valent pneumococcal conjugate vaccine: Germany, Greece, and The Netherlands. J Infect. 2012;64(1):54–67.PubMedCrossRefGoogle Scholar
  36. 36.
    Díez-Domingo J, Ridao-López M, Gutiérrez-Gimeno MV, et al. Pharmacoeconomic assessment of implementing a universal PCV-13 vaccination programme in the Valencian public health system (Spain). Vaccine. 2011;29(52):9640–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Rozenbaum MH, Sanders EA, van Hoek AJ, et al. Cost effectiveness of pneumococcal vaccination among Dutch infants: economic analysis of the seven valent pneumococcal conjugated vaccine and forecast for the 10 valent and 13 valent vaccines. BMJ. 2010;2(340):c2509.CrossRefGoogle Scholar
  38. 38.
    Talbird SE, Taylor TN, Knoll S, et al. Outcomes and costs associated with PHiD-CV, a new protein D conjugate pneumococcal vaccine, in four countries. Vaccine. 2010;19(28 Suppl 6):G23–9.CrossRefGoogle Scholar
  39. 39.
    Garattini L, van de Vooren K, Curto A. Pricing human papillomavirus vaccines: lessons from Italy. Pharmacoeconomics. 2012;30(3):213–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Beutels P. Potential conflicts of interest in vaccine economics research: a commentary with a case study of pneumococcal conjugate vaccination. Vaccine. 2004;22(25–26):3312–22.PubMedCrossRefGoogle Scholar
  41. 41.
    Garattini L, Koleva D, Casadei G. Modeling in pharmacoeconomic studies: funding sources and outcomes. Int J Technol Assess Health Care. 2010;26(3):330–3.PubMedCrossRefGoogle Scholar
  42. 42.
    Haute Autorité de Santé. Commission de la Transparence. Accessed 18 June 2013.
  43. 43.
    Prevenar: EPAR -Product information. European Medicines Agency. 2008. Accessed 17 June 2013.
  44. 44.
    Synflorix: EPAR-Product information. European Medicines Agency. 2013. Accessed 17 June 2013.
  45. 45.
    Prevenar 13: EPAR-Product information. European Medicines Agency. 2013. Accessed 17 June 2013.
  46. 46.
    Diagnosedaten der Krankenhäuser nach Behandlungsort ab 2000 (Fälle/Sterbefälle, Pflegetage, durchschnittliche Verweildauer. Gliederungsmerkmale: Jahre, Behandlungsort, Alter, Geschlecht, Verweildauer, ICD10. Statistisches Bundesamt (Hrsg.). 2013.
  47. 47.
    CapNetz: CAP Moratlitätsdaten. 2009.Google Scholar
  48. 48.
    Ray GT, Whitney CG, Fireman BH, et al. Cost-effectiveness of pneumococcal conjugate vaccine: evidence from the first 5 years of use in the United States incorporating herd effects. Pediatr Infect Dis J. 2006;25(6):494–501.PubMedCrossRefGoogle Scholar
  49. 49.
    Pilishvili T, Lexau C, Farley MM, et al. Sustained reductions in invasive pneumococcal disease in the era of conjugate vaccine. J Infect Dis. 2010;201(1):32–41.PubMedCrossRefGoogle Scholar
  50. 50.
    Reinert RR, Haupts S, van der Linden M, et al. Invasive pneumococcal disease in adults in North-Rhine Westphalia, Germany, 2001–2003. Clin Microbiol Infect. 2005;11(12):985–91.PubMedCrossRefGoogle Scholar
  51. 51.
    Jansen AG, Rodenburg GD, de Greef SC, et al. Invasive pneumococcal disease in the Netherlands: syndromes, outcome and potential vaccine benefits. Vaccine. 2009;27(17):2394–401.PubMedCrossRefGoogle Scholar
  52. 52.
    Lepoutre A, Varon E, Georges S et al. Impact of infant pneumococcal vaccination on invasive pneumococcal diseases in France, 2001–2006. Euro Surveill. 2008;13(35):18962.Google Scholar
  53. 53.
    Rozenbaum MH, Sanders EA, van Hoek AJ et al. Cost effectiveness of pneumococcal vaccination among Dutch infants: An economic analysis of the seven valent pneumococcal conjugated vaccine and forecast for the 10 valent and 13 valent vaccines. BMJ. 2010;340:c2509.Google Scholar
  54. 54.
    Cumulative weekly number of reports of invasive pneumococcal disease due to any of the seven serotypes in Prevenar: children aged <2 years in England and Wales by epidemiological year: July–June. Health Protection Agency. 2009.
  55. 55.
    Sisk JE, Whang W, Butler JC, et al. Cost-effectiveness of vaccination against invasive pneumococcal disease among people 50 through 64 years of age: Role of comorbid conditions and race. Ann Intern Med. 2003;138(12):960–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Ingels H, Rasmussen J, Andersen PH, et al. Danish Pneumococcal Surveillance Collaboration Group 2009-2010. Impact of pneumococcal vaccination in Denmark during the first 3 years after PCV introduction in the childhood immunization programme. Vaccine. 2012;30:3944–50.PubMedCrossRefGoogle Scholar
  57. 57.
    Statistics Denmark. Data on inpatient pneumonia over age groups in 2011: Accessed November 29, 2012.
  58. 58.
    Stangerup SE, Tos M. Epidemiology of acute suppurative otitis media. AmJ Otolaryngol. 1986;7:47–54.CrossRefGoogle Scholar
  59. 59.
    Harboe ZB. Studies on the Epidemiology of Invasive Pneumococcal Disease and Related Mortality in Denmark [doctoral thesis]. Copenhagen, Denmark: University of Copenhagen, Faculty of Health Sciences; 2010.Google Scholar
  60. 60.
    Statistics Denmark. Danish cause of death registry in 2010. Accessed November 29, 2012.
  61. 61.
    Benfield T, Marlene S, Sørensen HC, et al. Serotype distribution in nonbacteremic pneumococcal pneumonia: implications for pneumococcal conjugate vaccines. Poster presented at: the 8th International Symposium on Pneumococci and Pneumococcal Diseases; March 11–15, 2012; Foz do Iguaçu, Brazil. Poster no. 515.Google Scholar
  62. 62.
    Epidemiologisk årsrapport 2010, Smittskyddsinstitutet Patientregistret, Socialstyrelsen. Stockholm: Elanders Sverige AB; 2011.Google Scholar
  63. 63.
    National Board of Health and Welfare, data on file and
  64. 64.
    By Å, Sobocki P, Forsgren A, Silferdal SA. Comparing health outcomes and costs of general vaccination with pneumococcal conjugate vaccines in Sweden: a Markov model. Clin Ther. 2012;34:177–89.PubMedCrossRefGoogle Scholar
  65. 65.
    Dahl MS, Trollfors B, Claesson BA, et al. Invasive pneumococcal infections in Southwestern Sweden: a second follow-up period of 15 years. Scand J Infect Dis. 2001;33(9):667–72.PubMedCrossRefGoogle Scholar
  66. 66.
    Choi YH, Jit M, Flasche S, et al. Mathematical modelling long-term effects of replacing Prevnar7 with Prevnar13 on invasive pneumococcal diseases in the England and Wales. PLoS ONE. 2012;7(7):e39927.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    van Hoek AJ, Andrews N, Waight PA, et al. Effect of serotype on focus and mortality of invasive pneumococcal disease; coverage of different vaccines and insight into non-vaccine serotypes. PLoS ONE. 2012;7(7):e39150.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Trotter C, Petersen I, Sterne J et al. Impact of pneumococcal conjugate vaccination on primary care consultations for otitis media and pneumonia in the UK.Google Scholar
  69. 69.
    Petrou S, Dakin H, Abangma G, et al. Cost-utility analysis of topical intranasal steroids for otitis media with effusion based on evidence from the GNOME trial. Value Health. 2010;13(5):543–51.PubMedCrossRefGoogle Scholar
  70. 70.
    Bennett JE, Sumner W 2nd, Downs SM, et al. Parents’ utilities for outcomes of occult bacteremia. Arch Pediatr Adolesc Med. 2000;154(1):43–8.PubMedGoogle Scholar
  71. 71.
    Vold PP, Owens DK. Cost-effectiveness of the pneumococcal vaccine in the United States navy and marine corps. Clin Infect Dis. 2000;30(1):157–64.CrossRefGoogle Scholar
  72. 72.
    Engström S, Mölstad S, Nilsson G, et al. Data from electronic patient records are suitable for surveillance of antibiotic prescriptions for respiratory tract infections in primary health care. Scand J Infect Dis. 2004;36(2):139–43.PubMedCrossRefGoogle Scholar
  73. 73.
    Invasive Haemophilus influenzae in Europe 2006. European Union Invasive Bacterial Infections Surveillance Network. 2007.
  74. 74.
    Centers for Disease Control and Prevention. Invasive pneumococcal disease in children 5 years after conjugate vaccine introduction–eight states, 1998-2005. MMWR Morb Mortal Wkly Rep. 2008;57(6):144–148 [Errata. MMWR Morb Mortal Wkly Rep 2008;57(09):237].Google Scholar
  75. 75.
    Darenberg J, Henriques NB. The epidemiology of pneumococcal infections—the Swedish experience. Vaccine. 2009;27(Suppl 6):G27–32.PubMedCrossRefGoogle Scholar
  76. 76.
    Gillian Prior. Chapter 5: Self-reported. In Health Survey for England 1996. 1998. 1998.
  77. 77.
    Oh PI, Maerov P, Pritchard D, et al. A cost-utility analysis of second-line antibiotics in the treatment of acute otitis media in children. Clin Ther. 1996;18(1):160–82.PubMedCrossRefGoogle Scholar
  78. 78.
    Cheng AK, Niparko JK. Cost-utility of the cochlear implant in adults: a meta-analysis. Arch Otolaryngol Head Neck Surg. 1999;125(11):1214–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Morrow A, De Wals P, Petit G, et al. The burden of pneumococcal disease in the Canadian population before routine use of the seven-valent pneumococcal conjugate vaccine. Can J Infect Dis Med Microbiol. 2007;18(2):121–7.PubMedCentralPubMedGoogle Scholar
  80. 80.
    Melegaro A, Edmunds WJ. Cost-effectiveness analysis of pneumococcal conjugate vaccination in England and Wales. Vaccine. 2004;22(31–32):4203–14.PubMedCrossRefGoogle Scholar
  81. 81.
    Number of laboratory confirmed invasive pneumococcal disease cases (including meningitis) in England and Wales, 1996-2005. Health Protection Agency. 2010.
  82. 82.
    Johnson AP, Waight P, Andrews N, et al. Morbidity and mortality of pneumococcal meningitis and serotypes of causative strains prior to introduction of the 7-valent conjugant pneumococcal vaccine in England. J Infect. 2007;55(5):394–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Williamson I, Benge S, Mulle M, et al. Consultations for middle ear disease, antibiotic prescribing and risk factors for reattendance: a case-linked cohort study. Br J Gen Pract. 2006;56(524):170–5.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Centers for Disease Control and Prevention (CDC). Direct and indirect effects of routine vaccination of children with 7-valent pneumococcal conjugate vaccine on incidence of invasive pneumococcal disease-United States, 1998-2003. MMWR Morb Mortal Wkly Rep. 2005;54(36):893–7.Google Scholar
  85. 85.
    Pneumococcal serotype distribution for samples referred for serotyping epidemiological years (July–June): 2000/1–2005/6. Health Protection Agency.
  86. 86.
    Denham BC, Clarke SC. Serotype incidence and antibiotic susceptibility of Streptococcus pneumonia causing invasive disease in Scotland, 1999–2002. J Med Microbiol. 2005;54(Pt 4):327–31.PubMedCrossRefGoogle Scholar
  87. 87.
    Netherlands Reference Laboratory for Bacterial Meningitis. Bacterial meningitis in the Netherlands. Annual report 2006. Amsterdam: University of Amsterdam; 2007.Google Scholar
  88. 88.
    Rijksinstituut voor Volksgezondheid en Milieu [National Institute for Public Health and the Environment, the Netherlands].
  89. 89.
    Miller E, Andrews NJ, Waight PA, et al. Herd immunity and serotype replacement 4 years after seven-valent pneumococcal conjugate vaccination in England and Wales: an observational cohort study. Lancet Infect Dis. 2011;11(10):760–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Zhou F, Kyaw MH, Shefer A, et al. Health care utilization for pneumonia in young children after routine pneumococcal conjugate vaccine use in the United States. Arch Pediatr Adolesc Med. 2007;161(12):1162–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Prosser LA, Ray GT, O’Brien M, et al. Preferences and willingness to pay for health states prevented by pneumococcal conjugate vaccine. Pediatrics. 2004;113(2):283–90.PubMedCrossRefGoogle Scholar
  92. 92.
    Koshy E, Murray J, Bottle A, et al. Impact of the seven-valent pneumococcal conjugate vaccination (PCV7) programme on childhood hospital admissions for bacterial pneumonia and empyema in England: national time-trends study, 1997–2008. Thorax. 2010;65(9):770–4.PubMedCrossRefGoogle Scholar
  93. 93.
    Maddigan SL, Feeny DH, Johnson JA. Health-related quality of life deficits associated with diabetes and comorbidities in a Canadian National Population Health Survey. Qual Life Res. 2005;14(5):1311–20.PubMedCrossRefGoogle Scholar
  94. 94.
    Oostenbrink R, Moll HA, Essink-Bot ML. The EQ-5D and the Health Utilities Index for permanent sequelae after meningitis: a head-to-head comparison. J Clin Epidemiol. 2002;55(8):791–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Diagnostic data of the hospitals (by place of residence): year 2006. Federal Health Monitoring.
  96. 96.
    Ruckinger S, van der Linden M, Reinert RR, et al. Reduction in the incidence of invasive pneumococcal disease after general vaccination with 7-valent pneumococcal conjugate vaccine in Germany. Vaccine. 2009;27(31):4136–41.PubMedCrossRefGoogle Scholar
  97. 97.
    Dirección General de Salud Pública. Generalitat Valenciana. Conjunto Minimo de Bases de Datos de la Comunidad Valenciana. Valencia. 2010.
  98. 98.
    Garcés-Sánchez M, Díez-Domingo J, Álvarez de Labiada T et al. Epidemiología e impacto de la otitis media aguda en la comunidad Valenciana. An Pediatr (Barc). 2004;60(2):125–32.Google Scholar
  99. 99.
    Garcés-Sánchez MD, Díez-Domingo J, Ballester Sanz A et al. Epidemiology of community-acquired pneumonia in children aged less than 5 years old in the Autonomous Community of Valencia (Spain). An Pediatr (Barc). 2005;63(2):125–30.Google Scholar
  100. 100.
    Rodenburg GD, de Greeff SC, Jansen AG, et al. Effects of pneumococcal conjugate vaccine 2 years after its introduction, the Netherlands. Emerg Infect Dis. 2010;16(5):816–23.PubMedCrossRefGoogle Scholar
  101. 101.
    Nelson JC, Jackson M, Yu O, et al. Impact of the introduction of pneumococcal conjugate vaccine on rates of community acquired pneumonia in children and adults. Vaccine. 2008;26(38):4947–54.PubMedCrossRefGoogle Scholar
  102. 102.
    von Kries R, Siedler A, Schmitt HJ, et al. Proportion of invasive pneumococcal infections in German children preventable by pneumococcal conjugate vaccines. Clin Infect Dis. 2000;31(2):482–7.CrossRefGoogle Scholar
  103. 103.
    Kamtsiuris P, Atzpodien K, Ellert U, et al. Prävalenz von somatischen ekrankungen bei kndern und jugendlichen in Deutschland. Ergebnisse des Kinder- und Jugendgesundheitssurveys (KiGGS). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2007;50(5–6):686–700.PubMedCrossRefGoogle Scholar
  104. 104.
    Diagnosedaten der Krankenhäuser 2007. Ad hoc tables for ICD-10 (pneumonia): J09-J18, ICD-10 (AOM): H65-H75 Gesundheitsberichtserstattung des Bundes (GBE).
  105. 105.
    Schnabel E, Sausenthaler S, Brockow I, LISA Study Group, et al. Burden of otitis media and pneumonia in children up to 6 years of age: results of the LISA birth cohort. Eur J Pediatr. 2009;168(10):1251–7.PubMedCrossRefGoogle Scholar
  106. 106.
    Schnoor M, Hedicke J, Dalhoff K, CAPNETZ study group, et al. Approaches to estimate the population-based incidence of community acquired pneumonia. J Infect. 2007;55(3):233–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Scheifele D, Halperin S, Pelletier L, et al. Invasive pneumococcal infections in Canadian children, 1991–1998: implications for new vaccination strategies. Canadian Paediatric Society/Laboratory Centre for Disease Control Immunization Monitoring Program, Active (IMPACT). Clin Infect Dis. 2000;31(1):58–64 (Erratum in 2000;31(3):850).Google Scholar
  108. 108.
    Jetté LP, Lamothe F. Surveillance of invasive Streptococcus pneumoniae infection in Quebec, Canada, from 1984 to 1986: serotype distribution, antimicrobial susceptibility, and clinical characteristics. J Clin Microbiol. 1989;27(1):1–5.PubMedCentralPubMedGoogle Scholar
  109. 109.
    Auburtin M, Porcher R, Bruneel F, et al. Pneumococcal meningitis in the intensive care unit: prognostic factors of clinical outcome in a series of 80 cases. Am J Respir Crit Care Med. 2002;165(5):713–7.PubMedCrossRefGoogle Scholar
  110. 110.
    van de Beek D, de Gans J, Spanjaard L et al. Clinical features and prognostic factors in adults with bacterial meningitis. N Engl J Med. 2004;351(18):1849–59. (Erratum in 2005;352(9):950).Google Scholar
  111. 111.
    Jokinen C, Heiskanen L, Juvonen H, et al. Incidence of community acquired pneumonia in the population of four municipalities in eastern Finland. Am J Epidemiol. 1993;137(9):977–88.PubMedGoogle Scholar
  112. 112.
    Kastenbauer S, Pfister HW. Pneumococcal meningitis in adults: Spectrum of complications and prognostic factors in a series of 87 cases. Brain. 2003;126(Pt 5):1015–25.PubMedCrossRefGoogle Scholar
  113. 113.
  114. 114.
    Verschreibungsindex für Pharmazeutika. VIP. Deutschland: IMS Health; 2009.Google Scholar
  115. 115.
  116. 116.
    Institut für das Entgeltsystem im Krankenhaus: DRG Browser 2008_2010. 2010.
  117. 117.
    Kassenärztliche Bundesvereinigung: Einheitlicher Bewertungsmaßstab (EBM).
  118. 118.
    Arbeitsunfähigkeit bei AOK-Pflichtmitgliedern ohne Rentner (Arbeitsunfähigkeitsfälle, Arbeitsunfähigkeitstage, Tage je Fall). Gliederungsmerkmale: Jahre, Deutschland, Geschlecht, ICD-10. Statistisches Bundesamt.
  119. 119.
    Bevölkerung, Erwerbstätige, Erwerbslose, Erwerbspersonen, Nichterwerbspersonen: Deutschland, Jahre, Altersgruppen. Statistisches Bundesamt (Hrsg.).
  120. 120.
    Drug costs in the Netherlands (in Dutch). 2009.
  121. 121.
    The Dutch Healthcare Authority. 2009.
  122. 122.
    British National Formulary. 60th edition. BMJ Group and RPS Publishing. September 2010.
  123. 123.
  124. 124.
    Curtis L. Unit costs of health and social care 2009. Canterbury, UK: Personal Social Services Research Unit (PSSRU), University of Kent; 2009.Google Scholar
  125. 125.
    National Collaborating Centre for Women’s and Children’s Health. Surgical management of otitis media with effusion in children. Clinical Guideline February 2008.
  126. 126.
    Kinane C, Gupta K. Residential care homes for the mentally ill. Implications for a catchment area service. Psych Bull 2001;25:61–6.Google Scholar
  127. 127.
    Curtis L. Unit costs of health and social care 2007. Canterbury, UK: Personal Social Services Research Unit (PSSRU), University of Kent; 2007.
  128. 128.
  129. 129.
    Bos JM, Rümke H, Welte R, et al. Epidemiologic impact and cost-effectiveness of universal infant vaccination with a 7-valent conjugated pneumococcal vaccine in the Netherlands. Clin Ther. 2003;25(10):2614–30.PubMedCrossRefGoogle Scholar
  130. 130.
    Plasschaert AI, Rovers MM, Schilder AG, et al. Trends in doctor consultations, antibiotic prescription, and specialist referrals for otitis media in children: 1995e2003. Pediatrics. 2006;117(6):1879–86.PubMedCrossRefGoogle Scholar
  131. 131.
    Rote Liste. 2009.
  132. 132.
    Z-index. Taxe (list of drugs registered in the Netherlands). Den Haag, The Netherlands: Z-index; February 2010.Google Scholar
  133. 133.
    Regional Association of Statutory Health Insurance Physicians. 2008.Google Scholar
  134. 134.
  135. 135.
    Claes C, Reinert RR, Vauth C et al. Health technology assessment: Heptavalenter Pneumokokkenkonjugat-Impfstoff (PCV7).
  136. 136.
    Rozenbaum MH, Sanders EA, van Hoek AJ, et al. Cost effectiveness of pneumococcal vaccination among Dutch infants: economic analysis of the seven valent pneumococcal conjugated vaccine and forecast for the 10 valent and 13 valent vaccines. BMJ. 2010;340:c2509.PubMedCrossRefGoogle Scholar
  137. 137.
    Boletín Oficial del Estado. Ley 16/2008, de 22 de diciembre, de Medidas Fiscales, de Gestión Administrativa y Financiera, y de Organización de la Generalitat. Madrid; 2008.
  138. 138.
    Vespa G, Constenla DO, Pepe C, et al. Estimating the cost-effectiveness of pneumococcal conjugate vaccination in Brazil. Rev Panam Salud Publica. 2009;26(6):518–28.PubMedCrossRefGoogle Scholar
  139. 139.
    Oostenbrink JB, Bouwmans CAM, Koopmanschap MA et al. Guidelines for costing research,methods and standardized prices for economic evaluations in health care. Dutch Health Care Insurance Board, 2004.Google Scholar
  140. 140.
  141. 141.
    Talbird SE, Taylor TN, Caporale J, et al. Residual economic burden of Streptococcus pneumoniae- and nontypeable Haemophilus influenzae-associated disease following vaccination with PCV-7: a multi-country analysis. Vaccine. 2010;28(Suppl. 6):G14–22.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Katelijne van de Vooren
    • 1
  • Silvy Duranti
    • 1
  • Alessandro Curto
    • 1
  • Livio Garattini
    • 1
  1. 1.CESAV, Centre for Health EconomicsIRCCS Institute for Pharmacological Research ‘Mario Negri’BergamoItaly

Personalised recommendations