Pediatric Drugs

, Volume 16, Issue 4, pp 293–307

The Use of Non-Narcotic Pain Medication in Pediatric Gastroenterology

Review Article

Abstract

The perception of pain in children is easily influenced by environmental factors and psychological comorbidities that are known to play an important role in its origin and response to therapy. Chronic abdominal pain is one of the most commonly treated conditions in modern pediatric gastroenterology and is the hallmark of ‘functional’ disorders that include irritable bowel syndrome, functional dyspepsia, and functional abdominal pain. The development of pharmacological therapies for these disorders in adults and children has been limited by the lack of understanding of the putative, pathophysiological mechanisms that underlie them. Peripheral and central pain-signaling mechanisms are known to be involved in chronic pain originating from the gastrointestinal tract, but few therapies have been developed to target specific pathways or enhance correction of the underlying pathophysiology. The responses to therapy have been variable, potentially reflecting the heterogeneity of the disorders for which they are used. Only a few small, randomized clinical trials have evaluated the benefit of pain medications for chronic abdominal pain in children and thus, the decision on the most appropriate treatment is often based on adult studies and empirical data. This review discusses the most common, non-narcotic pharmacological treatments for chronic abdominal pain in children and includes a thorough review of the literature to support or refute their use. Because of the dearth of pediatric studies, the focus is on pharmacological and alternative therapies where there is sufficient evidence of benefit in either adults or children with chronic abdominal pain.

References

  1. 1.
    Yacob D, Di Lorenzo C, Bridge JA, Rosenstein PF, Onorato M, Bravender T, Campo JV. Prevalence of pain-predominant functional gastrointestinal disorders and somatic symptoms in patients with anxiety or depressive disorders. J Pediatr. 2013;163:767–70.PubMedGoogle Scholar
  2. 2.
    Larsson MB, Tillisch K, Craig AD, Engström M, Labus J, Naliboff B, Lundberg P, Ström M, Mayer EA, Walter SA. Brain responses to visceral stimuli reflect visceral sensitivity thresholds in patients with irritable bowel syndrome. Gastroenterology. 2012;142:463–72.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Labus JS, Dinov ID, Jiang Z, Ashe-McNalley C, Zamanyan A, Shi Y, Hong JY, Gupta A, Tillisch K, Ebrat B, Hobel S, Gutman BA, Joshi S, Thompson PM, Toga AW, Mayer EA. Irritable bowel syndrome in female patients is associated with alterations in structural brain networks. Pain. 2014;155:137–49.PubMedGoogle Scholar
  4. 4.
    Mickle A, Sood M, Zhang Z, Shahmohammadi G, Sengupta JN, Miranda A. Antinociceptive effects of melatonin in a rat model of post-inflammatory visceral hyperalgesia: a centrally mediated process. Pain. 2010;149:555–64.PubMedCentralPubMedGoogle Scholar
  5. 5.
    Feng B, La JH, Tanaka T, Schwartz ES, McMurray TP, Gebhart GF. Altered colorectal afferent function associated with TNBS-induced visceral hypersensitivity in mice. Am J Physiol Gastrointest Liver Physiol. 2012;303:G817–24.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Ruscheweyh R, Wilder-Smith O, Drdla R, Liu XG, Sandkühler J. Long-term potentiation in spinal nociceptive pathways as a novel target for pain therapy. J Mol Pain. 2011;7:20 (review).Google Scholar
  7. 7.
    Anand P, Aziz Q, Willert R, van Oudenhove L. Peripheral and central mechanisms of visceral sensitization in man. Neurogastroenterol Motil. 2007;19:29–46 (review).PubMedGoogle Scholar
  8. 8.
    Rasquin A, Di Lorenzo C, Forbes D, Guiraldes E, Hyams JS, Staiano A, Walker LS. Childhood functional gastrointestinal disorders: child/adolescent. Gastroenterology. 2006;130:1527–37.PubMedGoogle Scholar
  9. 9.
    Youssef NN, Murphy TG, Langseder AL, Rosh JR. Quality of life for children with functional abdominal pain: a comparison study of patients’ and parents’ perceptions. Pediatrics. 2006;117:54–9.PubMedGoogle Scholar
  10. 10.
    Fass R, Fullerton S, Tung S, Mayer EA. Sleep disturbances in clinic patients with functional bowel disorders. Am J Gastroenterol. 2000;95:1195–2000.PubMedGoogle Scholar
  11. 11.
    Jarrett M, Heitkemper M, Czyzewski D, Zeltzer L, Shulman RJ. Autonomic nervous system function in young children with functional abdominal pain or irritable bowel syndrome. J Pain. 2012;13:477–84.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Zarate N, Farmer AD, Grahame R, Mohammed SD, Knowles CH, Scott SM, Aziz Q. Unexplained gastrointestinal symptoms and joint hypermobility: is connective tissue the missing link? Neurogastroenterol Motil. 2010;22:252-e78.PubMedGoogle Scholar
  13. 13.
    Sarkar S, Hobson AR, Furlong PL, Woolf CJ, Thompson DG, Aziz Q. Central neural mechanisms mediating human visceral hypersensitivity. Am J Physiol Gastrointest Liver Physiol. 2001;281:G1196–202.PubMedGoogle Scholar
  14. 14.
    Zimmerman LA, Srinath AI, Goyal A, Bousvaros A, Ducharme P, Szigethy E, Nurko S. The overlap of functional abdominal pain in pediatric Crohn’s disease. Inflamm Bowel Dis. 2013;19:826–31.PubMedGoogle Scholar
  15. 15.
    Saps M, Adams P, Bonilla S, Nichols-Vinueza D. Abdominal pain and functional gastrointestinal disorders in children with celiac disease. J Pediatr. 2013;162:505–9.PubMedGoogle Scholar
  16. 16.
    Saps M, Lu P, Bonilla S. Cow’s-milk allergy is a risk factor for the development of FGIDs in children. J Pediatr Gastroenterol Nutr. 2011;52:166–9.PubMedGoogle Scholar
  17. 17.
    Spiller R, Lam C. An update on post-infectious irritable bowel syndrome: role of genetics, immune activation, serotonin and altered microbiome. J Neurogastroenterol Motil. 2012;18:258–68.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Kovacic K, Williams S, Li BU, Chelimsky G, Miranda A. High prevalence of nausea in children with pain-associated functional gastrointestinal disorders: are Rome criteria applicable? J Pediatr Gastroenterol Nutr. 2013;57:311–5.PubMedGoogle Scholar
  19. 19.
    Saps M, Seshadri R, Sztainberg M, Schaffer G, Marshall BM, Di Lorenzo C. A prospective school-based study of abdominal pain and other common somatic complaints in children. J Pediatr. 2009;154:322–6.PubMedGoogle Scholar
  20. 20.
    American Academy of Pediatrics Subcommittee on Chronic Abdominal Pain. Chronic abdominal pain in children. Pediatrics. 2005;115:812–5.Google Scholar
  21. 21.
    Inadomi JM, Fennerty MB, Bjorkman D. Systematic review: the economic impact of irritable bowel syndrome. Aliment Pharmacol Ther. 2003;18:671–82 (review).PubMedGoogle Scholar
  22. 22.
    Di Lorenzo C, Colletti RB, Lehmann HP, Boyle JT, Gerson WT, Hyams JS, Squires RH Jr, Walker LS, Kanda PT, AAP Subcommittee, NASPGHAN Committee on Chronic Abdominal Pain. Chronic abdominal pain in children: a technical report of the American Academy of Pediatrics and the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition. J Pediatr Gastroenterol Nutr. 2005;40:249–61 (review).PubMedGoogle Scholar
  23. 23.
    Drossman DA, Morris CB, Schneck S, Hu YJ, Norton NJ, Norton WF, Weinland SR, Dalton C, Leserman J, Bangdiwala SI. International survey of patients with IBS: symptom features and their severity, health status, treatments, and risk taking to achieve clinical benefit. J Clin Gastroenterol. 2009;43:541–50.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Harris PE, Cooper KL, Relton C, Thomas KJ. Prevalence of complementary and alternative medicine (CAM) use by the general population: a systematic review and update. Int J Clin Pract. 2012;66:924–39.PubMedGoogle Scholar
  25. 25.
    Chey WD, Maneerattaporn M, Saad R. Pharmacologic and complementary and alternative medicine therapies for irritable bowel syndrome. Gut Liver. 2011;5:253–66.PubMedCentralPubMedGoogle Scholar
  26. 26.
    van Tilburg MA, Palsson OS, Levy RL, Feld AD, Turner MJ, Drossman DA, Whitehead WE. Complementary and alternative medicine use and cost in functional bowel disorders: a six month prospective study in a large HMO. BMC Complement Altern Med. 2008;8:46–53.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Saps M, Youssef N, Miranda A, Nurko S, Hyman P, Cocjin J, Di Lorenzo C. Multicenter, randomized, placebo-controlled trial of amitriptyline in children with functional gastrointestinal disorders. Gastroenterology. 2009;137:1261–9.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Ford AC, Moayyedi P. Meta-analysis: factors affecting placebo response rate in the irritable bowel syndrome. Aliment Pharmacol Ther. 2010;32:144–58.PubMedGoogle Scholar
  29. 29.
    Valrie CR, Bromberg MH, Palermo T, Schanberg LE. A systematic review of sleep in pediatric pain populations. J Dev Behav Pediatr. 2013;34:120–8 (review).PubMedCentralPubMedGoogle Scholar
  30. 30.
    Ruepert L, Quartero AO, de Wit NJ, van der Heijden GJ, Rubin G, Muris JW. Bulking agents, antispasmodics and antidepressants for the treatment of irritable bowel syndrome. Cochrane Database Syst Rev. 2011;8:CD003460 (review).PubMedGoogle Scholar
  31. 31.
    Rahimi R, Nikfar S, Rezaie A, Abdollahi M. Efficacy of tricyclic antidepressants in irritable bowel syndrome: a meta-analysis. World J Gastroenterol. 2009;15:1548–53.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Chao GQ, Zhang S. A meta-analysis of the therapeutic effects of amitriptyline for treating irritable bowel syndrome. Intern Med. 2013;52:419–24.PubMedGoogle Scholar
  33. 33.
    Bahar RJ, Collins BS, Steinmetz B, Ament ME. Double-blind placebo-controlled trial of amitriptyline for the treatment of irritable bowel syndrome in adolescents. J Pediatr. 2008;152:685–9.PubMedGoogle Scholar
  34. 34.
    Teitelbaum JE, Arora R. Long-term efficacy of low-dose tricyclic antidepressants for children with functional gastrointestinal disorders. J Pediatr Gastroenterol Nutr. 2011;53:260–4.PubMedGoogle Scholar
  35. 35.
    Nozu T, Kudaira M. Altered rectal sensory response induced by balloon distention in patients with functional abdominal pain syndrome. Biopsychosoc Med. 2009;3:1751–9.Google Scholar
  36. 36.
    Castilloux J, Noble A, Faure C. Is visceral hypersensitivity correlated with symptom severity in children with functional gastrointestinal disorders? J Pediatr Gastroenterol Nutr. 2008;46:272–8.PubMedGoogle Scholar
  37. 37.
    Zhou Q, Fillingim RB, Riley JL 3rd, Malarkey WB, Verne GN. Central and peripheral hypersensitivity in the irritable bowel syndrome. Pain. 2010;148:454–61.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Di Lorenzo C, Youssef NN, Sigurdsson L, Scharff L, Griffiths J, Wald A. Visceral hyperalgesia in children with functional abdominal pain. J Pediatr. 2001;139:838–43.PubMedGoogle Scholar
  39. 39.
    Van Ginkel R, Voskuijl WP, Benninga MA, Taminiau JA, Boeckxstaens GE. Alterations in rectal sensitivity and motility in childhood irritable bowel syndrome. Gastroenterology. 2001;120:31–8.PubMedGoogle Scholar
  40. 40.
    Rao SS, Hatfield RA, Suls JM, Chamberlain MJ. Psychological and physical stress induce differential effects on human colonic motility. Am J Gastroenterol. 1998;93:985–90.PubMedGoogle Scholar
  41. 41.
    Dickhaus BL, Mayer EA, Firooz N, Stains J, Conde F, Olivas TI, Fass R, Chang L, Mayer M, Naliboff BD. Irritable bowel syndrome patients show enhanced modulation of visceral perception by auditory stress. Am J Gastroenterol. 2003;98:135–43.PubMedGoogle Scholar
  42. 42.
    Liang J, Liu X, Pan M, Dai W, Dong Z, Wang X, Liu R, Zheng J, Yu S. Blockade of Na<sub>v</sub>1.8 currents in nociceptive trigeminal neurons contributes to anti-trigeminovascular nociceptive effect of amitriptyline. Neuromol Med. 2013 (epub ahead of print).Google Scholar
  43. 43.
    Gray AM, Spencer PS, Sewell RD. The involvement of the opioidergic system in the antinociceptive mechanism of action of antidepressant compounds. Br J Pharmacol. 1998;124:669–74.PubMedCentralPubMedGoogle Scholar
  44. 44.
    Eisenach JC, Gebhart GF. Intrathecal amitriptyline acts as an N-methyl-d-aspartate receptor antagonist in the presence of inflammatory hyperalgesia in rats. Anesthesiology. 1995;83:1046–54.PubMedGoogle Scholar
  45. 45.
    Gaudreau GA, Plourde V. Involvement of N-methyl-d-aspartate (NMDA) receptors in a rat model of visceral hypersensitivity. Behav Brain Res. 2004;150:185–9.PubMedGoogle Scholar
  46. 46.
    Gaunitz C, Schuttler A, Gillen C, Allgaier C. Formalin-induced changes of NMDA receptor subunit expression in the spinal cord of the rat. Amino Acids. 2002;23:177–82.PubMedGoogle Scholar
  47. 47.
    Li Y, Zhang X, Liu H, Cao Z, Chen S, Cao B, Liu J. Phosphorylated CaMKII post-synaptic binding to NR2B subunits in the anterior cingulate cortex mediates visceral pain in visceral hypersensitive rats. J Neurochem. 2012;121:662–71.PubMedGoogle Scholar
  48. 48.
    McRoberts JA, Coutinho SV, Marvizón JC, Grady EF, Tognetto M, Sengupta JN, Ennes HS, Chaban VV, Amadesi S, Creminon C, Lanthorn T, Geppetti P, Bunnett NW, Mayer EA. Role of peripheral N-methyl-d-aspartate (NMDA) receptors in visceral nociception in rats. Gastroenterology. 2001;120:1737–48.PubMedGoogle Scholar
  49. 49.
    Banerjee B, Medda BK, Zheng Y, Miller H, Miranda A, Sengupta JN, Shaker R. Alterations in N-methyl-d-aspartate receptor subunits in primary sensory neurons following acid-induced esophagitis in cats. Am J Physiol Gastrointest Liver Physiol. 2009;296:G66–77.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Mertz H, Naliboff B, Munakata J, Niazi N, Mayer EA. Altered rectal perception is a biological marker of patients with irritable bowel syndrome. Gastroenterology. 1995;109:40–52.PubMedGoogle Scholar
  51. 51.
    Thoua NM, Murray CD, Winchester WJ, Roy AJ, Pitcher MC, Kamm MA, Emmanuel AV. Amitriptyline modifies the visceral hypersensitivity response to acute stress in the irritable bowel syndrome. Aliment Pharmacol Ther. 2009;29:552–60.PubMedGoogle Scholar
  52. 52.
    Castro VM, Clements CC, Murphy SN, Gainer VS, Fava M, Weilburg JB, Erb JL, Churchill SE, Kohane IS, Iosifescu DV, Smoller JW, Perlis RH. QT interval and antidepressant use: a cross sectional study of electronic health records. BMJ. 2013;346:288.Google Scholar
  53. 53.
    Patra KP, Sankararaman S, Jackson R, Hussain SZ. Significance of screening electrocardiogram before the initiation of amitriptyline therapy in children with functional abdominal pain. Clin Pediatr. 2012;51:848–51.Google Scholar
  54. 54.
    Ray WA, Meredith S, Thapa PB, Hall K, Murray KT. Cyclic antidepressants and the risk of sudden cardiac death. Clin Pharmacol Ther. 2004;75(3):234–41.PubMedGoogle Scholar
  55. 55.
    Olfson M, Marcus SC, Druss BG. Effects of Food and Drug Administration warnings on antidepressant use in a national sample. Arch Gen Psychiatry. 2008;65:94–101.PubMedGoogle Scholar
  56. 56.
    Ladabaum U, Sharabidze A, Levin TR, Zhao WK, Chung E, Bacchetti P, Jin C, Grimes B, Pepin CJ. Citalopram provides little or no benefit in nondepressed patients with irritable bowel syndrome. Clin Gastroenterol Hepatol. 2010;8:42–8.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Talley NJ, Kellow JE, Boyce P, Tennant C, Huskic S, Jones M. Antidepressant therapy (imipramine and citalopram) for irritable bowel syndrome: a double-blind, randomized, placebo-controlled trial. Dig Dis Sci. 2008;53:108–15.PubMedGoogle Scholar
  58. 58.
    Campo JV, Perel J, Lucas A, Bridge J, Ehmann M, Kalas C, Monk K, Axelson D, Birmaher B, Ryan N, Di Lorenzo C, Brent DA. Citalopram treatment of pediatric recurrent abdominal pain and comorbid internalizing disorders: an exploratory study. J Am Acad Child Adolesc Psychiatry. 2004;43:1234–42.PubMedGoogle Scholar
  59. 59.
    Tack J, Broekaert D, Fischler B, Van Oudenhove L, Gevers AM, Janssens J. A controlled crossover study of the selective serotonin reuptake inhibitor citalopram in irritable bowel syndrome. Gut. 2006;55:1095–103.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Ladabaum U, Sharabidze A, Levin TR, Zhao WK, Chung E, Bacchetti P, Jin C, Grimes B, Pepin CJ. Citalopram provides little or no benefit in nondepressed patients with irritable bowel syndrome. Clin Gastroenterol Hepatol. 2010;8(1):42–8.PubMedCentralPubMedGoogle Scholar
  61. 61.
    Tack J, Broekaert D, Corsetti M, et al. Influence of acute serotonin reuptake inhibition on colonic sensorimotor function in man. Aliment Pharmacol Ther. 2006;23:265–74.PubMedGoogle Scholar
  62. 62.
    FDA Drug Safety Communication. Revised recommendations for Celexa (citalopram hydrobromide) related to a potential risk of abnormal heart rhythms with high doses. MedWatch. 2011. http://www.fda.gov/Drugs/DrugSafety/ucm297391.htm. Accessed 6 May 2014.
  63. 63.
    Brennan BP, Fogarty KV, Roberts JL, Reynolds KA, Pope HG Jr, Hudson JI. Duloxetine in the treatment of irritable bowel syndrome: an open-label pilot study. Hum Psychopharmacol Clin Exp. 2009;24:423–8.Google Scholar
  64. 64.
    Chong MS, Brandner B. Neuropathic agents and pain: new strategies. Biomed Pharmacother. 2006;60:318–22.PubMedGoogle Scholar
  65. 65.
    Jann MW, Slade JH. Antidepressant agents for the treatment of chronic pain and depression. Pharmacotherapy. 2007;27:1571–87.PubMedGoogle Scholar
  66. 66.
    Bertrand S, Ng GY, Purisai MG, Wolfe SE, Severidt MW, Nouel D, et al. The anticonvulsant, antihyperalgesic agent gabapentin is an agonist at brain gamma-aminobutyric acid type B receptors negatively coupled to voltage-dependent calcium channels. J Pharmacol Exp Ther. 2001;298:15–24.PubMedGoogle Scholar
  67. 67.
    Taylor CP. Mechanisms of analgesia by gabapentin and pregabalin—calcium channel alpha2-delta [Cavalpha2-delta] ligands. Pain. 2009;142:13–6.PubMedGoogle Scholar
  68. 68.
    Tzellos TG, Toulis KA, Goulis DG, Papazisis G, Zampeli VA, Vakfari A, Kouvelas D. Gabapentin and pregabalin in the treatment of fibromyalgia: a systematic review and a meta-analysis. J Clin Pharm Ther. 2010;35:639–56.PubMedGoogle Scholar
  69. 69.
    Meng FY, Zhang LC, Liu Y, Pan LH, Zhu M, Li CL, Li YW, Qian W, Liang R. Efficacy and safety of gabapentin for treatment of post-herpetic neuralgia: a meta-analysis of randomized controlled trials. Minerva Anestesiol. 2013 (epub ahead of print).Google Scholar
  70. 70.
    French J, Kwan P, Fakhoury T, Pitman V, Dubrava S, Knapp L, Yurkewicz L. Pregabalin monotherapy in patients with partial-onset seizures: a historical-controlled trial. Neurology. 2014;82:590–7.PubMedGoogle Scholar
  71. 71.
    Both C, Kojda G, Lange-Asschenfeldt C. Pharmacotherapy of generalized anxiety disorder: focus and update on pregabalin. Expert Rev Neurother. 2014;14:29–38.PubMedGoogle Scholar
  72. 72.
    Taylor CP, Garrido R. Immunostaining of rat brain, spinal cord, sensory neurons and skeletal muscle for calcium channel alpha2-delta (alpha2-delta) type 1 protein. Neuroscience. 2008;155:510–21.PubMedGoogle Scholar
  73. 73.
    You HJ, Lei J, Arendt-Nielsen L. Selective inhibitory effects of pregabalin on peripheral C but not A-delta fibers mediated nociception in intact and spinalized rats. Neuroscience. 2009;164:1845–53.PubMedGoogle Scholar
  74. 74.
    Dooley DJ, Mieske CA, Borosky SA. Inhibition of K(+)-evoked glutamate release from rat neocortical and hippocampal slices by gabapentin. Neurosci Lett. 2000;280:107–10.PubMedGoogle Scholar
  75. 75.
    Patel MK, Gonzalez MI, Bramwell S, Pinnock RD, Lee K. Gabapentin inhibits excitatory synaptic transmission in the hyperalgesic spinal cord. Br J Pharmacol. 2000;130:1731–4.PubMedCentralPubMedGoogle Scholar
  76. 76.
    Fehrenbacher JCL, Taylor CP, Vasko MR. Pregabalin and gabapentin reduce release of substance P and CGRP from rat spinal tissues only after inflammation or activation of protein kinase C. Pain. 2003;105:133–41.PubMedGoogle Scholar
  77. 77.
    Brawek B, Löffler M, Weyerbrock A, Feuerstein TJ. Effects of gabapentin and pregabalin on K+-evoked 3H-GABA and 3H-glutamate release from human neocortical synaptosomes. Naunyn Schmiedebergs Arch Pharmacol. 2009;379:361–9.PubMedGoogle Scholar
  78. 78.
    Dixit RK, Bhargava VK. Neurotransmitter mechanisms in gabapentin antinociception. Pharmacology. 2002;65:198–203.PubMedGoogle Scholar
  79. 79.
    Ballenger JC, Davidson JR, Lecrubier Y, Nutt DJ, Lydiard RB, Mayer EA, International Consensus Group on Depression and Anxiety. Consensus statement on depression, anxiety, and functional gastrointestinal disorders. J Clin Psychiatry. 2001;8:48–51 (review).Google Scholar
  80. 80.
    Stein DJ, Bruce Lydiard R, Herman BK, Mandel FS. Impact of gastrointestinal symptoms on response to pregabalin in generalized anxiety disorder: results of a six-study combined analysis. Int Clin Psychopharmacol. 2009;24:126–32.PubMedGoogle Scholar
  81. 81.
    Diop L, Raymond F, Fargeau H, Petoux F, Chovet M, Doherty AM. Pregabalin (CI-1008) inhibits the trinitrobenzene sulfonic acid-induced chronic colonic allodynia in the rat. J Pharmacol Exp Ther. 2002;302:1013–22.PubMedGoogle Scholar
  82. 82.
    Feng Y, Cui M, Willis WD. Gabapentin markedly reduces acetic acid-induced visceral nociception. Anesthesiology. 2003;98:729–33.PubMedGoogle Scholar
  83. 83.
    Stepanovic-Petrovic RM, Tomic MA, Vuckovic SM, Paranos S, Ugresic ND, Prostran MS, Milovanovic S, Boskovic B. The antinociceptive effects of anticonvulsants in a mouse visceral pain model. Anesth Analg. 2008;106:1897–903.PubMedGoogle Scholar
  84. 84.
    Ohashi-Doi K, Gale JD, Kurebayashi Y. Pregabalin inhibits accelerated defecation and decreased colonic nociceptive threshold in sensitized rats. Eur J Pharmacol. 2010;643:107–12.PubMedGoogle Scholar
  85. 85.
    Million M, Wang L, Adelson DW, Roman F, Diop L, Taché Y. Pregabalin decreases visceral pain and prevents spinal neuronal activation in rats. Gut. 2007;56:1482–4.PubMedCentralPubMedGoogle Scholar
  86. 86.
    Ravnefjord A, Brusberg M, Larsson H, Lindström E, Martínez V. Effects of pregabalin on visceral pain responses and colonic compliance in rats. Br J Pharmacol. 2008;155:407–16.PubMedCentralPubMedGoogle Scholar
  87. 87.
    Houghton LA, Fell C, Whorwell PJ, Jones I, Sudworth DP, Gale JD. Effect of a second-generation alpha2delta ligand (pregabalin) on visceral sensation in hypersensitive patients with irritable bowel syndrome. Gut. 2007;56:1218–25.PubMedCentralPubMedGoogle Scholar
  88. 88.
    Lee KJ, Kim JH, Cho SW. Gabapentin reduces rectal mechanosensitivity and increases rectal compliance in patients with diarrhoea-predominant irritable bowel syndrome. Aliment Pharmacol Ther. 2005;22:981–8.PubMedGoogle Scholar
  89. 89.
    Kanazawa M, Palsson OS, van Tilburg MA, Gangarosa LM, Fukudo S, Whitehead WE. Motility response to colonic distention is increased in postinfectious irritable bowel syndrome (PI-IBS). Neurogastroenterol Motil. 2014 (epub ahead of print).Google Scholar
  90. 90.
    Ohlsson B, Sjöberg K, Alm R, Fredrikson GN. Patients with irritable bowel syndrome and dysmotility express antibodies against gonadotropin-releasing hormone in serum. Neurogastroenterol Motil. 2011;23:1000–6.PubMedGoogle Scholar
  91. 91.
    Marciani L, Cox EF, Hoad CL, Pritchard S, Totman JJ, Foley S, Mistry A, Evans S, Gowland PA, Spiller RC. Postprandial changes in small bowel water content in healthy subjects and patients with irritable bowel syndrome. Gastroenterology. 2010;138:469–77.PubMedGoogle Scholar
  92. 92.
    Karabulut GS, Beşer OF, Erginöz E, Kutlu T, Cokuğraş FÇ, Erkan TJ. The incidence of irritable bowel syndrome in children using the Rome III criteria and the effect of trimebutine treatment. Neurogastroenterol Motil. 2013;19:90–3.Google Scholar
  93. 93.
    Poynard T, Regimbeau C, Benhamou Y. Meta-analysis of smooth muscle relaxants in the treatment of irritable bowel syndrome. Aliment Pharmacol Ther. 2001;15:355–61.PubMedGoogle Scholar
  94. 94.
    Sinniger V, Mouchet P, Bonaz B. Effect of nor-trimebutine on neuronal activation induced by a noxious stimulus or an acute colonic inflammation in the rat. Life Sci. 2005;77:2927–41.PubMedGoogle Scholar
  95. 95.
    Delvaux M, Wingate D. Trimebutine: mechanism of action, effects on gastrointestinal function and clinical results. J Int Med Res. 1997;25:225–46.PubMedGoogle Scholar
  96. 96.
    Ford AC, Talley NJ, Spiegel BM, Foxx-Orenstein AE, Schiller L, Quigley EM, Moayyedi P. Effect of fibre, antispasmodics, and peppermint oil in the treatment of irritable bowel syndrome: systematic review and meta-analysis. BMJ. 2008;337:a2313.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Lee KN, Lee OY, Choi MG, Sohn CI, Huh KC, Park KS, Kwon JG, Kim N, Rhee PL, Myung SJ, Lee JS, Lee KJ, Park H, Lee YC, Choi SC, Jung HK, Jee SR, Choi CH, Kim GH, Park MI, Sung IK. Efficacy and safety of tiropramide in the treatment of patients with irritable bowel syndrome: a multicenter, randomized, double-blind, non-inferiority trial, compared with octylonium. J Neurogastroenterol Motil. 2014;20:113–21.PubMedCentralPubMedGoogle Scholar
  98. 98.
    Everitt H, Moss-Morris R, Sibelli A, Tapp L, Coleman N, Yardley L, Smith P, Little P. Management of irritable bowel syndrome in primary care: the results of an exploratory randomised controlled trial of mebeverine, methylcellulose, placebo and a self-management website. BMC Gastroenterol. 2013;13:68.PubMedCentralPubMedGoogle Scholar
  99. 99.
    Darvish-Damavandi M, Nikfar S, Abdollahi M. A systematic review of efficacy and tolerability of mebeverine in irritable bowel syndrome. World J Gastroenterol. 2010;16:547–53.PubMedCentralPubMedGoogle Scholar
  100. 100.
    Okuma H, Iijima K, Yasuda T, Tokuoka K, Kitagawa Y. Preventive effect of cyproheptadine hydrochloride in refractory patients with frequent migraine. Springerplus. 2013;29(2):573.Google Scholar
  101. 101.
    Wu KG, Li TH, Wang TY, Hsu CL, Chen CJ. A comparative study of loratadine syrup and cyproheptadine HCL solution for treating perennial allergic rhinitis in Taiwanese children aged 2–12 years. Int J Immunopathol Pharmacol. 2012;25:231–7.PubMedGoogle Scholar
  102. 102.
    Sadeghian M, Farahmand F, Fallahi GH, Abbasi A. Cyproheptadine for the treatment of functional abdominal pain in childhood: a double-blinded randomized placebo-controlled trial. Minerva Pediatr. 2008;60:1367–74.PubMedGoogle Scholar
  103. 103.
    Rodriguez L, Diaz J, Nurko S. Safety and efficacy of cyproheptadine for treating dyspeptic symptoms in children. J Pediatr. 2013;163:261–7.PubMedCentralPubMedGoogle Scholar
  104. 104.
    von Mühlendahl KE, Krienke EG. Toxicity of cyproheptadine. Side effects and accidental overdosage. Monatsschr Kinderheilkd. 1978;126:123–6.PubMedGoogle Scholar
  105. 105.
    Pyleris E, Giamarellos-Bourboulis EJ, Tzivras D, Koussoulas V, Barbatzas C, Pimentel M. The prevalence of overgrowth by aerobic bacteria in the small intestine by small bowel culture: relationship with irritable bowel syndrome. Dig Dis Sci. 2012;57:1321–9.PubMedGoogle Scholar
  106. 106.
    Sachdeva S, Rawat AK, Reddy RS, Puri AS. Small intestinal bacterial overgrowth (SIBO) in irritable bowel syndrome: frequency and predictors. J Gastroenterol Hepatol. 2011;3:135–8.Google Scholar
  107. 107.
    Scarpellini E, Giorgio V, Gabrielli M, Filoni S, Vitale G, Tortora A, Ojetti V, Gigante G, Fundarò C, Gasbarrini A. Rifaximin treatment for small intestinal bacterial overgrowth in children with irritable bowel syndrome. Eur Rev Med Pharmacol Sci. 2013;17:1314–20.Google Scholar
  108. 108.
    Collins BS, Lin HC. Double-blind, placebo-controlled antibiotic treatment study of small intestinal bacterial overgrowth in children with chronic abdominal pain. J Pediatr Gastroenterol Nutr. 2011;52:382–6.PubMedGoogle Scholar
  109. 109.
    Menees SB, Maneerattannaporn M, Kim HM, Chey WD. The efficacy and safety of rifaximin for the irritable bowel syndrome: a systematic review and meta-analysis. Am J Gastroenterol. 2012;107:28–35.PubMedGoogle Scholar
  110. 110.
    Pimentel M, Lembo A, Chey WD, Zakko S, Ringel Y, Yu J, Mareya SM, Shaw AL, Bortey E, Forbes WP. Rifaximin therapy for patients with irritable bowel syndrome without constipation. TARGET Study Group. N Engl J Med. 2011;364:22–32.PubMedGoogle Scholar
  111. 111.
    Pimentel M, Park S, Mirocha J, Kane SV, Kong Y. The effect of a nonabsorbed oral antibiotic (rifaximin) on the symptoms of the irritable bowel syndrome: a randomized trial. Ann Intern Med. 2006;145:557–63.PubMedGoogle Scholar
  112. 112.
    Busby RW, Bryant AP, Bartolini WP, Cordero EA, Hannig G, Kessler MM, Mahajan-Miklos S, Pierce CM, Solinga RM, Sun LJ, Tobin JV, Kurtz CB, Currie MG. Linaclotide, through activation of guanylate cyclase C, acts locally in the gastrointestinal tract to elicit enhanced intestinal secretion and transit. Eur J Pharmacol. 2010;649:328–35.PubMedGoogle Scholar
  113. 113.
    Andresen V, Camilleri M, Busciglio IA, Grudell A, Burton D, McKinzie S, Foxx-Orenstein A, Kurtz CB, Sharma V, Johnston JM, Currie MG, Zinsmeister AR. Effect of 5 days linaclotide on transit and bowel function in females with constipation-predominant irritable bowel syndrome. Gastroenterology. 2007;133:761–8.PubMedGoogle Scholar
  114. 114.
    Chey WD, Lembo AJ, Lavins BJ, Shiff SJ, Kurtz CB, Currie MG, MacDougall JE, Jia XD, Shao JZ, Fitch DA, Baird MJ, Schneier HA, Johnston JM. Linaclotide for irritable bowel syndrome with constipation: a 26-week, randomized, double-blind, placebo-controlled trial to evaluate efficacy and safety. Am J Gastroenterol. 2012;107:1702–12.PubMedGoogle Scholar
  115. 115.
    Rao S, Lembo AJ, Shiff SJ, Lavins BJ, Currie MG, Jia XD, Shi K, MacDougall JE, Shao JZ, Eng P, Fox SM, Schneier HA, Kurtz CB, Johnston JM. A 12-week, randomized, controlled trial with a 4-week randomized withdrawal period to evaluate the efficacy and safety of linaclotide in irritable bowel syndrome with constipation. Am J Gastroenterol. 2012;107:1714–24.PubMedCentralPubMedGoogle Scholar
  116. 116.
    Castro J, Harrington AM, Hughes PA, Martin CM, Ge P, Shea CM, Jin H, Jacobson S, Hannig G, Mann E, Cohen MB, MacDougall JE, Lavins BJ, Kurtz CB, Silos-Santiago I, Johnston JM, Currie MG, Blackshaw LA, Brierley SM. Linaclotide inhibits colonic nociceptors and relieves abdominal pain via guanylate cyclase-C and extracellular cyclic guanosine 3’,5’-monophosphate. Gastroenterology. 2013;145:1334–46.PubMedGoogle Scholar
  117. 117.
    Bijvelds MJL, Bot AG, Escher JC, De Jonge HR. Activation of intestinal Cl-secretion by lubiprostone requires the cystic fibrosis transmembrane conductance regulator. Gastroenterology. 2009;137:976–85.PubMedGoogle Scholar
  118. 118.
    Norimatsu Y, Moran AR, MacDonald KD. Lubiprostone activates CFTR, but not ClC-2, via the prostaglandin receptor (EP(4)). Biochem Biophys Res Commun. 2012;426(3):374–9.PubMedCentralPubMedGoogle Scholar
  119. 119.
    Drossman DA, Chey WD, Johanson JF, Fass R, Scott C, Panas R, Ueno R. Clinical trial: lubiprostone in patients with constipation-associated irritable bowel syndrome—results of two randomized, placebo-controlled studies. Aliment Pharmacol Ther. 2009;29:329–41.PubMedGoogle Scholar
  120. 120.
    Sweetser S, Busciglio IA, Camilleri M, Bharucha AE, Szarka LA, Papathanasopoulos A, Burton DD, Eckert DJ, Zinsmeister AR. Effect of a chloride channel activator, lubiprostone, on colonic sensory and motor functions in healthy subjects. Am J Physiol Gastrointest Liver Physiol. 2009;296:G295–301.PubMedCentralPubMedGoogle Scholar
  121. 121.
    Whitehead WE, Palsson OS, Gangarosa L, Turner M, Tucker J. Lubiprostone does not influence visceral pain thresholds in patients with irritable bowel syndrome. Neurogastroenterol Motil. 2011;23:944-e400.PubMedCentralPubMedGoogle Scholar
  122. 122.
    Hyman PE, Di Lorenzo C, Prestridge LL, Youssef NN, Ueno R. Lubiprostone for the treatment of functional constipation in children. J Pediatr Gastroenterol Nutr. 2014;58(3):283–91.PubMedGoogle Scholar
  123. 123.
    Grigoleit HG, Grigoleit P. Gastrointestinal clinical pharmacology of peppermint oil. Phytomedicine. 2005;12:607–11.PubMedGoogle Scholar
  124. 124.
    Hills JM, Aaronson PI. The mechanism of action of peppermint oil on gastrointestinal smooth muscle. An analysis using patch clamp electrophysiology and isolated tissue pharmacology in rabbit and guinea pig. Gastroenterology. 1991;101:55–65.PubMedGoogle Scholar
  125. 125.
    Kline RM, Kline JJ, Di Palma J, Barbero GJ. Enteric-coated, pH-dependent peppermint oil capsules for the treatment of irritable bowel syndrome in children. J Pediatr. 2001;138:125–8.PubMedGoogle Scholar
  126. 126.
    Papathanasopoulos A, Rotondo A, Janssen P, Boesmans W, Farré R, Vanden Berghe P, Tack J. Effect of acute peppermint oil administration on gastric sensorimotor function and nutrient tolerance in health. Neurogastroenterol Motil. 2013;25:263–71.Google Scholar
  127. 127.
    Braden B, Caspary W, Börner N, Vinson B, Schneider AR. Clinical effects of STW 5 (Iberogast) are not based on acceleration of gastric emptying in patients with functional dyspepsia and gastroparesis. Neurogastroenterol Motil. 2009;21:632–8.PubMedGoogle Scholar
  128. 128.
    Ammon HP, Kelber O, Okpanyi SN. Spasmolytic and tonic effect of Iberogast (STW 5) in intestinal smooth muscle. Phytomedicine. 2006;13(Suppl 5):67–74.PubMedGoogle Scholar
  129. 129.
    Simmen U, Kelber O, Okpanyi SN, Jaeggi R, Bueter B, Weiser D. Binding of STW 5 (Iberogast) and its components to intestinal 5-HT, muscarinic M3, and opioid receptors. Phytomedicine. 2006;13(Suppl 5):51–5.PubMedGoogle Scholar
  130. 130.
    Madisch A, Holtmann G, Plein K, Hotz J. Treatment of irritable bowel syndrome with herbal preparations: results of a double-blind, randomized, placebo-controlled, multi-centre trial. Aliment Pharmacol Ther. 2004;19:271–9.PubMedGoogle Scholar
  131. 131.
    von Arnim U, Peitz U, Vinson B, Gundermann KJ, Malfertheiner P. STW 5, a phytopharmacon for patients with functional dyspepsia: results of a multicenter, placebo-controlled double-blind study. Am J Gastroenterol. 2007;102:1268–75.Google Scholar
  132. 132.
    Ottillinger B, Storr M, Malfertheiner P, Allescher HD. STW 5 (Iberogast®)—a safe and effective standard in the treatment of functional gastrointestinal disorders. Wien Med Wochenschr. 2013;163:65–72.PubMedCentralPubMedGoogle Scholar
  133. 133.
    Ferracioli-Oda E1, Qawasmi A, Bloch MH. Meta-analysis: melatonin for the treatment of primary sleep disorders. PLoS One. 2013;8(5).Google Scholar
  134. 134.
    Cummings C, Canadian Paediatric Society, Community Paediatrics Committee. Melatonin for the management of sleep disorders in children and adolescents. Paediatr Child Health. 2012;17:331–6.PubMedCentralPubMedGoogle Scholar
  135. 135.
    Bubenik GA. Thirty four years since the discovery of gastrointestinal melatonin. J Physiol Pharmacol. 2008;59(Suppl 2):33–51.PubMedGoogle Scholar
  136. 136.
    Schwertner A, Conceição Dos Santos CC, Costa GD, Deitos A, de Souza A, de Souza IC, Torres IL, da Cunha Filho JS, Caumo W. Efficacy of melatonin in the treatment of endometriosis: a phase II, randomized, double-blind, placebo-controlled trial. Pain. 2013;154:874–81.PubMedGoogle Scholar
  137. 137.
    Laste G, de Macedo IC, Ripoll Rozisky J, Ribeiro da Silva F, Caumo W, Torres IL. Melatonin administration reduces inflammatory pain in rats. J Pain Res. 2012;5:359–62.Google Scholar
  138. 138.
    Vidor LP, Torres IL, Custódio de Souza IC, Fregni F, Caumo W. Analgesic and sedative effects of melatonin in temporomandibular disorders: a double-blind, randomized, parallel-group, placebo-controlled study. J Pain Symptom Manag. 2013;46:422–32.Google Scholar
  139. 139.
    Arangino S, Cagnacci A, Angiolucci M, Vacca AM, Longu G, Volpe A, Melis GB. Effects of melatonin on vascular reactivity, catecholamine levels, and blood pressure in healthy men. Am J Cardiol. 1999;83:1417–9.PubMedGoogle Scholar
  140. 140.
    Yu CX, Wu GC, Xu SF, Chen CH. Effect of melatonin on release of beta-endorphin, norepinephrine and 5-hydroxytryptamine in rat brain. Yao Xue Xue Bao. 2001;36:5–9.PubMedGoogle Scholar
  141. 141.
    Klupińska G, Poplawski T, Drzewoski J, Harasiuk A, Reiter RJ, Blasiak J, Chojnacki J. Therapeutic effect of melatonin in patients with functional dyspepsia. J Clin Gastroenterol. 2007;41:270–4.PubMedGoogle Scholar
  142. 142.
    Citera G, Arias MA, Maldonado-Cocco JA, Lázaro MA, Rosemffet MG, Brusco LI, Scheines EJ, Cardinalli DP. The effect of melatonin in patients with fibromyalgia: a pilot study. Clin Rheumatol. 2000;19:9–13.PubMedGoogle Scholar
  143. 143.
    Hussain SA, Al-Khalifa II, Jasim NA, Gorial FI. Adjuvant use of melatonin for treatment of fibromyalgia. J Pineal Res. 2011;50:267–71.PubMedGoogle Scholar
  144. 144.
    Miano S, Parisi P, Pelliccia A, Luchetti A, Paolino MC, Villa MP. Melatonin to prevent migraine or tension-type headache in children. Neurol Sci. 2008;29:285–7.PubMedGoogle Scholar
  145. 145.
    Lu WZ, Gwee KA, Moochhalla S, Ho KY. Melatonin improves bowel symptoms in female patients with irritable bowel syndrome: a double-blind placebo-controlled study. Aliment Pharmacol Ther. 2005;22:927–34.PubMedGoogle Scholar
  146. 146.
    Zahn PK, Lansmann T, Berger E, Speckmann EJ, Musshoff U. Gene expression and functional characterization of melatonin receptors in the spinal cord of the rat: implications for pain modulation. J Pineal Res. 2003;35:24–31.PubMedGoogle Scholar
  147. 147.
    Odo M, Koh K, Takada T, Yamashita A, Narita M, Kuzumaki N, Ikegami D, Sakai H, Iseki M, Inada E, Narita M. Changes in circadian rhythm for mRNA expression of melatonin 1A and 1B receptors in the hypothalamus under a neuropathic pain-like state. Synapse. 2014;68:153–8.PubMedGoogle Scholar
  148. 148.
    Ambriz-Tututi M, Rocha-González HI, Cruz SL, Granados-Soto V. Melatonin: a hormone that modulates pain. Life Sci. 2009;84:489–98.PubMedGoogle Scholar
  149. 149.
    Zurowski D, Nowak L, Machowska A, Wordliczek J, Thor PJ. Exogenous melatonin abolishes mechanical allodynia but not thermal hyperalgesia in neuropathic pain. The role of the opioid system and benzodiazepine-gabaergic mechanism. J Physiol Pharmacol. 2012;63:641–7.PubMedGoogle Scholar
  150. 150.
    El-Shenawy SM, Abdel-Salam OM, Baiuomy AR, El-Batran S, Arbid MS. Studies on the anti-inflammatory and anti-nociceptive effects of melatonin in the rat. Pharmacol Res. 2002;46:235–43.PubMedGoogle Scholar
  151. 151.
    Raghavendra V, Agrewala JN, Kulkarni SK. Melatonin reversal of lipopolysacharides-induced thermal and behavioral hyperalgesia in mice. Eur J Pharmacol. 2000;395:15–21.PubMedGoogle Scholar
  152. 152.
    Shavali S, Ho B, Govitrapong P, Sawlom S, Ajjimaporn A, Klongpanichapak S, Ebadi M. Melatonin exerts its analgesic actions not by binding to opioid receptor subtypes but by increasing the release of beta-endorphin an endogenous opioid. Brain Res Bull. 2005;64:471–9.PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Division of Gastroenterology and Hepatology, Department of PediatricsMedical College of WisconsinMilwaukeeUSA
  2. 2.Department of PediatricsAnn and Robert H. Lurie Children’s Hospital of ChicagoChicagoUSA

Personalised recommendations